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What is inference? Statistics

Infer a hidden rule, or hidden variables, from ata.

Restricted sense : find parameters of a probability distribution

Urn with 10.000 balls. Draw 100, find 70 whtte balls and 50 black
Bedst gueds for the compodsition of the urn? How reliable? Probability
that tt has 6000 white- 4000 black?

If only black and white balls , with fraction x of white,

100
= >$70(1 = 33)30

Log likelihood of  : L(z) = 70log x + 30log(1 — z)
=

probability to pick-up 70 white balls 1s (

Maxomumat—F = 7 Probability 616



Bayesian inference

Unknown parameters T

Measurements Yy

Posterior = (£C|y) —

Prior

[Likelihood

Plylz Pz

P(y)



Bayesian inference

Unknown parameters T

Measurements Yy

Posterior iE (|y) =

Prior

[Likelihood

P(y|z) P ()

P(y)



Bayesian inference

Unknown parameters ¥ Prior P
Measurements Y Likelihood P(y|x)

P(y|z) P ()
P(y)

Posterior iE (|y) =

E.g. error correcting codes
X reconstructed message

Y received message

P(y|x) transmission channel

& (ZC ) codebook



Decoding as an inference problem
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Statistical inference: general scheme

Challenge = rules with many hidden parameters. eg :
machine learning with large machine and big data, decoding

In communication,...
e e e e ]
Many measurements Yy = (y1, I ,yM) M >1

Measure of the amountofdata o = M /N

= Algorithms

=% Prediction on the quality of inference, on the
performance of the algorithms, on the type of situations

where they can be applied



First example : Compressed sensing

4 Wavelet Coefficients
x 10

From 65.536 wavelet coefficients, keep 25.000

(From Candes-Wakin)

How to acquire the image directly in the compressed form?

Applications in MRI, tomography, etc.



The simplest compressed-sensing problem:

reconstruct a signal from linear measurements

Consider a system of linear measurements

,y:F:U\

~

Measurements
(")
\ v

(e.g. wavelet
components)

F = M x N matrix

AN

Signal

€T —

Pb:Find x when M < N and x is sparse




The problem:  y = F's and sis sparse,i.e. it has
R components = ()

R<M<N vy isobserved, F is known. Find s

Study the linear system y = F'x




The problem:  y = F's and sis sparse,i.e. it has
R components = ()

R<M<N vy isobserved, F is known. Find s

Study the linear system y = F'x

Exploit the sparsity of

the original s



The problem: y = F's and sis sparse
R components ()

==p Study the linear system Yy = F'x

A ‘simple’ solution: guess the positions

where z; #0 and check if it is correct

e.g. a:l,...,xR#O

G ={ R first columns of F }

R
Solve : y* =) G"a, n=1,...,.M
=1



The problem: y = F's and sis sparse
R components ()

==p Study the linear system Yy = F'x

A ‘simple’ solution: guess the positions

where z; # 0 and check if it is correct }R
€8 x1,...,zp #0 x

yl = | G F
G ={R first columns of F }

R
Solve : y* =) G"a, n=1,...,.M
=1

R < M == tOO many equations

==p generically inconsistent (no solution), except if
the guess of locations of ;, - gwas correct



The problem: y = F's and sis sparse
R components ()

==p Study the linear system Yy = F'x

A ‘simple’ solution: guess the positions

where z; #0 and check if it is correct }R
e.g. = o L0 N
o ( > > ossible guesses
Solve 1! P g

R< M :

==p generically inconsistent (no solution), except if
the guess of locations of ;, + owas correct



Phase diagram

)
«Thermodynamic limit» N>1  variables
R =pN non-zero variables

M = aN equations

\.

® Solvable by enumeration when « > p but O(e")

B 21 norm approach

Find a N- component vector x such that the M
equations y = F'x are satisfied and ||| 1s minimal

® AMP = Bayesian approach + cavity mean-field equations
N

P(x) = [[1(1 = p)d(x:) + po(a:)) lj 5 (y -2 F)

1=1



N P

P(x) = [[I(1 = p)é(ai) + po(e)) 1[0 { v =D Fuiw

1=1 p=1

ik pi :1ud, known

Spin glass with multispin
interactions, infinite range: write

mean field equations.

