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Understanding the reasons for the success of deep neural networks trained using stochastic gradient-
based methods is a key open problem for the nascent theory of deep learning. The types of data where these
networks are most successful, such as images or sequences of speech, are characterized by intricate
correlations. Yet, most theoretical work on neural networks does not explicitly model training data or
assumes that elements of each data sample are drawn independently from some factorized probability
distribution. These approaches are, thus, by construction blind to the correlation structure of real-world
datasets and their impact on learning in neural networks. Here, we introduce a generative model for
structured datasets that we call the hidden manifold model. The idea is to construct high-dimensional inputs
that lie on a lower-dimensional manifold, with labels that depend only on their position within this
manifold, akin to a single-layer decoder or generator in a generative adversarial network. We demonstrate
that learning of the hidden manifold model is amenable to an analytical treatment by proving a “Gaussian
equivalence property” (GEP), and we use the GEP to show how the dynamics of two-layer neural networks
trained using one-pass stochastic gradient descent is captured by a set of integro-differential equations that
track the performance of the network at all times. This approach permits us to analyze in detail how a neural
network learns functions of increasing complexity during training, how its performance depends on its size,
and how it is impacted by parameters such as the learning rate or the dimension of the hidden manifold.
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I. INTRODUCTION

The datasets on which modern neural networks are most
successful, such as images [1,2] or natural language [3], are
characterized by complicated correlations. Yet, most theo-
retical works on neural networks in statistics or theoretical
computer science do not model the structure of the training
data at all [4,5], which amounts to assuming that the
dataset is chosen in a worst-case (adversarial) manner.
A line of theoretical works complementary to the statistics
approach emanated from statistical physics [6-9]. These
works model inputs as elementwise independent identically
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distributed (IID) random variables, with labels that are
either random or given by some random but fixed function
of the inputs. Despite providing valuable insights, these
approaches are by construction blind to even basic stat-
istical properties of real-world datasets such as their
covariance structure. This lack of mathematical models
for datasets is a major impediment for understanding the
effectiveness of deep neural networks.

The structure present in realistic datasets can be illus-
trated well with classic datasets for image classification,
such as the handwritten digits of the MNIST dataset [10] or
the images of the CIFAR10 dataset [11]. The inputs that the
neural network has to classify are images, so a priori the
input space is the high-dimensional R", corresponding to
the number of pixels, with N large. However, the inputs that
can be recognized as actual images rather than random
noise span but a lower-dimensional manifold within R";
see Fig. 1. This manifold hence constitutes the actual input
space, or the “world,” of our problem. While the manifold
is not easily defined, it is tangible: For example, its
dimension can be estimated based on the neighborhoods
of inputs in the dataset [12—15] and is found to be around
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FIG. 1. We illustrate the notion of a hidden manifold in input
space using CIFAR10 example images. Each black point in-
dicates a possible input in a high-dimensional input space R".
Most points in this space cannot be interpreted as images at all;
however, those points that can be interpreted as real images tend
to concentrate on a lower-dimensional manifold, here sketched as
a two-dimensional curved surface in a three-dimensional space.
The intrinsic dimension D of these lower-dimensional manifolds
has been measured numerically [12—15].

D = 14 for MNIST and D = 35 for CIFAR10, compared to
N =784 and N = 3072, respectively. We call inputs
structured if they are concentrated on a lower-dimensional
manifold and, thus, have a lower-dimensional latent rep-
resentation, which consists of the coordinates of the input
within that manifold.

A complementary view on the data manifold is provided
by today’s most powerful generative models, called gen-
erative adversarial networks (GANs) [16]. A GAN G is a
neural network that is trained to take random noise as its
input and to transform it into outputs that resemble a given
target distribution. For example, GANs can generate
realistic synthetic images of human faces [17,18]. From
this point of view, the mapping from the hidden manifold to
the input space is given by the function that the GAN G
computes.

A. Main results

In this paper, and specifically in Sec. II, we introduce a
generative model for structured datasets in the above sense
that we call the hidden manifold model (HMM) [19]. Itis a
generative model that produces tuples (,y*) of high-
dimensional inputs x € RV and their scalar labels y*.
The key idea is to construct the inputs such that they lie
on a lower-dimensional manifold; their labels are then a
function of only their position within that manifold. The
way the inputs are generated is akin to a learned single-
layer decoder with random inputs; it can also be viewed as a
single-layer generator neural network of a learned GAN. As
a result, inputs drawn from the HMM have nontrivial
correlations and do not follow a normal distribution, and

their labels y* cannot be written as a simple function of the
inputs x.

Our key theoretical result, presented in Sec. IIl, is to
show that, despite these correlations, the HMM is amenable
to an analytical treatment in a thermodynamic limit of large
dimensions N and D, large number of samples P, and fixed
respective ratios D/N and P/N. We derive the solution by
first demonstrating a “Gaussian equivalence property”
(GEP) (Proposition III.1). As a first application, we use
the GEP to derive a set of integro-differential equations that
captures the behavior of two-layer neural networks, with
K = O(1) hidden units, trained using stochastic gradient
descent. These equations extend the classical analysis of
the dynamics of two-layer neural networks on unstructured
data [20-23] to the hidden manifold and provide detailed
insight into the dynamics of learning.

We then use these equations to study the dynamics and
the performance of two-layer neural networks trained on
data generated by the HMM, in Sec. IV. We find the
specialization of hidden units, known from the canonical
teacher-student model. We analyze the learning for differ-
ent feature matrices and show that Hadamard matrices
perform slightly better than IID Gaussian ones. We show
analytically that the generalization performance deterio-
rates as the manifold dimension D grows. We show that
the learning rate has a very minor influence on the
asymptotic error and analyze how the final error of
the network changes as a function of the width of the
hidden layer.

Section V is devoted to a comparison of learning on the
HMM and on real datasets such as MNIST [10], fashion-
MNIST [24], or CIFARI10 [11]. In particular, we demon-
strate that neural networks learn functions of increasing
complexity over the course of training on both the HMM
and real datasets. We also compare the memorization of
some samples during the early stages of training between
the HMM to real data. These comparisons provide strong
evidence that the HMM captures the properties of learning
with one-pass stochastic gradient descent (SGD) and two-
layer neural networks on some of the standard benchmark
datasets rather faithfully.

B. Further related work
1. The need for models of structured data

Several works recognize the importance of the structure
in the datasets used for machine learning and, in particular,
the need to go beyond the simple componentwise IID
modeling [25-30]. While we focus on the ability of neural
networks to generalize from examples, two recent papers
study a network’s ability to store inputs with lower-
dimensional structure and random labels: Chung, Lee,
and Sompolinsky [31] study the linear separability of
general, finite-dimensional manifolds and their interesting
consequences for the training of deep neural networks
[32,33], while Rotondo, Cosentino Lagomarsino, and
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Gherardi [34] extend Cover’s classic argument [35] to
count the number of learnable dichotomies when inputs are
grouped in tuples of k inputs with the same label. Recently,
Yoshida and Okada [36] analyzed the dynamics of online
learning for data having an arbitrary covariance matrix,
finding an infinite hierarchy of ordinary differential equa-
tions (ODEs). Their study implicitly assumes that inputs
have a Gaussian distribution, while our approach handles a
more general data structure. The importance of the spectral
properties of the data is recognized for learning in deep
neural networks by Saxe, McClelland, and Ganguli [37] in
the special case of linear neurons, where the whole network
performs a linear transformation of the data.

2. Relation to random feature learning

The hidden manifold model has an interesting link to
random feature learning with unstructured IID input data.
The idea of learning with random features goes back to the
mechanical perceptron of the 1960s [38] and was extended
into the random kitchen sinks of Rahimi and Recht [39,40].
Remarkably, random feature learning in the same scaling
limit as used in the theoretical part of this paper is analyzed
in several recent and concurrent works, notably in
Refs. [41,42] for ridge regression and in Ref. [43] for
max-margin linear classifiers. These papers consider full
batch learning (i.e., all samples are used at the same time),
which makes one difference from our online (one-pass
stochastic gradient descent) analysis. Another important
difference is that we study learning in a neural network with
two layers of learned weights, while the existing works
study simpler linear (perceptron-type) architectures where
only one layer is learned. Perhaps more importantly, in our
analysis, the features do not need to be random but can be
chosen deterministically or even be learned from data using
a GAN or an autoencoder. The principles underlying the
analytic solution of this paper as well as Refs. [41-43] rely
on the Gaussian equivalence property, which is stated and
used independently in those papers.

3. Gaussian equivalence and random matrix theory

Special cases of the Gaussian equivalence property were,
in fact, derived previously using random matrix theory in
Refs. [44-47], and this equivalent Gaussian covariates
mapping is explicitly stated and used in Refs. [42,43].
This formulation has recently been extended to a broader
setting of concentrated vectors encompassing data coming
from a GAN in Refs. [48,49], a version closer to our
formulation.

C. Reproducibility

We provide the full code to reproduce our experiments as
well as an integrator for the equations of motion of two-
layer networks online [50].

D. Learning setup

This paper focuses on the dynamics and performance of
fully connected two-layer neural networks with K hidden
units and first- and second-layer weights W € RX*N and
v € R, respectively. Given an input x € RV, the output of
a network with parameters @ = (W, v) is given by

K

Z vg( ka/\/_ (1)

k

where wy, is the kth row of W and g:R — R is the nonlinear
activation function of the network, acting componentwise.
We study sigmoidal and rectified linear unit (ReLU)
networks with g(x) = erf(x/v/2) and g(x) =
respectively.

We train the neural network on datasets with P input-
output pairs (x,,y;), 4 = 1, ..., P, where we use the starred
y,, to denote the true label of an input x,. Networks are
trained by minimizing the quadratic training error E(6) =
172570 AL with A, = [¢(x,.0)
(one-pass, online) gradient descent with constant learning
rate 7 and minibatch size 1:

—VGEO)g . ;. )

max (0, x),

— ;] using stochastic

0

1 = 0,

Initial weights for both layers are always taken component-
wise IID from the normal distribution with mean 0 and
standard deviation 1073,

The key quantity of interest is the fest error or gener-
alization error of a network, for which we compare its
predictions to the labels given in a test set that is composed
of P* input-output pairs (x”, y;) u=1,..., P* that are not
used during training:

1 P
P Z il (3)

The test set in our setting is generated by the same
probabilistic model that generated the training data.

1. The canonical teacher-student model

The joint probability distribution of input-output pairs
(x,.y;) is inaccessible for realistic datasets such as
CIFAR10, preventing analytical control over the test error
and other quantities of interest. To make theoretical
progress, it is therefore promising to study the generaliza-
tion ability of neural networks for data arising from a
probabilistic generative model.

A classic model for datasets is the canonical teacher-
student setup, where inputs x, are drawn elementwise IID
from the standard normal distribution and labels are given by
a random, but fixed, neural network with weights 6* acting
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on the inputs: yj = ¢(x,,0*). The network that generates
the labels is called the teacher, while the network that is
trained is called the student. The model was introduced by
Gardner and Derrida [6], and its study provides many
valuable insights into the generalization ability of neural
networks from an average-case perspective, particularly
within the framework of statistical mechanics [7-9,51—
56] and also in recent works in theoretical computer science,
e.g., Refs. [42,57-59]. However, it has the notable short-
coming that its analysis crucially relies on the fact that inputs
are IID Gaussians and, hence, uncorrelated.

