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40 years of research

70’s:Anomalies in the magnetic response of some

obscure and useless alloys

o

Hdwards and Anderson define a model, an

order parameter, a new phase of matter

1978-.

s Theory develops along two lines: mean

ﬁeld theory (Sherrington-lﬁrkpatrick, Parisi, Mézard Parisi

Virasoro.

.) and « real space » droplets (Fisher- Huse)

No application, no grant, no nice pictures, but...

intellectual curiosity.



Where do we stand?

Real spin glasses: many open questions

A very sophisticated and powerful corpus of conceptual
and methodological approaches has been developed in
the mean-hield approach, and used in many different

helds



Where do we stand?

Real spin glasses: many open questions

A very sophisticated and powerful corpus of conceptual
and methodological approaches has been developed in
the mean-field approach, and used 1n many different

fields e

/{/ {(((ll(( :
((!
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Star ting in 1984 (aSSignment, N ','f'f"'... "
travelling salesman, MM-Parisi), hesh
expanding continuously since
then.

« Spin glass as cornucopta »,
P.W. Anderson, Physics Today 1989



The cornucopia

® Physics (all kinds of glassy phases)
® Computer Science (constraint satisfaction
problems: satishiability, coloring, TSP,...)

® Information Theory (error correcting codes)

® Signal acquisition and processing - big data

® Significant information

® Gene expression networks

® Neural networks

® [nteracting agents on a market
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Why?

Beginning of statistical physics and condensed matter

theory : homogeneous systems. All atoms are alike. Easy

(so to say)

Gradually : add dirt | Defects, dislocations, pinning

sites, mixtures, walls, etc.

Last forty years : handle strongly disordered systems.

H{ven the nature

Each atom has a different environment. |

of the basic phases i1s hard to understand.

Heterogeneous « agents »
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Beginning of statistical physics and condensed matter
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Table of content

Spin glasses and structural glasses : slow
dynamics, mean field description

Information theory: phase transitions and glass
phases 1n error correcting codes

Computer science: constraint satisfaction
problems

Cavity method, mean-field equations and

algorithms



Magnets

] . ] S {::1}
E=— Z JijSiSj
iJ
= =
Eaqmbhbmune Pl ¢

Ferromagnet: J;; > 0 At low T: spins align, P

concentrates on 2 ordered states
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Magnets

e Z JijSiSj
1)
= =
Eaqmbhbmune Pl ¢

M
Ferromagnet: J;; > 0 \
T

Phases: (si) =M

« representative agent »

Two states

M = tanh Z Ji;8; | =~ tanh (2J M)
J



Spin glasses
S {::1}

A —
i i% ? ¢ = 1
P81 = Ee_E/T

Spin glass:  Jij sign depends onij == frustration

Frustrated triplet: Ji;JjkJki <0

Disorder and frustration are the two building blocks

of spin glasses
What is the behavior at low T ?



Magnetization, linear response to e
S : P Non-equilibrium
a small magnetlc field
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Spin Glasses

Linear response to a
small magnetic hield:

x 33
(a.u.)
T=12K |
: T=10 K !
1 |
| T=12K
l —_—
<_ ................ > I'<_ ................ > :<_ .................... >
t : L, : Ly
400 800 time (min)

New dynamics

Memory

E. Vincent et al, SPEC



Spin glasses

What 1s the behavior at low T?

out-of-equilibrium etfects are crucial

1- How does the equilibrium P behave at low T ?

ok Study the dynamics : What causes the very slow
dynamics? Quasi-equilibrium?

Mean-tield ensemble: F = — Z e
SK model Jii 1id Gaussian




Mean-field lessons

Energy

Energy

Configurations

. 1os,
Magnetization Ni |

Ising Spin glass

1- Glass « phase » : Many pure states, unrelated by
symmetry, organized 1n a hierarchical « ultrametric »

structure 4" < 1¢
2- Many metastable states, unrelated by symmetry

3- « True » ground state : fragile to perturbation!
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Equilibrium: order parameters

e e =
Ferromagnet. - Ll’lg = <S >B
Spin glass: ===

Bi—>O:|:(O‘>

Freezing into an unknown, disordered state: unwieldy!