M (Ti)

My —i(Zs)

=

Messages:

Becomes Gaussian in the thermodynamic limit

Mézard 1989, Opper Winther 96, Kabashima 2003, 2008 , Donoho Maleki
Montanari 2009, Rangan+ 2011, Krzakala+ 2012, ...



BP equation
CLz'_”L:/dxi xzmz—nb(xz) q ations
_ 2 2
Visp = /dwi X, mi—m(xi) T ai—m

1 A .
mu—>i($i) — 7 e~ 2 AumitBuizi
p—i

1 = - |
i) = = (1= p)0(22) + po(e] e F So Aot S B




BP equations
2 2

1 z3
_ T |/ ) B A
m'u_m(ﬁbz) = e 2 [ r—r p—idi

Z,u—m'
1 = - |
i) = = (1= p)0(22) + po(e] e F So Aot S B

Four «messages» sent along each edge ¢ —
(4N M numbers ) can be simplified to o(~)parameters



From « cavity messages » TAP equations
Aj—p — /dﬂ?z‘ L mi—>,u(xi)
Viosy = /dxi 7 mi (1) — a?_m
To full local distribution
Vi = /dﬂfi mi(x)ai —af = (x7) — a
TAP = coupled equations between the 2N variables @i, Vi

[teration — algorithm : GAMP

Statistical study —— phase diagram and control of the algorithm



Analytic study

P(x) = []I(1 = p)3(xs) + po(a) H5 (y ZF)

1=1

Replica method allows to compute the «free entropy»

1
¢(D) = lim N]ogP(D)

N — o0

where P(D)is the probability that reconstructed = is

at distance D from original signal s. -
2
D = N Z (ZEZ — Si)

7

Cavity method shows that the order parameters
of the BP iteration fl ow according to the gradient of
the replica free entropy g{«density evolution» eqgns)

msap analytic control of the BP equations



Free entropy ~ log P(D)

BP convergence time
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Dynamic glass transition

When « is too small, BP is trapped in a glass phase



Error BP convergence time
_ PO — ! xX=p O BP L1
1 . , , , , _10000..*.........+ ,,,,,,,, v
1 e [BP
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Dynamic glass transition

NB comparison of theory (replica, cavity,
density evolution) and numerical experiment



Phase diagram for compressed sensing |

1

0.8 |
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0 . . ]

L1 Find a N- component vector  such that the )/ equations
are satisfied and ||%||1 1s minimal

BP Bayesian approach: max of P (x|y) studied by BP
Ensemble: iid elements of F' ~ N (0,1/N)



Analysis of random instances : phase
transitions

N (real) variables, M measurements (linear functions)

Analysis of random instances : phase transitions

Reconstruction of signal using BP. Fixed # increase @

Impossible Hard -

>
Qltimate , Algorithmic “
(mform'fltlon threshold
theoretic)

threshold



N
N\ —/

N~

Many « crystals |

Impossible

Not enough
measurements

«Seeded » BP

Easy

Belief
Propagation

»

Dynamical phase transition. Ubiquitous in statistical
inference. Conjecture « All local algorithms freeze »...

How universal?



Getting around the glass trap

Design the matrix F so that one nucleates the naive
state (crystal nucleation idea,

...borrowed from error correcting codes : « spatial
coupling »)

«Seeded BP»



Nucleation and seeding

i.'-




Nucleation and seeding

i.'-




0
— X
0
M : unit coupling

: coupling /i
Structured : coupling />
measurement matrix. : no coupling (null elements)
Variances of the
matrix elements

Fl.i = independent random Gaussian variables,

zero mean and variance .. 1,y /N



Block 1 has a large value of
M such that the solution arise
in this block...