II. THE HIDDEN MANIFOLD MODEL

We now introduce a new generative probabilistic model
for structured datasets with correlations. To generate a
dataset containing P inputs in N dimensions, we first
choose D feature vectors f,, r=1,...,D. These are
vectors in N dimensions, and we collect them in a feature
matrix F € RPN Next, we draw P vectors ¢, with random
IID components drawn from the normal distribution with
mean zero and unit variance and collect them in the matrix
C € R”*P_ The vector ¢, gives the coordinates of the uth
input on the lower-dimensional manifold spanned by the
feature vectors in F. We call ¢, the latent representation of
the input x,, which is given by the uth row of

X = f(CF/VD) € RP, 4)

where f is a nonlinear function acting componentwise. In
this model, the “world” of the data on which the true label
can depend is a D-dimensional manifold, which is obtained
from the linear span of F through a “folding” process
induced by the nonlinear function f. We note that the
structure of data of the same type arises in a learned
variational autoencoder network [60] with a single layer, or,
in a learned GAN network [16] with a single-layer
generator network, the matrix C then corresponds to the
random input, the F to the learned features, and f is the
corresponding output activation. The matrix F can be
generic with a certain normalization, such that its elements
are O(1). For our analysis to be valid, we later assume the
normalization given in Eq. (13) and balance condition
given by Eq. (14); other than that, our analysis holds for
arbitrary matrices F.

The labels are obtained by applying a two-layer neural
network with weights 8 = (W € RM*?, $ € RM) within
the unfolded hidden manifold according to

M
Vi = dle,,0) =Y 5"g(w"e,/VD). (5)

We draw the weights in both layers componentwise 11D
from the normal distribution with unity variance, unless we
note it otherwise. The key point here is the dependency of

FIG. 2. The hidden manifold model proposed here is a gen-
erative model for structured datasets, where inputs x [Eq. (4)]
(blue and green balls) concentrate on a lower-dimensional
manifold in input space (yellow surface). Their label y* is a
function of their position on the manifold; here, we show the
setup of a classification task with two classes y* = £1. In our
analysis, the labels are generated according to Eq. (5).

labels y, on the coordinates of the lower-dimensional
manifold ¢, rather than on the high-dimensional data x,
as illustrated in Fig. 2. We expect the exact functional form
of this dependence not to be crucial for the empirical part of
this work and that there are other forms that would present
the same behavior. Notably, it would be interesting to
consider ones where the latent representation is conditioned
to the labels as in conditional GANs [61] or the manifold
model of Ref. [33].

III. THE SOLUTION OF THE HIDDEN
MANIFOLD MODEL

A. The Gaussian equivalence property

The difficulty in analyzing HMM comes from the fact
that the various components of one given input pattern, say,
x,; and x,;, are correlated. Yet, a key feature of the model is
that it is amenable to an analytical treatment. To that end,
we study the standard thermodynamic limit of the statistical
physics of learning where the size of the input space
N — oo, together with the number P — oo of patterns that
are presented for learning, while keeping the ratioa = P/N
fixed. In statistics, this limit corresponds to the challenging
high-dimensional limit. The hidden manifold model can
then be studied analytically if one assumes that the latent
dimension D, i.e., the dimension of the feature space, also
scales with N, meaning that it goes to oo with a fixed ratio
6 = D/N which is of the order of 1 with respect to N, so
that we have

N P D
with fixed a = N and 6= N (6)
In this limit, the relevant variables are the “local fields” or
preactivations that are acted upon by the neurons in the

N,P,D — o,
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hidden layer. They can be shown to follow a Gaussian
distribution in the thermodynamic limit (6). We now make
this statement precise by formulating a GEP. We demon-
strate the power of this equivalence by deriving a set of
exact equations for online learning in Sec. III B.

1. Statement of the property

Let {C,}2, be D IID Gaussian random variables
distributed as A(0, 1). In the following, we denote by E
the expectation value with respect to this distribution.
Define N variables u;, i = 1, ..., N, as linear superpositions
of the C, variables:

ﬂ

Z r lr’ (7)

and M variables v, m =1, ...,
positions:

M, as other linear super-

EfZCWr, (8)

where W' are the teacher weights [Eq. (5)]. Define K
variables /1" as linear superpositions of f(u;), where f is an
arbitrary function:

EWZWW (9)

where va are the student weights [Eq. (1)]. We occasionally
write (4, v) to denote the tuple of all local fields 2* and v
Denoting by (g(u)) the expectation of a function g(u) when
u is a normal variable with distribution u ~ N(0, 1), we
also introduce for convenience the “centered” variables:

== whf () = (F(w)): (10)

Notice that our notation keeps upper indices for indices
which take values in a finite range (k,7 € {1,...,K},
m,n € {1,...,M}), and lower indices for those which
have a range of the order of N (i,j€{l,...,N};
r,s €{1,...,D}).

As the C, are Gaussian, the u; variables are also
Gaussian variables, with mean zero and a matrix of
covariance

Ujj = Efujuj] :BZFierr' (11)

Note that the covariances of the u; variables scale in the
thermodynamic limit as

Eul =1;  Eluu]=0(1/VD), i#j. (12)

We assume that, in the thermodynamic limit, the W, W, and
F matrices have elements of O(1) and that, for i # j,

1 D
EZI:Fierr = O(l)

Notice that the only variables which are drawn IID from a
Gaussian distribution are the coefficients C,. Most impor-
tantly, the matrices F and W can be arbitrary (and
deterministic) as long as they are “balanced” in the sense
that Vp,g>1, V ky,....k,, rq, ... we have

and XD:(F,-,)ZzD. (13)

7(]7

kkz -k
r1r2 rq =

Zwklwkz [,Ftr] Flrz F ir, = O(]),

(14)

with the ¢ and p distinct. We also have a similar scaling for
the combinations involving the teacher weights Ww}". This
assumption is the key behind the Gaussian equivalence
property, and we discuss its interpretation immediately after
the statement of the GEP.

Property Ill.1. Gaussian equivalence property (GEP).—
In the asymptotic limit when N — oo, D — o0, with K, M,
and the ratio D/N finite, and under the assumption (14),
{2¥} and {v} are K + M jointly Gaussian variables, with
mean

Z . Ep =0 (15)

ﬂ

and covariance

O = E[FI] = (c — a®> = P)WK + b?EF | (16)
km Tk, m 1 b kv m
Rim = E[jky ]:bBZSrw,, (17)
r=1
1 .
T = By =5 W (18)

r=1

The “folding function” f(-) appears through the three
coefficients a, b, and ¢, which are defined as
a = (f(u)), = (uf(w).  c=(fw?). (19)
respectively, where (y(u)) denotes the expectation value of
the function y when u ~N(0, 1) is a Gaussian variable.
The covariances are defined in terms of the three
matrices
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1 N
S]r( E—NZWfFirv (20)
i=1
1 N
Wk = NZ whw?, (21)
i=1
1 D
W= > sk, (22)

r=I1

whose elements are assumed to be of the order of O(1) in
the asymptotic limit. The derivation of the property is given
in the Appendix A.

In Sec. III B, we see that the GEP allows us to develop an
analytical understanding of learning with the hidden
manifold model. We first discuss several aspects of the
GEP in detail.

2. Discussion

The Gaussian equivalence property states that the local
fields (4, v) follow a joint normal distribution if the weights
of the student fulfill the balance condition (14). In the
simplest case, where the x; are elementwise IID Gaussian,
joint Gaussianity of (4,v) follows immediately from the
central limit theorem (CLT). The CLT can also be applied
directly when input vectors x are drawn from a multidi-
mensional Gaussian with a fixed covariance matrix, which
is the setup of Yoshida and Okada [36]. In the hidden
manifold model considered here, the inputs x; = f(u;) and,
thus, the x; are not normally distributed and have a
nontrivial covariance matrix. The GEP can be seen as a
central limit theorem for sums of weakly correlated random
variables, i.e., A ~ 3", w¥x;. In this case, the GEP estab-
lishes that 4 is Gaussian, provided that the weights of the
student w¥ do not align “too much” with the weights of the
generator F;,. More precisely, we require that a sum such as
Sk = 1/\/]—\721-W{-<Fi,. remains of the order of 1 in the
thermodynamic limit (6). The balance condition is a
generalization of this idea to the higher-order tensors
defined in Eq. (14).

The expansion from the hidden manifold in R? to the
input space RV can equivalently be seen as a noisy
transformation of the latent variables C. As far as the local
fields (4,v) are concerned, we can replace the data matrix

X = f(CF/+/D) with the matrix
X ~al + bCF + (c — a® = b?)Z, (23)

where Z is a P x N matrix with entries drawn IID from the
normal distribution and 1 is a matrix of the same size as X
with all entries equal to one. We use the symbol ~ here to
emphasize that the two matrices on the left- and right-hand
sides have matching first and second moments and are,
hence, equivalent in terms of their low-dimensional

projections but are not the same matrix. We can, thus,
think of the inputs X as a noisy transformation of the latent
variables, even without any explicit noise in Eq. (4).

We could also add noise to the expansion explicitly, for ex-
ample, as X = f(FC/+/D) + ¢ or X = f(F(C + ¢)/\/D),
where ¢ would be a noise matrix of appropriate dimensions.
These noise injections would indeed make the data high
dimensional or, if added directly to the latent variables C,
result in correlated noise in the input space. In all these cases,
the GEP applies and guarantees that the noise { would change
only the variance of the noise term Z that appears after
application of the GEP (23). Our results are, thus, robust to the
injection of additional noise.

Finally, the GEP shows that there is a whole family of
activation functions f(x) [those that have the same values
for a, b, and ¢ from Eq. (19)] that lead to equivalent
analytical results for the learning curves studied in
this paper.

Related results in random matrix theory.—A related
result to the Gaussian equivalence property is, in fact,
known in random matrix theory [41,44-48]. These works
study quantities that can be written as an integral over the
spectral density of the distribution of inputs x, such as the
test and training errors for a linear regression problem.
However, this spectral density is inaccessible analytically
for realistic data. The key idea is then to rewrite these
integrals by replacing the intractable spectral density with
the spectral density of a Gaussian model with matching first
and second moments. Using tools from random matrix
theory (RMT), one can show that certain integrals over both
spectra coincide. This mapping is explicitly used in
Refs. [42,43]. In order to apply tools from RMT, these
works have to assume that the weights F of the generator
are random. The advantage of the formulation of the GEP
above is that it does not require the matrix F to be a random
one and is valid as well for deterministic or learned weight
matrices, as long as the balanced conditions stated in
Egs. (13) and (14) hold. This advantage allows one to
generalize these mappings to the case of deterministic
features using Hadamard and Fourier matrices, such as the
one used in Fastfood [62] or ACDC [63] layers. These
orthogonal projections are actually known to be more
effective than the purely random ones [64]. It also allows
generalization of the analysis in this paper for data coming
from a learned GAN, along the lines of Refs. [48,49]. We
illustrate this point below by analyzing the dynamics of
online learning when the feature matrix F is a deterministic
Hadamard matrix (cf. Sec. IV B).

B. The dynamics of stochastic gradient descent
for the hidden manifold model

To illustrate the power of the GEP, we now analyze the
dynamics of stochastic gradient descent (2) in the case of
online learning, where, at each step of the algorithm
uw=1,2,..., the student’s weights are updated according
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to Eq. (2) using a previously unseen sample (x,,y,). This
case is also known as one-shot or single-pass SGD. The
analysis of online learning has been performed previously
for the canonical teacher-student model with IID Gaussian
inputs [20-23,65] and has recently been put on a rigorous
foundation [55]. Here, we generalize this type of analysis to
two-layer neural networks trained on the hidden mani-
fold model.