Use t

he system itself as a conjugate field: replicas

Over]

ap between two equilibrium configurations

= %ngsi

Order parameter = Probability of overlap ¢ : P(q)
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Two families of spin
glasses

Probability (2 random

conﬁgurations have overlap q )

Continuous transition

« Full replica symmetry breaking »

Discontinuous transition

« One step replica symmetry breaking »

Glass p—hglse
Trivial P(q)




l\i

Two replicas with small attraction @

Two replicas with small repulsion @



Example of a spin glass model with a
discontinuous transition

Va
<.
|
e

3-spin interaction
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SR
|
|
HELA




Example of a spin glass model with a
discontinuous transition

Va
<.
|
e

3-spin interaction

Si:—l

Lowest E:




Trapped in a glass phase

10° spins, 4 triangles per spin
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Trapped in a glass phase E=— Z SiSjSk
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Trapped in a glass phase E=— Z SiSjSk
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Trapped in a glass phase E=— Z SiSjSk
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Collective behaviour and emergent properties of
systems made from many different «atoms»:

® Magnetic moments (spin glasses)

® Molecules (structural glasses)

® [nformation bits(information theory, coding)
® Neurons, spikes (neural networks)

® Gene activities (gene expression networks)
® Logical variables (constraint satistaction)

® [nformation bits (error correction)

® Agents on a market (finance, game theory)



An example from Information Theory

Deeply linked to statistical physics

Claude Shannon
(1916-2001)



An example from Information Theory |

Deeply linked to statistical physics

More recent convergence:

Error correcting codes, pool

testing, compressed sensing Cl(a|u9d|ess;38?)on



Information transmission and error correction




Sclera o Choroid

Cornea

Optic nerve

Ciliary body

Fig. 1.1. A drawing of a section through the human eye
with a schematic enlargement of the retina.
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Principle of error correction : redundancy

%
a

Original
message

L. =N-M bits

Encoder

Encoded
message

N bits

Transmission
Channel
X r

Decoder |—=
a’
Received Estimateof the
message original message
N bits I, = N-M bits

Encoding = add redundancy. Rate L/N
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Transmission
—_— Encoder |— Decoder |—m =
Channel
a X r a’

Original Encoded Received Estimateof the
message message message original message
I, = N—M bits N bits N bits L = N-M bits

Encoding = add redundancy. Rate L/N
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Principle of error correction : redundancy

—_— Encoder |— Transmission Decoder }——=
Channel
a X r a’

Original Encoded Received Estimateof the
message message message original message
I, = N—M bits N bits N bits L = N-M bits

7

Encoding = add redundancy. Rate L/N

Ercrepetition 0000 ——FEE —srates =ity
1011 —> 111000111111 ==p> (11 @ocjnol@}ﬂ Majority
Code Channel decoding

1 0 1 1

error probability  p® + 3p*(1 — p)~ 3p?
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Encoding = add redundancy. Rate L/N
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transmits with zero error, iff r < r.(p



Principle of error correction : redundancy

Transmission
—_— Encoder |— Decoder |—m =
Channel
a X r a’

Original Encoded Received Estimateof the
message message message original message

I, = N-M bits N bits N bits [, = N-M bits

Encoding = add redundancy. Rate L/N

Shannon’s theorem: |for a given noise level p, one can

build a coder/decoder which

transmits with zero error, iff r < r.(p
Two ingredientsz

- « Thermodynamic limit » N, L — o0

- Ensemble of Random Codes (~ Random Energy
Model of spin glasses)



Shannon code ensemble

Unit hypercube in NV dimensions

e codewords
® (random)

o sent codeword

® Channel: flips bit
with probability P

2ftN  jid random points, uniform distribution
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Shannon code ensemble