M : unit coupling

: coupling /;

: coupling >

: no coupling (null elements)

... and then propagatesin the
whole system!

L =8

1 > OBp
N, =N/L a; =a <app j>2
1
MZ:OJZN/L Oé:—(al‘l—(L—].)Ck/)

L



Numerical |
Study 04l
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t = 100

I a decoding
| ' ~  of blocks
o ]l 1to 9

t =10 . -/ 4/‘

decoding of 0 '
first block : 19 1> 20
s Block index

Mean square error
o
N

L =20 N = 50000 p=.4 J1 =20 a; =1



Performance of the probabilistic
approach + message passing +
parameter learning+ seeding matrix

Z:/dej

. .

N
j=1 1=

(1= p)b(x:) + pp(as)] | | 6 (yu -y Fuixz')

1 =

( ) »Simulations
» Analytic approaches
(replicas and cavity)

— Qe = PO

Reaches the ultimate information-theoretic threshold

Proof: Donoho Javanmard Montanari



Part Two

N
Back to Machine

learning:
the importance of data
structure



put layer
_—f\\
\M\"_"_»\— Z \:_4 2 &~ output layer
RS L 4 3 4 X
-~ [N e b
SRR S Ry e °
e i Why does it work?
=% = @= ®
: S 3
. N\~ @7
= e S
W\

Data structure

- Hidden manifolds and sub manifolds
- Combinatorial structure
- Euclidean correlations

* Analyse data

* Build generative models that can be
analyzed fully in some large size limit

* Understand mechanisms



Theory: Ensembles of data,
prior on weights

output layer

7
?/

o
)
) l‘

{

Mostly used so far
Data = input patterns e
with Iid entries

Perceptron learning, committee
machine, teacher-student
Many results in the 90’s

W

-~



Analytic study of perceptron learning

Task to be learnt= teacher perceptron

y = SigntJ.x) J, = +1

[Learning= student perceptron

OOO/ >
Nag

Machine learning: database of P examples x*
and the desired labels y* = Sign(J.z")

Learn the components of K. Compute the

generalization error



Analytic study of perceptron learning

Task to be learnt= teacher perceptron

y = SigntJ.x) J, = +1

[Learning= student perceptron

OOO/ >
Nag

Machine learning: database of P examples x*
and the desired labels y* = Sign(J.z")

Learn the components of K. Compute the

generalization error

Ensemble: iid =] eg ~ N(0,1/N)



Analytic study of perceptron learning

Task to be learnt= teacher perceptron
yt=Sigutlz)

[earning= student perceptron

y = Sign(K.x) K;==1




Analytic study of perceptron learning

Task to be learnt= teacher perceptron
yt=Sigutlz)

[Learning= student perceptron

y = Sign(K.x) K;==1

Similar to compressed sensing !




Analytic study of perceptron learning

N
Task to be learnt= teacher perceptron
x . y = Sign(J.x) =1

= .

@- [earning= student perceptron

O = Signa e ek

Thermodynamic limit
N P S—— perceptron channel, binary X

: e o]
Replicas

Algorithm (BP-cavity)

Generalization error

0.8

0.6

0.2 r

R

04 r

SE —
Bayes-optimal
GAMP, n=10% o

M|

0 0.5 1

1.5 2



Statistical-physics and probabilistic tools

Precise statements 1n the thermodynamic limit both on the
phase diagram, and on the behavior of some classes of
algorithms.

But limited to an ensemble of disorder (in compressed

sensing: choice of F’)

Complementary to other theoretical approaches that
apply to a large class of problems (eg L1 norm applies to
all &' with RIP properties), or to the worst case

What ensembles can be studied?
What ensembles have been studied?

Does 1t matter?