The goal of our analysis is to track the mean-squared
generalization error of the student with respect to the
teacher at all times:

—

€,(0.0) = SElg(x.0) - 5, (24)

N

where the expectation E denotes an average over an input
drawn from the hidden manifold model [Eq. (4)] with label
vi = @(c,, 0*) given by a teacher network with fixed

weights §* acting on the latent representation [Eq. (5)].
Note that the weights of both the student and the teacher, as
well as the feature matrix F;,, are held fixed when taking
the average, which is an average only over the coefficients
¢, To keep notation compact, we focus on cases where
a=FEf(u) =0 in Eq. (19), which leads to i* = ¥ in
Eq. (10). A generalization to the case where a # 0 is
straightforward but lengthy.

We can make progress with the high-dimensional aver-
age over x in Eq. (24) by noticing that the input x and its
latent representation ¢ enter the expression only via the
local fields v and A% [Egs. (8) and (9)]:

The average is now taken over the joint distribution of local
fields {Ak=1K pm=1..-M} The key step is then to invoke
the Gaussian equivalence Property III.1, which guarantees
that this distribution is a multivariate normal distribution
with covariances QF, R¥™ and T"" [Egs. (16)—(18)].
Depending on the choice of g(x) and §(x), this distribution
makes it possible to compute the average analytically; in
any case, the GEP guarantees that we can express €,(6, 9)
as a function of only the second-layer weights v* and ™
and the matrices Q**, R¥”, and 7", which are called order
parameters in statistical physics [20-22]:

Nlll)m € (0 9) —¢ (Qkf Rkn 7y k ~m)’ (26)

where, in taking the limit, we keep the ratio § = D/ N finite
[see Eq. (6)].

1. The physical interpretation of the order parameters

The order parameter R*", defined in Eqgs. (17) and (20),
measures the similarity between the action of the kth
student node on an input x, and the nth teacher node
acting on the corresponding latent representation c,,. In the
canonical teacher-student setup, where (i) the input covari-
ance is simply Ex;x; = §;; and (ii) labels are generated by
the teacher acting directly on the inputs x, it can be readily
verified that the overlap has the simple expression
R*" = EX*" ~ wk™. Tt was, hence, called the teacher-
student overlap in the previous literature. In the HMM,
however, where the teacher and student networks act on
different vector spaces, it is not a priori clear how to
express the teacher-student overlap in suitable order
parameters.

The matrix Q% = [c — b?|W* + BT quantifies the
similarity between two student nodes k and ¢ and has two
contributions: the latent student-student overlap =¥, which
measures the overlap of the weights of two students nodes
after they are projected to the hidden manifold, and the
ambient student-student overlap W*?, which measures the
overlap between the vectors w*, w’ € R". Finally, we also
have that the overlaps of the teacher nodes are collected in
the matrix 7", which is not time dependent, as it is a
function of the teacher weights only.

2. Statement of the equations of motion

We derive a closed set of equations of motion that
describe the dynamics of the order parameters R, XX/,
W and v* when the student is trained using online SGD
(2). We stress at this point that in the online learning, at
each step of SGD, a new sample is given to the network.
The weights of the network are, thus, uncorrelated to this
sample, and, hence, the GEP can be applied at every step.
This approach is in contrast with the full-batch learning,
where the correlations between weights and inputs have to
be taken into account explicitly [43]. Integrating the
equations of motion and substituting the values of the
order parameters into Eq. (26) gives the generalization error
at all times. Here, we give a self-contained statement of the
equations and relegate the details of the derivation to
Appendix B.

A key object in our analysis is the spectrum of the matrix

= %ZFI-,F”. (27)

We denote its eigenvalues and corresponding eigenvectors
by p and y, and write pq(p) for the distribution of
eigenvalues. It turns out that it is convenient to rewrite
the teacher-student overlap as an integral over a density
r*™(p,t), which is a function of p and of the normalized
number of steps t = P/N, which can be interpreted as a
continuous timelike variable. We then have
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R0 =b [ dopalp) o) 29
with b= (uf(u)) [Eq. (19)]. In the canonical teacher-
student model, introducing such a density and the integral
that comes with it is not necessary, but in the HMM it is a
consequence of the nontrivial correlation matrix [Ex;x;
|

between input elements. Adopting the convention that
the indices j,k,Z,1=1,...,K always denote student
nodes, while n,m =1,...,M are reserved for teacher
hidden nodes.

The equation of motion of the teacher-student density
can then be written as

ork™(p, 1) 77 ok < Q”I3(k k,j)— ONI5(k, j. j) Qkkla(k jrJ) = ONI5(k. k, j)
TPl kg () o + pim UG Ky
ot v ; QUQM — (QY)? ; V)= gigw = (ghy
ey 1 A T I5(k kon) — RM I3 (k, n, n)
+ yk . ( ) Qkk I3(k k k) - r ( >Zn: v Qkann _ (Rkn)Z
bp A Q" 15(k,n,n) — R*I5(k, k,n)
- mzn: v"T Qkann _ (Rkn)Z ’ (29)
| . .

where d(p) = (¢ — b*)8 + b?p. The teacher-teacher over- I3(k, j. j) = Elg A9 ¥ g(¥)], (32)

lap 7" = Ev"v" [Eq. (18)], while 7" is the overlap of the
teacher weights after rotation into the eigenbasis of Q,,
weighted by the eigenvalues p:

T =— Zp,a) @", where @ \/_Zw v (30)

In writing the equations, we use the following shorthand for
the three-dimensional Gaussian averages:

I3(k. j.n) = E[g (A)¥5(")].

which was introduced by Saad and Solla [22]. Arguments
passed to I3 should be translated into local fields on the
right-hand side by using the convention where the indices j,
k, Z, and 1 always refer to student local fields A/, etc., while
the indices n and m always refer to teacher local fields "
and v, respectively. Similarly,

(31)

where having the index j as the third argument means that
the third factor is g(4/) rather than §(v) in Eq. (31). The
average in Eq. (31) is taken over a three-dimensional
normal distribution with mean zero and covariance matrix

Qkk ij Rkn
Bk jon)=| QY Q7 R (33)
Rkn Rjn T

For the latent student-student overlap ¥/, it is again
convenient to introduce the density ¢*“(p, 1) as

S (1) = / dppa(p)o (p.1). (34)

whose equation of motion is given by

95" (p.t) _ 1 kj kj ;
do \pt) _ 1 SO (k k. j) = QNI (k) 5y @43k j ) = QL3 (k. k. )
ot 5 (d p)vke* (p + 05 wid(p .
)re™ ); QoM — (QY)? ; QoM —(QY)?
1 _ T I3(k, k,n) — R I3(k, n, n)
+d(P) k kf(p) Qkk 13(k k k) d( ) kakf(p);v Qkann _ (Rkn)Z
ks (k — R I (k, k
- bpvkzn:@"rfﬂ(p) L QkZT") — ka)g K1) L all of the above withe — k. k — f)
b? S
+ ok ‘f[(c—bz)p—kgpz} <Zv/v’l4 (k, 2, j,1) 2221}10”’14 (k,Z,j,m +Zv "4 (k,C,n, m))

Ji

(35)

This equation involves again the integrals /5 and a four-dimensional average that we denote
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Ly(k, 2, j,n) = E[g(A)g (A7) g(¥)g(v")] (36)
using the same notational conventions as for /3, so the four-dimensional covariance matrix reads
Qkk Qkf ij Rkn
k¢ ¢t ¢ Rtn
oW (k, £, j.n) = ¢r o er K (37)
QK Q% Qii R
Rkn an Rjn Tnn

The equation of motion for the ambient student-student overlap W** can be written directly:

def(t) X Ko . ~n ¢ = : i
e —nv 21:1)113(](, £, j)— zn:v Lk, 2, n) | —nv 21:1)113(1/”, k,j)— zﬂ:v (¢, k,n)

K K M M
+ cn* vk’ <Z vl (k. £, j,a) =2 Z Z v, (k, ¢, j,m) + Z 7", (k, ¢, n, m)> (38)
j m n.m

Jj.a

Finally, the ODE for the second-layer weights v* is

straightforwardly given by

dv* M L
DL GO R SR ] NECD

3. Solving the equations of motion

The equations of motion are valid for any choice of f(x),
g(x), and g(x). To solve the equations for a particular setup,

one needs to compute the three constants a, b, and ¢
[Eqg. (19)] and the averages /5 and I, [Egs. (31) and (36)].

Choosing g(x) = g(x) = erf(x/+/2), they can be computed

where we introduce the final shorthand I,(k,j)=
Elg(2")g(4))-

(a) b) ;s
0.3
0.2 . 1.0
> <
w @
0.1 0.5
0.0 0.01
10° 102 104 10° 102 10%
a a
c d
(©) (CI
— Qll —_— 0
31 — Q12 0.8 — v?
22
Q 0.6
3‘202 «>
0.4
1
0.2
01 0.01
100 102 104 100 102 104
a a

FIG. 3.

analytically [21]. Finally, one needs to determine the
spectral density of the matrix Q,,. When drawing the

The analytical description of the hidden manifold generalization dynamics matches experiments even at moderate system size.

We plot the time evolution of the generalization error eg(a) (a) and the order parameters R (b), Q% (c) and second-layer weights v* (d)

obtained by integration of the ODEs (solid lines) and from a single run of SGD (crosses). Parameters: g(x) = erf(x/v/2), N = 10000,
D=100,M =2, K=2,n=0.2,and ?" = 1.
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entries of the feature matrix F;, IID from some probability
distribution with a finite second moment, the limiting
distribution of the eigenvalues pq(p) in the integral (28)
and (34) is the Marchenko-Pastur distribution [66]:

_ i \/(pmax _,0)(,0 _pmin)
276 p '

Pur(p) (40)

where pin = (1 = V/38)? and pya, = (1 + V/6)?, where we
recall that § = D/N. Note that our theory crucially also
applies to nonrandom matrices; we visit such an example in
Sec. IV B, where we also discuss the importance of this use
case. A complete numerical implementation of the equa-
tions of motion is available on GitHub [50].

We illustrate the content of the equations of motion in
Fig. 3, where we plot the dynamics of the generalization
error, the order parameters R*", ¥/ and WX/, and the
second-layer weights v* obtained from a single experiment
with N = 10000, D = 100, and M = K = 2, starting from
small initial weights (crosses). The elements of the feature
matrix are drawn IID from the standard normal distribution,
as are the elements of the latent representations c. The solid
lines give the dynamics of these order parameters obtained
by integrating the equations of motion. The initial con-
ditions for the integration of the ODEs are taken from the
simulation. The ODE description matches this single
experiment really well even at moderate system sizes.
For Fig. 3, our choice of N and D results in 6 = 0.01,
and we check that the ODEs and simulations agree for
various values of §; cf. Fig. 5.

4. Discussion

Yoshida and Okada [36] recently analyzed online learn-
ing for two-layer neural networks (1) trained on Gaussian
inputs, with a two-layer teacher acting directly on the inputs
x. Their approach consists of introducing distinct order
parameters R’{l")q Q’(‘i’), etc., for each distinct eigenvalue of

the input covariance matrix Q. They analyze their equations
for covariance matrices with one and two distinct eigen-
values. Here, we first introduced the GEP (III.1) to show
that inputs which are not normally distributed, such as
X = f(CF/+/D), can be reduced to an effective Gaussian
model as far as the dynamics of learning are concerned.
Furthermore, the description of the learning dynamics we
just discussed allows us to analyze inputs with any well-
defined spectral density with just a single set of order
parameters QX, R*" and T™". This analysis is made
possible by introducing the integral over the order param-
eter densities ¥ (p), etc. As we see below, this integral can
actually be solved for small 6, which simplifies the
equations of motion considerably and allows for a detailed
analysis (cf. Sec. IV C).