Unit hypercube in NV dimensions

e codewords
® (random)

o sent codeword

® e received word

® Channel: flips bit
with probability P

2ftN  jid random points, uniform distribution



Phase transitions in decoding

Decoding = find closest codeword

Probability of perfect

1

decoding:
(D) a3

0 =

P = noise

Shannon « bound »
geometric phase transition



Shannon code ensemble

Unit hypercube
in N dimensions
3 e codewords
= o (random)
/- ° o sent codeword
o e received word
o
o
o

Perfect codes in principle, but impossible to decode
in practice (structureless == time O(e') )



Efficient codes : parity checks

Shannon’s code 1s useless (time O(eN) )

Add redundancy, with structure allowing to decode

£l \ 4
S \‘Q\

1 + 24 + x5 + 27 = 0 (mod 2)
24 codewords

o

To + x4 + 6 + 7 = 0 (mod 2)

7
~ amon words
r3 + x5 + xg + x7 = 0 (mod 2) g 2



K variables per equation
equations per variable

(1 — R)N equations
L

Error decoding with parity checks

N—>T-~ariables, M
Random construction with

20, M =10,R=1/2,L =3, K =6

e



equations per variable

K variables per equation
L

(1 — R)N equations

Error decoding with parity checks

N—>T-~ariables, M
Random construction with




(1 — R)N equations

Error decoding with parity checks

N > 1 variables, M

K variables per equation
equations per variable

L

Random construction with

heg
Flipped bits



Error decoding with parity checks
N > 1 variables, M = (1 — R)N equations

5 : = K variables per equation
andom construction wit L equations per va e

violated parity constraints

Flipped bits



Error decoding with parity checks
N > 1 variables, M = (1 — R)N equations

: = K variables per equation
Random construction wit I o e

violated parity constraints

Flipped bits
Pb: how to decode!
Inference problem



Error decoding: inference problem




Error decoding: inference problem

received




Error decoding: inference problem

%(leyz} H]I (Z z; =0 (mod 2))
a 1€0a

=

/;[

A priori knowledge

'7yﬁa)
of the channel

received

-715A4@H7--

})C$1,..



Error decoding: inference problem
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Error decoding: inference problem
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Error decoding: inference problem

Decoding algo. = iterate mean-hield «cavity» equations.

Spin glass problem with multispin Interactions

« Message passing » algorithm,

« Beliet propagation ». See below



Error correction: decoding

Unit hypercube °
1n N dimensions
° e codewords
> o o sent codeword
o
o
o
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Error correction: decoding

Unit hypercube °
1n N dimensions
° e codewords
> o o sent codeword
/ e received word
°
o




Error correction: decoding

Unit hypercube o
in N dimensions
o e codewords
> o o sent codeword
e received word
o
o
o
= Seek a codeword at distance pN

from received word




Error correction: decoding

Unit hypercube °
in N dimensions
° e codewords
> o o sent codeword
e received word
o
o
e metastable states
)
= Seek a codeword at distance pN

from received word




Phase transitions in decoding

Probability of perfect
decoding:

1

= r p = noise
Algo Max Prob Shannon



Phase transitions in decoding

Probability of perfect

decoding: /
1 4———1—7

— » p = noise
Algo Max Prob Shannon




Phase transitions in decoding
Q

Metastables states=traps

Probability of perfect
decoding: /

e e —— /
9 < > P = noise
P 0 s =

Algo Max Prob Shannon
Glass phase




Phase transitions in decoding
Q

Metastables states=traps

' =
=

4 7

energy density

0 = % P = noise
Algo Max Prob Shannon
Glass phase



Phase transitions in decoding

Probability of perfect
decoding:

1

= A p = noise
Algo Max Prob Shannon



Phase transitions in decoding

Probability of perfect
decoding:

1

= A p = noise
Algo Max Prob Shannon

Ex: 3-6 code
on BSC pqg = .084 e A ps = .110



Phase transitions in decoding

Parity-check

code, 1n 1ts

Parity check

code 1n easy

« Ideal » code,
time O(e )
time Of(e

\ —=

phase, time O(N glass P hase,

= r p = noise
Algo Max Prob Shannon



An example from computer science:

Random Satisfiability
N Binary variables z; € {0,1}
M Constraints = clauses, e.g.: 1V TV I3

Is there a conhguration of the {x;} which satishes

all the constraints?