The hidden manifold of data
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Input space: dimension 282 = 784



The hidden manifold of data

Input space: dimension 282 = 784

Q—2Mm¥Fhe N o
O~ mMmAva oo e
Q~NMY LW Ne o
O~NMINO NS
D—-NoT he Noo o
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Manifold of handwritten digits in MNIST:

Ry ~ p~ Y/

Nearest neighbors’ distance:



< Omin > (normalized)

The hidden manifold of data

MNIST: d = 784
dog ~ 15
6x10"
= Random d=35 . :
o0 | 0o Nearest neighbors
o e e » r distance :

: Ry ~p~ '/



< Omin > (normalized)

The hidden manifold of data

MNIST: d =784
deg ~ 15
6x10"
= Random d=35 . :
0™ | — o350 Nearest neighbors
10" 10° 10° 10° 10° dIStance : Rnn ~ p—l/d
o
O~o



< Omin > (normalized)

The hidden manifold of data

MNIST: d =784
dog ~ 15
6x10"
= Random d=35 . :
0™ | — o350 Nearest neighbors
10’ 10° 10° 10" 10° dIStance . Rnn ~ p_l/d
(-]
O~o




10

> (normalized)

£ -1
£ 6x10

4x10”

The hidden manifold of data

— dft=14.43
----- din = 15.00
= Random d=35
—— dsit = 28.67
----- di, = 35.00
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MNIST: d =784

deﬂ‘ ~ 15

Nearest neighbors’

distance : R~ p—l/d

The neural net should answer: this image
does not belong to the category of

handwritten digits on which | have been

traines



Structure of the task:
perceptual sub-manifolds

Table 7. Number of samples and estimated intrinsic di-
mensionality of the digits in MNIST.

1 5 3 1 5
7877 | 6990 | 7141 | 6824 | 6903
8/7/7 |13/12/13|14/13/13]13/12/12 |12/12/12
deg (D) >~ 12 6 7 g 9 0

6376 | 7293 | 6825 | 6958 | 6903
11/11/11|10/10/10| 14/13/13 | 12/11/11 [12/11/11

MNIST problem:in the 15-dim manifold of

handwritten digits, identify the 10 perceptual
sub manifolds associated with each digit, of

dimensions between 7 and 13...

... from an input in /84 dimensions!



Structure of the task:
perceptual sub-manifolds

Table 7. Number of samples and estimated intrinsic di-
mensionality of the digits in MNIST.

1 5 3 1 5
7877 | 6990 | 7141 | 6824 | 6903
8/7/7 |13/12/13|14/13/13]13/12/12 |12/12/12
deg (D) >~ 12 6 7 g 9 0

6376 | 7293 | 6825 | 6958 | 6903
11/11/11|10/10/10| 14/13/13 | 12/11/11 [12/11/11

MNIST problem:in the 15-dim manifold of

handwritten digits, identify the 10 perceptual
sub manifolds associated with each digit, of

dimensions between 7 and 13...

... from an input in /84 dimensions!

Very different from iid inputs !



An ensemble
for the hidden manifold
and for the task to be achieved

S. Goldt, F Krzakala MM L. Zdeborova

arXiv:1909.11500



https://arxiv.org/abs/1909.11500

An ensemble for the h_idden manifold

R
1
Pattern n: Xu=/f|—=) Culi
H p _\/E; p _
Data = input patterns built from R features F,

A feature is a V component vector in the input space

Each pattern is built from a weighted superposition XR:CTF?
of features (feature 7 has weight C)): r=1




An ensemble for the h_idden manifold

R
1
Pattern wu: Xpu=f|—= E CrFir
v v _ I £ p _

Data = input patterns built from R features F,

A feature is a V component vector in the input space

R
Each pattern is built from a weighted superposition Z(;rﬁr

of features (feature 7 has weight C)): r=1

S P
P

&
<

{5 q;i{&
]

TheR-dimensional data S
. . QLA 2L
manifold is folded by o (SR N
N, }

. . -0.5|
applying the non-linear % X<
fU nCtion f X1 05 ‘_1.0




An ensemble for the task

R
< _ f Z C. ﬁr « Latent

representation »: {C).}
iid

Desired output = function of latent representation

(perceptron in

R
: — ~7°Cr . .
Examples: ¥y =g Zw hidden manifold)

r=1




An ensemble for the task

) | LB ~ « Latent
X=f NG ZCrFr representation »: {C,.}

r=1

Desired output (task) = function of latent representation

R
o N erceptron in
Examples: ¥ =g (Z w"“CT) I(Etent space)

r=1

M R
y = Z O G (Z UNerCfr> (2 layers nn in
m=1 r=1

latent space)