We lastly comment on the role of the dimensionality in
our setup. Inspection of the test error (25) reveals that a

student has to recover the local fields of the teacher ™ in
order to perform well (if she has the same activation
function as the teacher). If the student is trained directly
on the latent variables C, she could recover these local
fields perfectly and we would be back in the setup of Saad
and Solla [22]. In the HMM, the student is given only the
high-dimensional inputs X, which can be seen as a noisy
projection of the latent variables C (23). The high dimen-
sionality of the student inputs is, thus, a constraint that must
be overcome to learn well, because projection to high
dimensions is part of the data-generating process.
This process is to be contrasted with setups like random
features [39,40] or certain neural circuits in sensory process-
ing [67,68], where projection of the inputs to higher-
dimensional spaces is part of the analysis and generally
simplifies the subsequent learning problem.

IV. ANALYTICAL RESULTS

The goal of this section is to use the analytic description
of online learning to analyze the dynamics and the
performance of two-layer neural networks in detail.

A. Specialization of student nodes in the HMM

An intriguing feature of both the canonical teacher-
student setup and the hidden manifold model is that they
both exhibit a specialization phenomenon. Upon closer
inspection of the time evolution of the order parameter R*"
in Fig. 3(b), we see that, during the initial decay of the
generalization error up to a time t = P/N ~ 10, all ele-
ments of the matrix R*”" are comparable. In other words, the
correlations between the preactivation ¥ of any student
node and the preactivation v of any teacher node is
roughly the same. As training continues, the student nodes
“specialize”: The preactivation of one student node
becomes strongly correlated with the preactivation of only
a single teacher node. In the example shown in Fig. 3, we
have strong correlations between the preactivation of the
first student and the first teacher node (R'') and similarly
between the second student and second teacher node (R??).
The specialization of the teacher-student correlations is
concurrent to a decorrelation of the student units, as can be
seen from the decay of the off-diagonal elements of the
latent and ambient student-student overlaps ¥ and W*?,
respectively (bottom of Fig. 3). Similar specialization
transitions are observed in the canonical teacher-student
setup for both online and batch learning [22,69]; see Engel
and Van den Broeck [8] for a review.

B. Using nonrandom feature matrices

Our first example of the learning dynamics in Sec. IVA
is for a feature matrix F' whose entries are taken IID from
the normal distribution. The derivation of the ODEs for
online learning, however, does not require that the feature
matrix F be random; instead, it requires only the balance
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FIG. 4. The ODE analysis is asymptotically correct for non-
random feature matrices F. We plot the time evolution of the
generalization error ¢, obtained by integration of the ODEs (solid
lines) and from a single run of SGD (2) (crosses) for two different
matrices F: (i) Elements F;, are drawn IID from the standard
normal distribution (blue); (ii) F is a Hadamard matrix [70].
f(x) =sgn(x), g(x) = glx) = erf(x/V2), N=1023, D=
1023, M =2, K =2,n=0.2, and ?" = 1.

condition stated in Eq. (14) as well as the normalization
conditions (13). To illustrate this point, we plot examples of
online learning dynamics with M = K = 2 in Fig. 4, with
the prediction from the ODE as solid lines and the result of
a single simulation with crosses. In blue, we show results
where the elements of F;, are drawn IID from the standard
normal distribution. For the experiment in orange, F = H y,
where Hy is a Hadamard matrix [70]. Hadamard matrices
are N x N matrices—hence, 6 = 1—and are popular in
error-correcting codes such as the Reed-Muller code
[71,72]. They can be defined via the relation

HNH; = Ny, (41)

where [y is the N x N identity matrix. As we can see from
Fig. 4, the ODEs capture the generalization dynamics of the
Hadamard case just as well.

C. The limit of small latent dimension

The key technical challenge in analyzing the analytical
description of the dynamics is handling the integro-
differential nature of the equations. We can simplify the
equations in the limit of small § = D/N. Numerical
integration of the equations reveals that, at convergence,
the continuous order parameter densities 7" (p) and 6% (p)
are approximately constant:

rkm (p) — rkm; ka(p) — ka. (42)

This observation is key, because making the ansatz (42)
allows us to transform the integro-differential equations for
the dynamics of X" (p, t) [Eq. (29)] and 6 (p, t) [Eq. (35)]
into first-order ODEs, provided we can perform the integral

over the eigenvalue distribution pq(p) in Egs. (28) and (34)
analytically. This situation is, for example, the case if we
take the elements of the feature matrix F IID from any
probability distribution with a bounded second moment, in
which case pg(p) is given by the Marchenko-Pastur
distribution (40). We focus on this case for the remainder
of this section.

Let us note that the regime of small delta is also the
relevant regime for image datasets such as MNIST and
CIFAR10, whose 6 has been estimated previously to be
around Syist ~ 14/784 and Scpario ~ 35/3072, respec-
tively [12—-15]; cf. our discussion in the introduction.

1. The effect of the latent dimension D =0N

As a first application of this approach, we analyze the
dependence of the asymptotic test error €; on the latent
dimension D of the hidden manifold when the teacher and
student have the same number of hidden nodes, K = M.

From inspection of the form of the order parameters after
integrating the full set of ODEs until convergence, we make
the following ansatz for the overlap matrices:

T = { ’ W = { ’ 43
s otherwise, w  otherwise, ( )

{T n=m,
Tﬂm:

. T n=m,
. "= { (44)
t otherwise,

7 otherwise,

R k=m,
RFM = , vk =v;
r otherwise,

Am=A. (45)
Substituting this ansatz into the ODEs allows us to derive
closed-form expressions for ODEs governing the dynamics
of seven order parameters R, r, S, s, W, w, and v that are
valid for small 6 and for any K = M. The teacher-related
order parameters 7, t, T, and 7 describe the teacher and are
constants of the motion. They have to be chosen to reflect
the distribution from which the weights of the teacher
network are drawn in an experiment. The full equations of
motion are rather long, so instead of printing them here in
full we provide a Mathematica notebook for reference [50].

The key idea of our analytical approach is to look for
fixed points of this ODE system and to substitute the values
of the order parameters at those fixed points into the
expression for the generalization error (26). To understand
the structure of the fixed points of the ODEs, we run a
numerical fixed point search of the ODEs from 1000 initial
values for the order parameters drawn randomly from the
uniform distribution. We find two types of solution. First,
there exist solutions of the form R =r, S = s,and W = w.
This solution is a saddle point of the equations and is, thus,
not a stable fixed point of the dynamics. Instead, it
corresponds to a well-known “unspecialized” phase, when
networks with K > 1 hidden nodes have not yet specialized

041044-11



GOLDT, MEZARD, KRZAKALA, and ZDEBOROVA

PHYS. REV. X 10, 041044 (2020)

and, hence, achieve only the performance of a network with
K =1 hidden unit (cf. our discussion in Sec. IVA). The
learning dynamics approaches this saddle point at an
intermediate stage of learning but finally drifts away from
it toward a “specialized” solution. This second solution
corresponds to the asymptotic fixed point of the learning
dynamics where the student has specialized; i.e., we have R
large and » small, etc. Substituting the values of the order
parameters of this solution into Eq. (26) yields the
asymptotic generalization error of a student.

Making this argument rigorous requires a proof of global
convergence of the coupled, nonlinear integro-differential
equations of motion [(29), (35), (38), (39)] from random
initial conditions. This challenging mathematical problem
remains open, despite some recent progress for two-layer
neural networks with finite N and a large hidden layer [73—
77]. Thus, all predictions in this way ultimately need to be
compared to simulations to verify their accuracy.

We show the results of this analysis in Fig. 5. The crosses
are experimental results for which we train networks with
M = K =2 on data from a hidden manifold with latent
dimension D = 25, 50, 100, and 200, choosing the input
dimension N to obtain the range of ¢ desired for each curve.
We plot the asymptotic error averaged over five runs with
dots; error bars indicate two standard deviations. The
lowest solid line in Fig. 5 is the theoretical prediction
obtained by the procedure just explained when assuming
that T=1,1=0,T=1,and 7= 0.

While the experimental results are approaching the
theoretical line as the latent dimension D increases, there

Y m A
1072
"
3 D=25
10 I D=50
I D=100
{ D=200
1073 102 1071
6
FIG. 5. The impact of the latent dimension § = D/N. We plot

the final test error €, of sigmoidal students trained on the hidden
manifold model with three different intrinsic dimensions D
as a function of § = D/N, where N is the input dimension.
The average is taken over five runs. The solid lines are the
asymptomatic theoretical predictions derived in Sec. IV C 1.
The shaded bars indicate experimental estimates [12—15] for §
for the CIFARI10 dataset (left) and the MNIST dataset (right).
f(x) = sgn(x), g(x) = §(x) = erf(x/v2), M = K = 2,7 =02,
and 7" = 1.

are qualitative differences in the shape of the § dependence
for small 6. These differences arise due to the following
finite-size effect. While it is numerically easy to enforce
T = 1, t = 0 by orthogonalizing the teacher weight matrix,
it is not possible to explicitly control the reweighted
teacher-teacher overlap Trm [Eq. (30)]. The deviation of
T from the identity leads to the deviations we see at small
0. We demonstrate this result in Fig. 5 by also plotting
theoretical predictions for 7 = 1 — x and 7 = x and choos-
ing x = 1/D. These curves match the experiments much
better. Plotting the data with a linear y scale (not shown)
reveals that the solution obtained making the small-§ ansatz
(42) is valid until 6 ~0.2.

2. Learning rate 1

We find that the asymptotic test error €; depends only
weakly on the learning rate #, as we show in Fig. 6 for
M = K =2 and M = K = 6, together with the theoretical
prediction for 7 = 0. This theoretical prediction is again
obtained by using the ansatz (43) for the order parameters
and solving the resulting fixed point equations, as described
in the previous section, but this time varying the learning
rate 1. The weak dependence of €, on 5 should be
contrasted with the behavior of the canonical teacher-
student setup, where the generalization error is proportional
to the learning rate in the case of additive Gaussian output
noise [55,78].

In the inset in Fig. 6, we plot the generalization dynamics
of a neural network trained on the HMM at different
learning rates. As expected, the learning rate controls the
speed of learning, with increased learning rates leading to

-4-- k=M=2,0=20
—|— K=M=2,D=40 ns
107t
K=M=6,D=20
107!{ == K=M=6,D=40 &
1072
* o 10° 102 10
a
10—2 ———— ——————— U
b= L it Sl bl Dbt b = ===~ -t
i
e P T PR
1072 10°!
n

FIG. 6. The impact of the learning rate . We plot the final test
error €, of sigmoidal students trained on the hidden manifold
model for a range of learning rates # for sigmoidal networks with
K = M = 2 (blue lines) and K = M = 6 (green lines). We repeat
the experiments for two values of D, choosing N such that
6= D/N = 0.01. Inset: Generalization dynamics during trai-
ning (K = M = 2). Parameters: f(x) = sgn(x), g(x) = g(x) =
erf(x/v/2), 6§ =0.01, 7" =1, and K = M.
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FIG.7. (a) Asymptotic generalization for online learning of a student with K = ZM hidden nodes learning from a teacher with M = 1

(blue lines), M = 2 (violet lines), and M = 4 (green lines) hidden nodes, respectively. The dotted, dash-dotted, and dashed lines
correspond to D = 50, 100, and 200, respectively. Error bars indicate two standard deviations over five runs. The solid line is the
theoretical prediction obtained for 7 = 0. (b),(c) Teacher-student overlap R [Eq. (17)], second-layer weights v¥, and the normalized
overlap v*R*" obtained in two simulations used in the left plot with M = 2 and K = 6, starting from different initial conditions, all other
things being equal. Parameters: In all plots, f(x) = sgn(x), g(x) = erf(x/v/2), =0.2, " =1, § = 0.01, and 5 = 0.2.

faster learning until the learning rate becomes so large that
learning is not possible anymore; instead, the weights just
grow to infinity.