The grandfather of NP-complete problems. CNF



An example from computer science:

Random Satisfiability

N Binary variables z; € {0,1}

M Constraints = clauses, e.g.: 7 T v 5 e

Is there a conhguration of the {x;} which satishes

all the constraints?

The grandfather of NP-complete problems. CNF

k-SAT (clauses of length k& > 3) is also NP-complete



An example from computer science:

Random Satisfiability

N Binary variables z; € {0,1}

M Constraints = clauses, e.g.: 7 T v 5 e

Is there a conhguration of the {x;} which satishes

all the constraints?

The grandfather of NP-complete problems. CNF

k-SAT (clauses of length k& > 3) is also NP-complete

Typically hard instances: random k-SAT: ’Generate each

clause with three randomly chosen variables in {z;,7;}

Ensemble



Phase transition in the random k-SAT

ensemble
Random k-SAT: N variables, M clauses. k variables in

each clause, randomly chosen, randomly negated:

Large N limit: a= M/N !

=density of constraints

|
SoO
S S

0.8 |-

Z=2
||

Phase transition

SAT fOI‘ a < g
e tor o 0a |

0.6 -

7
|
v

Proba(SAT)

Stat-Phys analysis from cavity method
-MM Parisi Zecchina (2002): phase

transition and algorithm

0.2

Proven for k large enough by Ding- E S—— o
Sly-Sun (2015), making rigorous the 0 - - \\ g .
stat phys approach | |




Statistical physics of satishability
® many binary variables Z = (1, - 2Zn), N > 1
Etoitoios [ (o Nunberolviohied
constraints = sum of three-body terms

® [ind conhguration of lowest cost

Uniform measure over all SAT assignments

P(z) = C5E(x),o

Kirkpatrick, Selman; Monasson, Zecchina; Biroli, Monasson, Weigt; Mézard,
Zecchina; Mézard, Parisi, Zecchina; Krzakala, Montanari, Ricci-Tersenghi,

Semerjian, Zdeborova; Coja-Oghlan Panagiotou, Ding Sly Sun...
Results



Random k-Satishability: clustering

SAT UNSAT

Disconnected
clusters of solutions

: Condensation:
‘O
© O
0
g 0% g
1 ! !

. 1RSB glass  SAT-UNSAT

Dynamical transition = =
transition transition



General setup

Phase transitions and glass phases are ubiquitous, 1n
nature and 1n algorithms trying to solve constraint
satisfaction problems with many variables and constraints.

Phase transitions relate to the equilibrium system, reached
atter infinitely long (i.e. exponential) time

Dynamic glass transitions relate to the practical
performance of (polynomial time) algorithms

=

Deep links of spin glass theory to information theory and
computer science



Cavity method and mean-field based

algorithms



Historical development of mean field equations

-~ In homogeneous ferromagnets:

*  Weiss (infinite range, 1907)
* Bethe Peierls (finite connectivity, 1935)

o glassy systems:

* Thouless Anderson Palmer 1977,

* MM Parisi Virasoro 1986 (infinite range)
« Kabashima Saad 1998 (finite connectivity)
MM Parisi 2001 (finite connectivity)

« Gallager 1963
- As an algorithm: | * Pearl 1986
e MM Parisi Zecchina 2002
« Kabashima 2003, 2008
¢ Donoho Bayati Montanari 2009
* Rangan 2010

e Krzakala MM Zdeborova 2012 ...