Manifold of data and sub
mahnifolds of the task

| LB ~ « Latent
X=f ﬁ ;CrFr representation »: {C,.}

Hidden manifold of data: folded R-dimensional manifold

M R
Task y_z@mg( %cr)
1

m=1 r—=
depends on {@W,.C}, m e {1,..M}
where (5 1and C livein a R-dim space

For M < R perceptual sub manifold = moving in directions
orthogonal to the {w,,} ,in latent space



0.4
0.3 1
0.2 1
0.1

0.0 -

Hidden manifold model
R =10

Experimenting with the
« hidden manifold model »

t
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Hidden manifold model

R
Z o Data. « Latent
o representation »: {C,.}

o
|
~

Desired output (task) = function of latent representation
R
Example ¥y =g (Z ?IJTCT)
r=1

Does not have the pathologies of teacher-student setup with
iid data

Learning and generalization phenomenology ~ MNIST

Can be studied analytically: online learning and phase diagram



Analytic study of the hidden manifold model

R
X = Z C.F ®
Correlated X

components
& .

N

Solvable limit = thermodynamic limit with extensive
latent dimension N — oo, R — oo, P — o0

With fixed R/N =+, P/N=a, K



Analytic study of the hidden manifold model

£ |y CF
T r=1

components ||d\

C.F
Correlated \

balanced:
F,; = O(1) N

% Y F,Fy =O0(1/VN)
%ZFMFM =1



Analytic study of the hidden manifold model

T —1

C.F
Correlated \
components

Xi = flug]

R
1
—= Z C,Fr;  Gaussian, weakly correlated O(1/V N)
— when F).; are balanced and O(1)

E (fluil flu;]) = <}f1(u)>2 + (uf (u)°E (uiuy)
u Gaussian N (0, 1)



Gaussian Equivalence Theorem (GET)

1 R
e — C’r ri
! mzf .\V y

Xi = [lui] id

—

Wk

1
Inputs of hidden units: A= \/—N Z wff[uz]

N

GET: In the thermodynamic limit, the variables \*
have a Gaussian distribution, with covariance

E[N* )] = (c —a® — VYW 4 p?uke
1 12 - k ot Al
ENZw P E}%X}STST z::
c=(f(w)? a=(f(u) b=(uf(v)) u Gaussian N(0,1)

ﬂ\**



Gaussian Equivalence Theorem (GET)

R
1
Uy = —— CrF,,; Inputs of hidden units:
1 \/(ié ;%;; r+rTrt

N
E_ L NT R,
X; = flui v P

GET in a nutshell: in the thermodynamic limit (with
extensive latent dimension of the hidden manifold, i = V),
the inputs of hidden units have Gaussian distribution. Then

the model is solvable.

NB: F,; andw; are not necessarily random, but balanced

rir2...T'g

1
Sklemkp = \/—N Zwflwa...wprirlFiTQ...Firq = 0(1)



Gaussian Equivalence Theorem (GET)

R
1
Uy = —— CrF,,; Inputs of hidden units:
1 \/E 7;1 r+rTrt

N
E_ L NT R,
X; = flui v P

GET in a nutshell: in the thermodynamic limit (with
extensive latent dimension of the hidden manifold, i = V),
the inputs of hidden units have Gaussian distribution. Then

the model is solvable.
NB: depends on the manifold folding function /' only
through the three quantities

c=(f@?) a=(f(w) b= (uf(w)) u Gaussian N(0,1)

Any folding function [ is statistically equivalent to a quadratic one
f(u) = a+ Bu+yu®