3. The impact of student size

Another key question in our model is how the perfor-
mance of the student depends on her number of nodes K.
Adding hidden units to a student who has less hidden units
than her teacher (K < M) improves her performance, as
would be expected. This result can be understood in terms
of the specialization discussed in Sec. IV A: Each additional
hidden node of the student specializes to another node of
the teacher, leading to improved performance. We see an
example of this improvement below in Sec. VA.

But what happens if we give the student more nodes than
her teacher has, K > M? It is instructive to first study the
overlap matrices at the end of training. We show two examples
from an experiment with M = 2 and K = 6 at 6 = 0.01 for
networks starting from different initial conditions. In particu-
lar, we plot the rescaled teacher-student overlap matrix v*R¥™"
in Figs. 7(b) and 7(c). We rescale R¥" by the second-layer
weights to account for two effects: first, the relative influence
of a given node to the output of the student, which is
determined by the magnitude of the corresponding second-
layer weight; and second, we have a symmetry in the output of
the student, since for the sigmoidal activation function
v g(wtx/ V) = —vkg(—whe/ VN,

In the two overlap plots for K > M in Fig. 7, the student
nodes display many-to-one specialization: Several hidden
units of the student specialize to the same hidden node of
the teacher, essentially providing several estimates of the
value of this teacher node. Note that each student node
specializes to one and only one of the teacher nodes rather
than a combination of two or more teacher nodes. We find

this pattern of activations consistently across all of our runs
for various K and M. The fact that student nodes are evenly
distributed across teacher nodes is further motivated by the
fact that such an arrangement minimizes the generalization
error if the second-layer teacher weights ?” have equal
magnitude and its first-layer weights W have the same
norm. We anticipate that this specialization pattern is at
least in part due to the sigmoidal form of the activation
function g(x). We note that the same many-to-one spe-
cialization of hidden units has been previously reported for
the same two-layer networks trained on IID inputs [55] and
that a similar pattern of specialization is observed for
networks with finite input and a wide hidden layer, where
this type of specialization is referred to as “distributional
dynamics” [74-77].

These observations motivate the following ansatz for the
overlaps of a student with K = ZM hidden nodes (Z € N):

R k mod M =m mod M,
RFm = . (46)
r otherwise,
S kmod M = ¢ mod M,
TH — { ) (47)
s otherwise

and similarly for WX, while we use the same parameter-
ization for the teacher order parameters 7, f, T,7, A, and v.
Searching again for specialized fixed points of the resulting
equations for the seven time-dependent order parameters R,
r, S, s, W, w, and v and substituting their values into
Eq. (26) yields the predictions we indicate by solid lines in
Fig. 7, where we plot the asymptotic test error as a function
of Z = K/M. We can see small performance improvements
as the student size increases. We also plot, for the three
values of M used, the asymptotic test error measured in
experiments with D = 50, 100, and 200. As we increase D,
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the experimental results approach the theoretical prediction
for D — oo.

We finally note that fixed points of the online dynamics
with many-to-one specialization have been described pre-
viously in the canonical teacher-student setup [55], which
found that this behavior leads to a more significant
improvement of student performance as K increases for
teacher tasks with y* = ¢(x) compared to the improvement
we observe for the HMM. The same type of many-to-one
specialization is also found by Mei, Montanari, and
Nguyen [74] and Chizat and Bach [76], who consider a
complementary regime where the input dimension N stays
finite while the size of the hidden layer goes to infinity.

V. COMPARING THE HIDDEN MANIFOLD
MODEL TO REAL DATA

We finally turn our attention to the comparison of the
hidden manifold model to more realistic datasets, in our
cases classic image databases such as CIFAR10 (see Fig. 1
for two examples of images in CIFAR10).

A. Neural networks learn functions of increasing
complexity

The specialization transition that we discuss in Sec. IVA
has an important consequence for the performance of the
neural network, as we show in Fig. 8. As we train
increasingly large student networks on a teacher with M =
10 hidden units and second-layer weights " = 1/M, we
observe that learning proceeds in two phases. First, there is
an initial decay of the generalization error until all students
have roughly the same test error as the student with a single
hidden unit K = 1. In a second phase, students with K > 1
break away from this plateau after further training and
achieve superior performance, with the larger networks

(@)
1072/
wth
K
—1
1073/ 2
— 4
— 8
10! 102 103 104 105
a

FIG. 8.

performing better. These improvements are a result of
specialization after approximately 10° epochs, which per-
mits the student network to capitalize on their additional
hidden nodes.

This way of visualizing specialization not only illustrates
its importance for student performance, it is also applicable
when training the same two-layer neural networks on more
realistic datasets such as MNIST [Fig. 8(b)] or fashion-
MNIST [24] and CIFAR (Fig. 10). The plots demonstrate
clearly that, in all these cases, the larger networks proceed
by first learning functions that are equivalent to the smaller
networks.

In all cases, specialization is preceded by a plateau where
the generalization error stays constant, because the student
is stuck at a saddle point in its optimization landscape,
corresponding to the unspecialized solution. This plateau
has been discussed extensively in the canonical teacher-
student setup [8,23,79,80] and, more recently, in the
context of recurrent and deep neural networks [37,81].
By comparing students of different sizes, this plateau can
also be demonstrated on image datasets, as we do above.
This learning of functions with increasing complexity has
also been observed in deep convolutional networks by
Kalimeris et al. [82], who use quantities from information
theory to quantify how well one model explains the
performance of another.

These observations are interesting, because they suggest
how to explain the ability of neural networks to generalize
well from examples when they have many more parameters
than samples in their training dataset. This explanation is a
key open problem in the theory of deep learning, since the
intuition from classical statistics suggests that, in these
cases, the networks overfit the training data and, thus,
generalize poorly [5,83]. It is possible that, by learning
functions of increasing complexity, networks are biased

(b) 0.5l

o
“ 0.251

01 1 10
Epochs

Two-layer neural networks learn functions of increasing complexity. We plot the generalization error of sigmoidal two-layer

networks with an increasing number of hidden nodes K during a single run of online learning with the hidden manifold model with
0 =0.05, D =25, M =10, and 9" = 1/M on the HMM (a) and when trained on odd-versus-even digit classification on MNIST,

averaged over ten runs (b). Error bars indicate two standard deviations. For details, see Secs. VA and D. g(x) = erf(x/ \/5) n =0.2,and

N = 784. (b) Batch size 32.
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toward simple classifiers and avoid overfitting if their
training is stopped before convergence. This topic is an
active research area [84,85].

B. Memorization of random and realistic data

An interesting difference between random and realistic
data is demonstrated in a recent paper by Arpit et al. [86].
They train 100 two-layer networks (K = 4096 hidden units
with ReLU activation, ten output units with softmax
activation) for a single epoch on the ten-class image
classification task on the CIFARI10 dataset, starting from
different initial conditions each time. At the end of training,
they measure the frequency with which each individual
image is classified correctly by the network across runs,
which we call the memorability of an image, which should
be thought of as a function of the image and the dataset that
contains it. We repeat this experiment on CIFAR10 and add
three different synthetic datasets (color codes refer
to Fig. 9):

(i) CIFARIO (blue).—x,: CIFAR10 images; y;; € [0,9]:

CIFARI1O label giving the class of that image.

(i) Gaussian (orange).—Teacher acting on Gaussian
inputs. x,: IID standard Gaussians; y;, =
argmaxe(x,, 0*).

(iii) TeacherS (green)—Teacher acting on structured
inputs. x, = f(Fc,); y, = argmax¢(x,. 0").

(iv) HMM (red).—x, = f(Fc,); y, = argmax¢(c,, ).
The labels for the synthetic datasets are generated by two
teacher networks, one with input dimension N for the
Gaussian and TeacherS datasets and another with input
dimension D for the HMM. The teachers are two-layer

(a)

1.0

Accuracy in %

pCorrect
o °
o ©

©
IS

o
IN)

0.0

0.0 0.2 0.4 0.6 08 1.0
Normalised # of image

fully connected networks having M = 2K hidden units
with ReLU activation function and ten nodes in the last
readout layer. Thus, the teacher’s output ¢(-,0%) € R!?,
and the class for a given input is obtained as the index of the
output node with the highest value for that input.

We plot the memorabilities for all images in the training
set, sorted by their memorability, in Fig. 9. On the left, we
first reproduce the memorability curve for CIFAR10 that
was found by Arpit et al. [86] (solid blue curve), which
demonstrates that many examples are consistently classi-
fied correctly or incorrectly after a single epoch of training.
The memorability curve for a dataset containing the same
images with random labels (dashed blue curve) demon-
strates that randomized CIFAR10 does not contain images
that are particularly hard or easy to memorize. The smaller
variation in memorability for the randomized dataset is
largely due to the fact that it takes it more time to fit
randomized datasets [87]. After one epoch, the network
thus has a lower training accuracy on the randomized
dataset (cf. the inset in Fig. 9), which leads to the smaller
area underneath the curve. We verify that no easy or hard
samples appear when training the randomized datasets to
comparable training accuracy (not shown). In fact, the
memorability of datasets with random labels seems to coin-
cide after accounting for differences in the training error,
regardless of whether the inputs are CIFARI0 images,
Gaussian inputs, or structured inputs X = f(CF) (4)
[dashed lines in Fig. 9(a)].

The memorability curves for the Gaussian, TeacherS,
and HMM datasets in Fig. 9(b) reveal that hard and easy
examples exist for TeacherS and HMM, which both contain
structured inputs X = f(CF), but not in the Gaussian

Accuracy in %

pCorrect

75% [
]

so%] =}

25%

0.0 0.2 0.4 06 08 1.0
Normalised # of image

FIG.9. Neural networks have different memorization patterns for random and structured datasets. We plot the memorability of training
images, i.e., the frequency with which an image from the training set is correctly classified by a neural network after training for only a
single epoch. In (a) and (b), we reproduce the result of Arpit er al. [86] for CIFAR10 (full blue line). This curve demonstrates the
existence of hard and easy examples which are never, or always, classified correctly. (a) shows that this property disappears in all models
when the labels are reshuffled (dashed lines). The insets indicate the training accuracy after training, using circles for randomized
datasets and squares for unmodified data sets. (b) shows that these hard and easy examples also exist in the structured data models,
TeacherS (green line) and the HMM (red line), but not in the unstructured Gaussian one (orange line).
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dataset. The number of easy examples, but not their
existence, correlates well with the training accuracy on
these datasets, shown in the inset. In that sense, the hidden
manifold model is thus a more realistic model of imagelike
data than the canonical teacher-student setup.

Note that, by making the teacher network larger than the
students (M = 2K), the learning problem is unrealizable
for all three synthetic datasets; i.e., there is no set of weights
for the student that achieve zero generalization error. The
absence of easy examples in the Gaussian dataset, thus,
suggests that unrealizability alone is insufficient to obtain a
dataset with easy examples. Our results also demonstrate
that memorability is not just a function of the input
correlations: CIFAR10 images, Gaussian inputs, and struc-
tured inputs yield the same memorability curves when their
labels are randomized. We leave it to future work to identify
some criterion, statistical or otherwise, that predicts either
whether a sample (x,, y,) is easy (or hard) to memorize or
whether a training set contains easy examples at all.

VI. CONCLUDING PERSPECTIVES

We introduce the hidden manifold model as a generative
model for structured datasets that displays some of the
phenomena that we observe when training two-layer neural
networks on realistic data. The HMM has two key
ingredients, namely, high-dimensional inputs which lie
on a lower-dimensional manifold and labels for these
inputs that depend on the inputs’ position within the
low-dimensional manifold. We derive an analytical solution
of the model for online SGD learning of two-layer neural
networks. We, thus, provide a rich test bed for exploring the
influence of data structure on learning in neural networks.