BP = Bethe-Peierls = Beliet Propagation




BP equations

First type of messages:

..............

a Probability of Z1in the

absence of a:

/@ Mi=gET)




BP equations
Second type of messages:

Probability of Z1when it

1s connected only to  ¢:

mc—>1($1)




=

BP equations



==

BP equations

q——@

_>

M=o lTa) = Z Vel @15 Loy B3) o B s =pts)

L1,L3



BP equations

\

el e CE T e P S e e o

Me—2(T2) = Z Ye(®1, T2, T3)M1— o (T1) M3 c(T3)




BP equations

Propagate messages
along the edges, update
messages at Vertices,
using elementary local
probabilistic rules



BP equations

/ 1
: Propagate messages

] z ;

along the edges, update
7 messages at Vertices,
\ s 5  using elementary local
" /Q probabilistic rules
b
®— Lot
g gy
o

Closed set of equations: two messages
“propagate” on each edge of the factor graph.



When is BP exact?

m1_>c(5131) = Cmg— ($1)me—>1 (ZUl)mf_>1 (561)

mc—>2(£€2) — Z %(1’171’27Is)m1—>c($1)m3—>c(ﬂf3)

L1,T3

Fluctuations are handled correctly, but beware of correlations

* Exact in one dimension (transfer matrix
= dynamic programming)

e [ixact on a tree (uncorrelated b.c)

e Exact on locally tree-like graphs (Erdés
Renyi etc.) if correlations decay fast
enough (single pure state) and
uncorrelated disorder

e Exact in infinite range problems if
correlations decay fast enough (single

pure state) and uncorrelated disorder

Loop length

g;____‘O(log N)

=

3

a;




Two important developments

1) The special case of infinite-range models

2) What happens in a glass phase, when there are many pure

states, and therefore many solutions ?



Infinite range models : from Mhessages on the
edges to N distributions on the vertices

W H = it

Small difference, treated

? perturbatively

Mean-field equations can be

written only in terms of site pdfs:

. TAP. W,




Example: SK model

1
SK model Pairwise interactions 0 <\/—N>

i i) 5) g

hi_,; ¢ local field on1iin absence of}

3 B
BP equations: p;, ; = % Z atanh|tanh(8Jy;) tanh(Bhy ;)]
B ~ " Jy, tanh(Bhy,)
k(#1)
Fulllocal field: H; = > atanh{tanh(8.1;) tanh( 8 )
k ~ Z Jii tanh(Bhy ;)
k

e i) ( ) : expand 1n the difference

=l



SK model, TAP equations

1
SK model Pairwise interactions Jij = 0O (\/—N>

Corrections can be handled to first order in perturbation theory, and all the
equations close on the N variables H; » TAP equations

H; =) Jiitanh(BHy) — Btanh(8H;) Y J[1 — tanh®(3Hy)
k k



SK model, TAP equations

1
SK model Pairwise interactions Jij = 0O (\/—N>

Corrections can be handled to first order in perturbation theory, and all the
equations close on the N variables H; * TAP equations

t+1 t t—1 t—1
H; =) Jiitanh(BHy) — Btanh(8H;) Y J[1 — tanh®(3Hy)
k k

Time iteration (Bolthausen): AMP algorithm in information theory



Two important developments

1) The special case of infinite-range models

2) What happens in a glass phase, when there are many pure

states, and therefore many solutions ?



2) What happens in a glass phase, when there are many pure

states, and therefore many solutions ?

BP equations V()

Correct 1f, in absence of the 1-)
interaction, the correlations
between k£ and ¢ can be
neglected.

Loop length O(log N)



2) What happens in a glass phase, when there are many pure

states, and therefore many solutions ?

BP equations V()

Correct 1f, in absence of the 1-)
interaction, the correlations
between k and 14 can be

neglected.
Energy O{ (){

Configurations

Glassy pha.se: many states, e
many solutions of BP



2) What happens in a glass phase, when there are many pure

states, and therefore many solutions ?