Online learning of Hidden Manifold Model

W

O o Learn using a 2-layer neural
net, KX hidden units
K
5 (X) =3 g (a5 V)
‘/ K k=1 . | B B
N X=Ff ﬁ;@ﬂ

X = inside hidden R-dimensional manifold, folded by
function f

Desired output given constructed from latent

representation M R
O (X) =) 7 (Z w:ﬁ@)
1


https://arxiv.org/abs/1909.11500

Online learning: ODE for SGD
Evolution of the weights during learning

~ (w}

"= jﬁAg'(W(ui)
A = Zg (A) — Zf](vm

New pattern (and therefore new latent representation (. )
at each time

(wf)“+1

GET: Aand V™ are Gaussian, and the learning dynamics
can be analyzed by ordinary differential equations for order

parameters like R
ke — L Z k, 0
1=1



ODE Theory vs simulations N=8000, D=4000, M=2, K=2

0.6{

0.51
wc’ 04'
0.31

0.2

0.1

10-!

10! 102 103 104

steps /N

10°

1.00

0.75

0.501

s kil

0.25

0.00

—0.251

‘\/\//E'—Eqr

11
212

— 2n

10-1

e

10! 102 103

steps /N

104

Sk = Lika
VN 5

1
k, ¢
N2
)

Wk[

1 D
Zk@__ Sksﬁ
T D r™~r
r=1
1.0
0.8+
o e aio v
0.6
W11
0.4+ — Wy
0.2 — Wa
0.0
_O_Z-W
10-1 100 10! 102 103 104
steps /N




ODE Theory vs simulations N=8000, D=4000, M=2, K=2

0.8
0.6
0.6
0.5
0.4 1
0.31 0.21
0.1+ : : : : : - : : : : :
1071 100 101 102 103 104 1071 109 101 102 103 104
steps /N steps /N
1] < b <
Sk=_— N wlF, RFM = 2\ " Skgpm
=1 r=1

correlation of pre-activation of neuronk in the
student and the weight m in the latent task

specializes after 100 steps



ODE Theory vs simulations N=1023, D=1023, M=2, K=2
Hadamard F

0.7 — Fi.i.d.
F Hadamard
0.6 -
0.5
w@
0.4
0.3
0.2 e
102 10!  10°  10' 102  10°

steps /N



Phase diagram of Hidden Manifold Model

, . .k
Gardner’s computation: volume of space in w;
compatible with the data {XM, @t(fﬂ)}

Evaluated with replicas

The volume can be written in terms of the local
input fields to the hidden variables, A" .

The GET shows that these are Gaussian variables,
independent for different patterns, correlated for
one given pattern. Finite number of correlations
between nk variables, so the computation can be
done.

Results... coming soon



summary Data structure is important

- Hidden manifolds and sub manifolds
- Combinatorial structure

Hidden Manifold Model
Data has « Latent representation »: {Cr}

Desired output (task) = function of latent representation

R R

— 1 —

Example =g u.C, X=f|—=) CF
P ’ ? r=1 R?"zl

* Does not have the pathologies of teacher-student setup
with iid data

* Learning and generalization phenomenology ~ MNIST

* Can be studied analytically : online learning and full batch
in the limit where R = O(N), thanks to a Gaussian
Equivalence property




Statistical inference and statistical physics

Infer a hidden rule, or hidden variables, from data. Many
variables, big data chosen from an ensemble — stat. physics

Physics approach:
- mean-field cavity equations — ethcient algorithm
~ replica method —phase diagram, and control of algorithm
~ frequent pattern of phase diagram:

Impossible —ard Casy

Info. theory Algorithmic Amount of data
threshold threshold
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Statistical inference and statistical physics

Infer a hidden rule, or hidden variables, from data. Many
variables, big data chosen from an ensemble — stat. physics

Physics approach:
- mean-field cavity equations — ethcient algorithm
~ replica method —phase diagram, and control of algorithm
~ frequent pattern of phase diagram

Relevance for machine learning: data and task structure 1s

probably crucial. Define new ensembles, like eg the Hidden
Manitold Model