Let us close this paper by outlining several important
directions in which our work is being (or should be)
extended.

Comparison to more deep learning phenomenology.—In
the spirit of our experiments in Sec. V, it is of great interest
to identify more properties of learning that are consistently
reproduced across experiments with realistic datasets and
network architectures and to test whether the HMM
reproduces these observations as well. Of particular interest
will be those cases where learning on realistic data deviates
from the HMM and how we can extend the HMM to
capture these behaviors.

Beyond online SGD.—Our analytical results on online
SGD rely on the assumption that each new sample seen
during training is conditionally independent from the
weights of the network up to that point. In practice,
samples are seen several or even many times during
training, giving rise to additional correlations. Taking those
correlations into account to analyze those cases is an
important future direction. First steps toward a solution
to this challenging problem were made using the dynamical
replica method [88,89] for two-layer networks and for
single-layer neural networks trained using full-batch

gradient descent, where all the samples in the training
set are used at every step of the algorithm [42,43,90].
Generalizing these results to two-layer networks is clearly a
direction for future work as well.

Learning with a multilayer network.—The present work
should be extended to learning with multilayer networks in
order to identify how depth helps to deal with structured
data. This challenge is serious, and it remains an open
problem to find explicitly solvable models of multilayer
(nonlinear) networks even in the canonical teacher-student
model where inputs are uncorrelated.

Multilayer generative model—The hidden manifold
model is akin to a single-layer generator of a GAN. A
natural extension would be to take a generator with an
arbitrary number of layers. Multilayer generators are
explored in Refs. [41,49], whose results are analogous to
the Gaussian equivalence property and suggest that the full
solution of the online SGD or of the full-batch gradient
descent might also be within reach.

Conditioning the inputs on the labels.—In the HMM, the
true label y* of an input x is conditioned on its latent
representation c, i.e., its coordinates in the manifold. It may
be more realistic to consider models where, instead, the
latent representation is conditioned on the label of the input,
i.e., p(c|y). A simple case of such a model that reduces to a
Gaussian mixture of two clusters was explored recently
[91]. This point of view is also taken implicitly in Ref. [33].
More generally, exploring different approaches to modeling
realistic inputs will allow us to better understand how data
structure influences learning.
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APPENDIX A: THE GAUSSIAN EQUIVALENCE
PROPERTY

1. Nonlinear functions of weakly correlated
Gaussian random variables

In order to derive the GEP we first establish some
auxiliary lemmas concerning the correlations between
nonlinear functions of weakly correlated random variables.
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a. Correlations of two functions

Lemma Al.—Given n + p random variables organized
in two vectors,

(A1)
yP

with a joint Gaussian distribution, denote by E the expect-
ation with respect to this distribution. The first moments are
supposed to vanish:

Ex;, =0, Ey, =0, (A2)
and we denote by O, R, and &S the covariances:
Elxix;]=0Q;;. Elyy;]=R;;, E[xyj]=€S;;. (A3)

Let f(x) and g(y) be two functions of x and y, respectively,
regular enough so that E,[x; f(x)], E.[x;x;f(x)], E,[y.f(y)],
and E,[y;y;f(v)] exist, where E, denotes the expectation
with respect to the distribution \V'(a, Q) of x and E, denotes
the expectation with respect to the distribution N'(b, R)
of x.

Then, in the € — 0 limit,

+ 8zn: Z: E.[xif (0)](Q7'SR™"),E,[y;9(v)]
o (A4)

Proof.—The result is obtained by a straightforward
expansion in e.
The joint distribution of x and y is

P(x.y) :%exp [—% <x y>M—l (;)} (AS)

B 0 &S
M= <8ST R)'

One can expand the inverse matrix M~! to first order in &:

where

(A6)

M_IZ(Q‘l 0)_8< 0 Q'SR
0 R R'STQ 0

and substitute this result into the joint distribution (A5) to
find

) @

pn=geol-5(« ) (4 L))
x {1 +8iznl:zp;xi(Q_1SR_l)ijyj + (9(82)]-
o (A8)

Using this expression, the result (A4) follows immedi-
ately. n
An immediate application of the lemma to the case when
n = p =1 is the following. Consider two Gaussian ran-
dom variables u#; and u, with mean zero and covariance
Ei] =1;  E[u3]=1;

Elujus] = emy,,  (A9)

and two functions f; and f,. Define, for i € {1,2},

a; = (fi(u)); by = (ufi(u)), (A10)
where (.) denotes the average over the distribution of the
random Gaussian variable u distributed as NV (0, 1).

Then, in the ¢ — 0 limit, the correlation between f(u;)
and g(u,) is given by

E[f1(u))f2(up)] = ayay + emyabyby + O(e?).  (Al1)
This result means that, if we consider centered functions
fi(u;) = fi(u;) — a;, their covariance is

Elf1(u))f2(uz)] = +emiab by + O(€2). (A12)

This result generalizes to correlation functions of higher
order, as stated in the following lemma.

b. Higher-order correlations

Lemma A2.—Consider m Gaussian random variables

uy,...,u, with mean zero and covariance
Vi:Eu!] =1, V i#j: Elwu]=em;, (Al3)
and m functions f1, ..., f,,. Define as before:
a; = (fi(u)), by = (ufi(u)). iefl,...m},
(A14)
and define the centered functions as
filu) = fi(u) —a;; (A15)

then,
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| -
1imT/2[Efl(ul)"'fm(um)

e—0 ¢
Zma]r;—zmo— Mg if P is even,
= o€ell r ! (Alﬁ)
0 if p is odd,

where IT denotes all the m!/(2"/2(m/2)!) partitions of
{1,...,m} into m/2 disjoint pairs. This result means that,
for the moments involving only different indices, the
random variables f(u;)/\/€. ..., fm(itn)//€ behave, in
the ¢ — 0 limit, like Gaussian variables with a covariance
matrix b;b;m;;.

Proof.—The covariance matrix U of the variables
u,...,u, has elements 1 on the diagonal and elements
of the order of € out of the diagonal: U = I 4 em. One can
expand U~! in powers of &:

0
U™t => (—e)rm. (A17)
p=0
The integration measure over the variables u, ..., u,, can

be expanded as

Vo detMe VD2 T Gyuy oouy).  (AL8)

p=1

where

e\?
Gp(ul, v ly) =1+ <—2> Z(mp)ij”i"tj

o (A19)

When we compute the integral of £ (u;)...f, (1,,) with the
measure (A18), because of the fact that (f;(u;)) = 0, we

need to include terms coming from [], G, (uy, ..., u,,) that
involve at least one power of each of the variables
Upy ooy Uy,

When m is even, say, m = 2r, for € — 0, the term of this
kind with the smallest power of ¢ is the monomial u;...u,,
that comes from the rth order term in G;. This term gives

1 (e
[Efl(ul)-‘-f2r(u2r) = F (E) Z[ljl_”[rjrmilj]mirjr

+O(e), (A20)
where the sum ZA: i1j,...i,;, runs over all permutations of the
indices 1, ..., 2r. This result leads to Eq. (A16) for m even.

When m is odd, m = 2r+ 1, for € — 0, the leading
terms coming from [] G, that give a nonzero result are

monomials of the type ulu,...u,, .. They are of the order
of O(&"*!). This result proves Eq. (A16) for m odd. m
Corollary A3.—In the special case m = 3, we get

E[f (uy)f2(uz)f3(u3)]

= ayayaz + e(aymyzbyby + aymy3by by 4 azmypbyb,).
(A21)

2. Derivation of the Gaussian equivalence property

The derivation is based on the computation of moments
of the variables A* and 1™, showing that, in the thermo-
dynamic limit, all the moments are those of Gaussian
random variables. Here, we make explicit the derivation up
to fourth-order moments and leave the daunting higher-
order moments for a future formal proof of the GEP.

a. Covariances

We first compute the covariance matrix G = E[1*]:

GH =S WL () - allf () ~ a (A22)

= (e = @)W+ S W ELF() — allf(u) ~ .
i#]
(A23)

In the last piece, we need to compute E{[f(u;)—
a][f(u;) — a]} for two Gaussian random variables u; and
u; which are weakly correlated in the large N limit. In fact,
as i # J:

Eu;u

U, (A24)

j = Yij
is of the order of 1 /\/5. In the thermodynamic limit, we

can apply Lemma Al, which gives
1 2
Ef(u;)f(uj) = a* + sz;Fierr (i#Jj). (A25)

From Egs. (A23) and (A25), we get the covariance of 1
variables as written in Eq. (16). The covariance E[v"1"] is
analogous.

We now compute the covariance E[A*2"], which is
equal to

S WIELf(1)C,).

r=I1

(A26)

1 &,
N;Wi

The two variables u; and ¢, are Gaussian random variables
with a correlation

B
Sl-
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[E[uicr] = %Fir (A27) [E[f(ut)cr] = \/LEF”<Mf(M)><C%> = %Fir- (AZS)

Using this result in Eq. (A26) gives Eq. (17).

which goes to zero as O(1/4/N) in the thermodynamic

limit. We can, thus, use Lemma Al, and more precisely

Eq. (A12), to get We study the fourth moment defined as
J

b. Fourth moments of A* variables

lek2k3k4 = </~1kl/~1k2/~1k3/1k4 = Z W wkzwkSWh <.]~t(ui1)]~c(uiz)}‘(ui3 )f(ui4)>’ (A29)

zl ip.03,04

where f(u) = f(u) — a is the centered function.
We shall decompose the sum over iy, i,, i3, and i, depending on the number of distinct indices there are.
Distinct indices.—Let us study the first piece of the fourth moment (1125223 2k):

Gi]kzkz/q: - Z W wkzwk3wk4<f(uil)f(uiz)f(”g)ﬂ“u»’ (A30)

i1,0p,03,i4

where the sum runs over four indices i;, iy, i3, and iy, which are distinct from each other. We can use the factorization
property of the fourth moments of f(u) of Lemma A2. This property gives

k vhoksky _ o Z wh WkZWkngAK}‘(uil)](ui2)><}‘(ui3)?(ui4>> + two perm]

+ two perm. (A31)

i1,0p,03,i4

([

i1,

h”wvwﬂﬂ@

l; iy
The correction terms come from pieces where the intersection between {i;, i, } and {is, i4} is nonempty. If we first neglect
this correction, we find

G§1k2k3k4 _ b4[(2klk2 _ Wk]kz)(2k3k4 _ Wk3k4) 4 two perm} (A32)

Now, we show that the corrections are negligible. Consider the term i; = i3, i, # iy. This term gives a correction

——wawmemmwwmm» (A33)
Using Eq. (A12)
- N 1 &
<f(”i| )f(uiz» = sziliz = bzﬁgFilrFizn (A34)

we get the expression for the correction

Zw CWOWRE, F F o F,

i1.0p,04

kiks oky ok
N2D2 Zsr} 3SrZSs4. (A35)

1
IS \/NDZ —

Using our hypothesis on the fact that the quantities S are of the order of one, this correction is clearly at most of the order of
o1/ VN ) and, therefore, negligible.
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The last correction that we need to consider is the term where i; = i; =i and i, = iy = j. This term gives

Zw’“w’”w"*w’“ (F (i) Fuy))? =

which is again negligible in the large N limit.