— «
BP equations mi—p ($Z) — | | My —q (sz) Statistics of 7,—>,u( Z)
Q
e over the many states
Correct if, in absence of the 1-) e 1 (m)
interaction, the correlations —
related to
between k and 14 can be
B V—>1 (m)
neglected.
o Survey propagation

mz_m ZEZ H my—m CEZ M Parisi Zecchina
2002
o v(#£u)

Configurations

Glassy phase: many states,
many solutions of BP




SP=BP 2 Auxiliary problem: statistics

over solutions:




Power of message passing algorithms

Approximate solution of very hard, and very large constraint satistaction

problems, ...FAST! (typically linear time)

BP: Best decoders for LDPC error correcting codes

SP: Best solver of random satisfiability problems

BP: Best algorithm for learning patterns in neural networks (e.g.
binary perceptron)

Data clustering, graph coloring, Steiner trees, etc...

Fully connected networks : TAP (=AMP). Compressed sensing, linear

estimation, etc.

Local, simple update equations: Each

message 1s updated using information

from incoming messages on the same
e node. Distributed, solves hard global
- pb



Power of message passing algorithms

Approximate solution of very hard, and very large constraint satistaction

problems, ...FAST! (typically linear time)

BP: Best decoders for LDPC error correcting codes
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Bird’s eye view

« Representative agent » mean-field 1dea 1s substituted by
statistical approaches to the heterogeneous behaviors of
individual agents

Controlled algorithms, for well chosen ensembles of
random problems
Analytic predictions, phase transitions

A very active new feld of
research, at the intertace of
statistical physics, information Information, Physics,

and Computation

theory and computer science




/’I:hysics of glasses : spin,

. \ Neural networks: brain,
structural, quantum, interfaces, |

.. capacity, learning...
o polymers...

/" Mathematics of glas %

and constraint

Inference, statistics, machine
| learning, proteins, gene expression
b\ networks

satistaction problems

4 Economy and finance:
portfolio, agent-based

Spln glass AS & ¢ Information theory, codes, A

signal processing,
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models, minority games, \ compressed sensing

y, order books, risk

Evolution :

Optimization and Self-organization,

computer science : \ evolution

biological, simulated annealing,
quantum annealing,

§ assignment, TSP, K-Sat,
\, BP SP...

prebiotic, chemical,
self-organization



/’I:hysics of glasses : spin,

. \ Neural networks: brain,
structural, quantum, interfaces, |

.. capacity, learning...
o polymers...

/" Mathematics of glas %

and constraint

Inference, statistics, machine
learning, proteins, gene expression
‘networks

satistaction problems

",%\ Sy

4 Economy and finance:
portfolio, agent-based

Spln glass as a, Information theory, codes, A

signal processing,

cornucopia

models, minority games, \ compressed sensing

\order books, risk

Evolution :

Optimization and " Self-organization,

computer science : \ evolution
biological, simulated annealing,
quantum annealing,

§ assignment, TSP, K-Sat,
\, BP SP...

prebiotic, chemical,

{ « And it’s only the

self-organization

/ beginning »



Cavity:
fully connected, diluted

Replicas,
potential

TAP equations

Ensemble: quenched and

Mathematics:
Interpolation methods
, Ultrametricity
% ‘ Cavity

~ annealed variables




Pure states,
ultrametricity,

Thermodynamic limit
Self-averageness

Glassy dynamics :

Condensation of measure,
~ Poisson-Dirichlet

landscapes, aging

Link to information
theory: conditional

entropy, mutual

information




Neural networks: brain,
capacity, learning...

Inference, statistics, machine

Statistical PhySiCS and "f learning, proteins, gene expression
% networks ‘

statistical inference

Information theory, codes,

signal processing,
. compressed sensing

Next talk

Infer a hidden rule, or hidden variables, from data
Challenge = rules with many hidden parameters (eg

deep learning)
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