Three distinct indices.—Let us study the contributions to
the fourth moment of 1 coming from three distinct indices.
We study the case where i} = iy:

Ekikoksky —

Z w; szwkzwk“(}( )}(ulz)f(ui3)>.

iy.0p,i3

(A37)

Using the expression for the third moment of functions of
u, Uy, and u3 found in Eq. (A21), we get

ks k
E""Zk"“*—cb2 5 g w w wiw;t — corr

i1.i2.13
= ch*Whiki[zkks — whkk] —corr,  (A38)
The corrections come from cases when i; = i, or i} = is.
For instance, the piece with i; = i, gives

—cb’ 5 Zsk kaks ks

which is O(1/N) at most.

The only pieces that do not vanish in the large N limit
are, thus, the pieces similar to the one computed in
Eq. (A38). Putting all of them together, we find that the
contribution to (%17%2757%) coming from pieces with
exactly three distinct indices in iy, i,, i3, and iy is equal to

(A39)

G§1k2k3k4 _ cbZ(Xklkz;k3k4 + Xhiksikoks 4 xkikiskoks

+X23vl4+§524513+x34a]2)’
Where

Xkikasksks — pykiky [Zk3k4 — Wk3k4]' (A40)

Two distinct indices.—Let us now study the contri-
bution to the fourth moment of A coming from two
distinct indices. We study first one piece of this contribu-

tion to the fourth moment, corresponding to i} = i, = i,
i3 =14 =]

Fk] koksky —

Zwklwkzwkzwkzt f(ui)zf(uj)2>- (A41)

S s - 55 (830

NR2

[
To leading order in the thermodynamic limit, we can write

(i) f(u;)?) = ¢ (A42)

and, therefore,

Fk,k2k3k4 — C2wk,kzwk3k4 (A43)
[the correction coming from i = j being obviously at
most O(1/N)].

We study now the second piece of this contribution to the
fourth moment, corresponding to iy =i, = i3 =1, iy = j.
This piece is equal to

NQZw"‘ wiEwew (P F(uy). (A44)
Using
(F (w7 (u)) = b{uf (u ZF,,FN, (A45)
this piece gives
b(uj‘(u)3>N—1DZS]f‘k2k3S]ﬁ4, (A46)

and it is, therefore, negligible.

Therefore, all the contributions to the fourth moment of A
coming from exactly two distinct indices are of the type
(A43). They give a total contribution:

Glzqkzka/u _ CZ[Wk1k2Wk3k4 + Whikswkeka Wk1k4Wk2k4]'
(A47)

One distinct index.—The contribution to the fourth
moment (1¥12k5 %) coming from iy =i, = i3 = iy is
clearly of O(1/N) and can be neglected.

Final result for the four-point correlation function of A
variables.—We can now put together all the contributions
to the fourth moment (Z¥17%7%7%) coming from pieces
with four distinct indices found in Eq. (A32), those with
three distinct indices found in Eq. (A40), and those with
two distinct indices found in Eq. (A47). Defining
Wkika

Ykl = shiks _ (A48)
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and recalling the definition (A40) of the X variables, we
obtain

(A 7k 3 ks
= pH(Yhkykk | yhkyhks 4 ykikiyhkks)
+ b2e(Xkikaikska 4 xkiksikoks
F xhkskaks | xhakikike | xhokikiks | xkskiskika)

+ C2 [WklkZ Wk3k4 + Wk1k3 Wk2k4 + Wk1k4 Wk2k4]. (A49)

We can see that this result is equal to
[BPYRke 4 cwhik][p2yksks 4 cWksks] + two perm, (AS0)
which shows that

(ki ke gk gkey = (Jki k) (3R 7k) + two permutations.
(A51)

With this result, it is clear how to proceed with the
calculation of the fourth moments involving 1 and v
variables. We first need to study the moments with three
A and one v, then moments with two A and two v, and,
finally, the moments with one 1 and three v variables. In the
interest of conciseness, we do not spell out the full details of
this calculations here, which proceeds very similarly to the
calculations performed hitherto.

The generalization to higher moments of A variables
employs the same combination of repeated use of
Lemma A2 and careful decomposition in subsets of
distinct indices. As a result, it can be seen that the set of
A variables has a Gaussian distribution in the thermody-
namic limit.

APPENDIX B: DERIVATION OF THE
EQUATIONS OF MOTION

When we make a step of SGD, we update the weight w*
using a new sample, generated using a previously unused
sample according to

(WE), 1 = (Wh), = —%vmg/ukmui), (Bla)
Vi = = —%g(lk)A, (B1b)

where A = 37K v/g(7) = >0, 7"g(v™). Note the dif-
ferent rescaling of the learning rate for the first- and second-
layer weights. From here on out, we drop the index y on the
right-hand side as we work at a fixed iteration time. We
keep the convention of Sec. III A, where extensive indices
(taking values up to N or D) are below the line, while we
use upper indices when they take finite values up to M or K.
The challenge of controlling the learning in the

thermodynamic limit is to write closed equations using
matrices with only “upper” indices left. Furthermore, we
adopt the convention that the indices j, k,7,1=1,....K
always denote student nodes, while n,m =1,...,M are
reserved for teacher hidden nodes.

1. First steps

We start by focusing on the dynamics of the first layer
[Eq. (B1)]. When we study the evolution of quantities that
are linear in the weights, like S¥ and the order parameters
constructed from it, e.g., =¥, we need to study

[Z V(i) - li 90| G110

= i vialt + vkak - i ek, (B2)
J#k n=1
where
@l = g(i7)g () f (wy), (B3)
= g(A)g () f (wy), (B4)
ot =g g () f (), (BS)

while we keep the second-layer weights v* fixed. We can,
thus, follow the dynamics of S¥ [Eq. (20)], which is linear
in the weights and enters the definition of the order
parameters R¥" [Eq. (17)] and =¥ [Eq. (22)]:

()1 = (57),

K M
n ik ~
=N [Z Vel + - Z”"”?k} |

7k n

(B6)

We want to average this update equation over a new
incoming sample, i.e., over the ¢, variables. Upon con-
traction with F;, in Eq. (B6), we are thus led to computing
the averages

A = \/LNZ[E[F,-,a{k] = Elg(#)gd(M)p,),  (BT)

By =E[g(4")g (4)B,, (B3)
and
Crt = E[g(v")g (A)B,], (B9)
where
1
ﬁr = WZ:Firf(ui)‘ (BlO)
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The crucial fact that allows for an analytic study of online
learning is that, at each step y of SGD, a previously unseen
input x, is used to evaluate the gradient. The latent
representation ¢, of this input is given by a new set of
IID Gaussian random variables c,,., which are thus inde-
pendent of the current weights of the student at that time. In
the thermodynamic limit, the GEP of the previous section
shows that, for one given value of r, the K+ M + 1
variables {4*}, {v"}, and f, have a joint Gaussian
distribution, making it possible to express the averages
over {A%, v, B,} in terms of only their covariances.

Looking closer, we see that the average of Eqs. (B7)—
(B9) over this Gaussian distribution involves two sets of
random variables: on the one hand, the M + K local fields
{v™, 2%}, which have correlations of the order of 1, and, on
the other hand, the variable f, (for one given value of r). It
turns out that 3, is only weakly correlated with the local
fields {v”,4*} [the correlation is O(1/v/N)]. In
Appendix A I, we discuss how to compute this type of
average and prove Lemma Al, which for the averages
(B7)—(B9) yields

Al = 0% 0T — (0] {QVE[g (2) A g(¥)JE[XB,] — QVE[g () ¥ g(¥)|E[2*p,]
—QYE[g (A)2*g(¥)E[¥B,] + QElg (2) W g(¥)E[¥B,1}. (B11)
B = G Ely () ELS,| (B12)

1

¢ = e gy {T"ElS G ER )~ RELY (1050 [EI,

—RUE[g ()2 5" |EW"B,] + Q" E[g (A)v"g(v")JE["B,]}- (B13)
This result yields
K M

(S = (55 = =Lt [Z VA 4B @"C;’k}, (B14)
with only the single extensive index r left. While this (B16)

equation would appear to open up a way to write down the
equation of motion for the “teacher-student” overlap R
by contracting Eq. (B14) with W/, we show in Appendix C
that such a program leads to an infinite hierarchy of
equations. To avoid this problem, we rotate the problem
to a different basis, as we explain in the next section.

2. Changing the basis to close the equations

We can close the equations for the order parameters by
studying their dynamics in the basis given by the eigen-
vectors of the operator

1
Qrs ENZFNFI'S’ (BIS)

which is a D x D symmetric matrix, with diagonal ele-
ments Q.. = 1, and off-diagonal elements of the order of
1/v/N. Consider the orthogonal basis of eigenvectors
W,—1...p of this matrix, with corresponding eigenvalues
Pz such that

Zgrsl//rs = PWrr-
s

We suppose that the components of the eigenvectors y,, are
of the order of 1, and we impose the following normali-
zation:

ZW‘MWT’S = D5‘rr” ZWTVWTS = Dé‘rs- (B17)
s T

In this basis, the teacher-student overlap R [Eq. (17)] is
given by

b
km k m
RM™ = % o, (B18)
where we introduce the projections
Ik = L E Skyr (B19)
T /D - r Tr

and
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(B20)

Since @™ is a static variable, the time evolution of I'¥ is

given by

(T8)1 = (), =

kzl//n |:Z UJ.Ajk

J#k

M
+ofBE =) f;"c';k] .
n

(B21)

As we aim to compute the remaining sum over r, two types
of terms appear:

d
wo EB] = —=[(c = b*)6 + bPp ]l = LT,
2 7 Vo
(B22)
where we define d, = (¢ — b*)5 + b*p,, and
ZW‘H’ v ﬂl’ (B23)

_\/’ T T

Putting everything together, the final evolution of I'X is

OQJE[g (A4)akg(A)] — QME[g (X)W g(W
(M) = (1), = = g s EEDTEEN = € 2y IR
oN Jj#k Q Q - (Q )
i QUElg () ¥ g(A)] — QUE(g (2) A g(4)] !
+5 vid,r +d T E[gf (A9) A g(A1)]
,; 0%l —(QY)? o
T E ﬂk /'Lk~ n\l _ Rkn[E / /'Lk n(.n
_dTF/;Z,T]n [d( ) g/E/I: )] - [g( )V g(l/ )]
Q Tnn _ (R n)
o QUEly ()" g(")] = R"E[g (A)A g(")]
_b’DTZv a) Qkann _ (Rkn)Q . (B24)
At this point, we note that the remaining averages appear- E[A¥2%]  E[A*A]  E[Akv)
ing in this expression, such as E[2'¢'(2*)g(v")], depend  ©6) ki ) = | ELEVT EWyl Elvi
only on subsets of the local fields { ¥~k pm=1.M1  Ag (k. j.m) { B I El : I
discussed above, the GEP guarantees that these random [E[/I V"] [EW V"] [E[V”V”]
variables follow a multidimensional Gaussian distribution, Q. Qki Rkn
so these averages depend only on the covariances of the . ki i pin
local fields R¥™, Q7. and T™". To simplify the subsequent - Qk QA R (B27)
R n R]l’l Tnl’l

equations, we use the shorthand notation for the three-
dimensional Gaussian averages

Ii(k. j.n) = Elg (A)¥g(")].

which was introduced by Saad and Solla [22] and that we
discuss in the main text. To make this section self-
contained, we recall that arguments passed to /3 should
be translated into local fields on the right-hand side by
using the convention where the indices j, k, £, and 1 always
refer to student local fields A/, etc., while the indices n and

(B25)

m always refer to teacher local fields " and v, respec-
tively. Similarly,
I3(k. j. j) = E[g (A) ¥ g(A)]. (B26)

where having the index j as the third argument means that
the third factor is g(4/) rather than (™) in Eq. (B26). The
average in Eq. (B26) is taken over a three-dimensional
normal distribution with mean zero and covariance matrix

3. Dynamics of the teacher-student overlap R*"

We are now in a position to write the update equation for

2SI, - (), Jar

T

(™)1 = (RE™), = (B28)

where we use that the @' are static. When performing the
last remaining sum over 7, two types of terms appear. First,
there is

(B29)

T 1 ~m~n
T == pudnar.
T

which depends only on the choice of the feature matrix F;,
and the teacher weights wj},, and is, thus, a constant of the
motion. The second type of term is of the form
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(B30)

1 g
T
This sum cannot be reduced to a simple expression in terms

of other order parameters. Instead, we are led to introduce
the density

11 N
Hp) = —5 Tiorilp. € lp.p+e,)). (B3N

€p

where 1(-) is the indicator function which evaluates to 1
if the condition given to it as an argument is true and
which otherwise evaluates to 0. We take the limit ¢, — 0
after the thermodynamic limit. Then, we can rewrite the
order parameter R*” as an integral over the density r*”,
weighted by the distribution of eigenvalues of the operator
Qrs’ Pa (p ):

~b [ dovalp)r (o). (B32)

ot

+d(p) 30l ()

arkm(/), t) _ 7’] k(d(p)rkm Z JQ//I3 k k J)

If, for example, we take the elements of the feature matrix
F;, to be elementwise IID from the normal distribution with
mean zero and unit variance, then the limiting density of
eigenvalues of Q is given by the Marchenko-Pastur law [66]:

\/(pmax - ,0) (,0 - pmin)
276 p ’

pup(p) = (B33)

where Pmin = (1 - \/3)2 and Pmax = (1 + \/3)2

The update equation of 7*"(p) can be obtained immedi-
ately by substituting the update equation for I'* [Eq. (B24)]
into its definition [Eq. (B31)]. Finally, in the thermodynamic
limit, the normalized number of steps t = P/N can be
interpreted as a continuous timelike variable, and so we have

R¥(1) = b / dppalp)r(p.0).  (B34)

and we recover the equation of motion for 7" (p), which we
restate here for ease of reading:

OM15(k. j, j)

J#k
1

P QI QM — (QN)?
O 15(k. j, j) — QN I5(k, k, j)
Qi — (QM)?

Iy(k, k. k)

+ ') ) o

T Iy(k. k. n)

— R*I5(k,n,n)

—d(p)r™(p)> "

kk] k
_bpz~nTnm Q 3 n, I’l)

- Qkann _ (Rkn)2
R I5(k, k, n)
; B35
Qkann _ (Rkn)Z ( )

where d(p)

= (¢ — b*)5 + b?p. Note that, while we drop the explicit time dependence from the right-hand side to keep the

equation readable, all the order parameters on the right-hand side are explicitly time dependent, i.e., Q% = Q/(1),
rm(p) = r*™(p, 1), and the averages I5(-) are also time dependent via their dependence on the order parameters [see
Eq. (B26) and the subsequent discussion]. In order to close the equations of motion, we now need to find the equations for
the order parameters that are quadratic in the weights.

4. Order parameters that are quadratic in the weights

There are two order parameters that appear when evaluating the covariance of the A variables:

O = E[147] = [c — B WH 4 h25H (B36)
We look at both W* and =¥ in turn now.
Equation of motion for W*.—For the student-student overlap matrix
|
- NZ whw? (B37)
i

we find, after some algebra, that updates read
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N
(WHE et — (ka _ ’7/ Ukzwf[zy/a/ + okt — Zvn nk:|

J#k

Ng/z KZwk[Zv’a + 078 — Zv 0”f]

i J#EC

fo )2 (AK)g (A7) [Zv/yg,w Zm;g 5™
) Z Z v " g(A)) g(um)] . (B38)

For the terms linear in the learning rate #, we can immediately carry out the sum over i, which yields terms of the type
%wa} Elg(#)g () f (u;)] = Elg ()2 g()] = I3(k. £, ), ete. (B39)

The term quadratic in the learning rate n requires the evaluation of terms of the type
*Z[E )29/ (A)g (A7) g(W)g(2)] = cElg (A)g (A7) g(A)g(2')]- (B40)

The sum over i thus makes this second-order term contribute to the total variation of W* at leading order, and we are left
with an average over four local fields, for which we introduce the shorthand

Ly(k, 2, j,1) = E[g (A)g (A7) g(#)g(A)], (B41)

where we use the same notation as we did for 75(-) [Eq. (B26)]. The full equation of motion for W¥ thus reads

def(t):—l’]Uk XK:U]I k. l/ﬂ] Zvnl k Z, n —I’]’Uf XK:yj] (f k])—ZfJ”I (Lp k l’l)
dt 3 ’ ne n n

J J

K M
+ cen?ok f(Z vively(k, 2, j,a) — 22 Z?}ji)ml4(k, £, j,m)+ Z 7", (k, f,n,m)). (B42)
j m n.m

J.a

Equation of motion for T¥.—After rotating to the basis y,, we have
1 1
M= SKST=— T, B43
It is then immediate that

(R = (35), = 5 SUCO,ICH = (19,1 + 5 5000, [0 = (6),]

T T

2 R
e DD W EIA2G (1) ()65, (B44)

The terms linear in 5 can be obtained directly by substituting in the update equation for I'* [Eq. (B24)] and are similar to the
update equation for " (p). As for the term quadratic in #, we have to leading order
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2

anwm (A% (25)g (A)B, ;) = NZ(wﬂ)sz[Azg’(ﬂ")g’(ﬂf)][EW]

2 2

E8° ()7 ()] (e = 7)o+ 5.2, (B43)

where we use that covariance of /3, is given by
2 , b 2
Elp7] = c—b" + 5 Et Q. (B46)

To deal with the remaining sum over 7, we again make use of the fact that the equation of motion for =¥ depends on the
eigenvector index 7 only through the eigenvalue p,. Introducing the density

11
(p) = —3 D TiT1(p: € [p.p + &), (B47)
4 T
as we did for r*"(p) [Eq. (B31)], we have
() = [ dppalp)o(p.1 (B48)

with

a"kf(/” 1) _n <d(p)vkakf(p)zvj ij13(k, k,j)— ij13(k7j,f)

o =7 2T iR~ (g
Q “Iy (k. j. j) — QY I5(k. k. j)
R ) ) G gy

T d(p)to (p)v Ql I3k, k. K)

T I5(k, k,n) — R*"I5(k, n, n)

- d(p) Uko-kbﬂ(p)zi)n Qkann _ (Rkn)Z

n

non Qkk13(k, n,n) — R I5(k, k,n)
- bpl}kZ’U g Qkann _ (Rkn)Z

-+ all of the above with ¢ — k, k — f)

b2 = ,
T Pk f|:(c—b2),0+g,02:| <; vv'ly(k, 2, j, 1)

—2221}11}’"14 (k,¢,j,m +Zv”vml4 (k,?,n, m)) (B49)

5. Second-layer weights

Finally, we treat each of the second-layer weights of the student v as an order parameter in its own right. Their equations
of motion are readily found from their SGD update [Eq. (B1b)] and read

d’l)k M K )
=1t = > vk, (850

where we introduce the final shorthand
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Lk, j) =

E[g(#)g(A)],  etc.

(B51)

where we again use the notation we introduced for /3(-) [Eq. (B26)].

6. Generalization error

Having introduced the shorthand for the integrals I, (k, j) [Eq. (B51)], we realize that their form also enters the formula

for the generalization error

o K M
0,0) = §[E<Z vkg(AF) — Z "G(v > kavflz (k, ) + ZU "I, (n, m) kaﬁ”lz(k, n). (B52)
k m k.n

For example, for a student with g(A*) = erf(1*/1/2) and a teacher with j(v™)

Qkf

= max(0,2"), we find that

1
(Qkf Rkn g k ~m) = Zykvf arcsin

Rkn
_ k o
n47 V1+0M%y/1+ 07 ; Va1 + O%

1
P77} mm-nn nm\2 nm
+Engmvv <\/T T — (T")* + T {n+2arctan

7. Summary of the derivation

We have now completed the program that we embarked
upon at the beginning of this Appendix: We derive a closed
set of equations of motion for the teacher-student overlap
RF™ [Egs. (B32) and (29)], the student-student overlap
Q% = [c — P*]W* + b>ZF [Egs. (38), (34), and (35)],
and the student’s second-layer weights v* [Eq. (39)]. These
equations give us complete access to the dynamics of a
neural network performing one-shot stochastic gradient
descent on a dataset generated by the hidden manifold
model. We can now integrate these equations and substitute
the values of the order parameters at any time into the
expression for the generalization error (26), thereby
tracking the dynamics of the generalization error at all
times. We describe this procedure in more detail next.

8. Explicit form of the integrals I3 and I,
for sigmoidal students
The explicit forms of the integrals /5 and I, that appear in
the equations of motion for the order parameters and the
generalization error for networks with g(x) = g(x) =
erf(x/ \/E) were first given by Refs. [21,22]. Here, we
state them to make the paper as self-contained as possible.

Denoting the elements of the covariance matrix such as ®°
[Eq. (B27)] as ¢;;, we have

2 1
7[\//\3

231 + h11) — P1odhis
1+ ¢n

L) = (B54)

with

Tnm
\/Tmm T _

(Tnm>2D. (B53)

Ay = (14 ¢1)(1+ ¢33) — ¢ (B55)

For the average 1, we have a covariance matrix ®® that is
populated in analogy to @) [Eq. (B27)], we have

4 1 . A
Iy(ooyey) :;\/A_43r0s1n<\/lﬁ>, (B56)
where

Ay = (14 ¢1)(1 + ¢2) — o1, (B57)

Ao = Na3s — oapoa(1 + @11) — d13h1a(1 + )
+ 12013924 + D12P14923, (B58)

= A1+ ¢33) = 53(1 4 11) = P (1 + ba)
+ 201213923, (B59)

Ay = N1+ ag) = b3, (14 11) = @14 (1 + ba)
+ 2¢12¢14P24- (B60)

APPENDIX C: THE EQUATIONS OF MOTION
DO NOT CLOSE IN THE TRIVIAL BASIS

Here, we give a short demonstration that it is not possible
to close the equations for order parameters if we do not
rotate their dynamics to the basis given by the eigenvectors
of Q, which is what we do in our derivation in Sec. III B.
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1. Order parameters that are linear in the weights

To start with a variable that is linear in the weights, take the time evolution of S¥. It is clear that the tensor structure of the

result (B14) is of the form

(S = (55 = | DTS+ B S|
¢ s m s

(C1)

where D¥* and E¥" are known quantities, expressed in terms of the matrices Q, T, and R, and we introduce the operator

1
Qrs = NZFirFisv

(C2)

which has diagonal elements equal to 1 and off-diagonal elements of the order of 1/v/N.
In particular, we can use this evolution to study the evolution of R:

1 1
km\pu+1 _ km\p _ _ n kt ~ 4 km ~r ~
(Rkm# (RFmym = (uf(u))N— [ Ef D~ — E,s wnQ,. S84+ Em Efm — Em WhQ, W ]

The point of this analysis is to show that the time evolution
of S¥ involves (QS)?. Therefore, to know the evolution of
S, we need the one of QS. This process is not innocuous
because, in order to have dynamical evolution equations
with only “up” indices, we need to contract it. The
evolution of R¥"  which is proportional to the scalar
product (in the R-dimensional manifold space) of S* and
W™, is thus given by the scalar product of QS* and ™.
It is not difficult to see that the evolution of QS will
require knowing QS etc. So we have an infinite hierarchy
of coupled equations, which would be hard to analyze. Yet,
we can find closed equations by changing the basis for S.

APPENDIX D: ADDITIONAL DETAILS ON THE
NUMERICAL EXPERIMENTS IN SEC. VA

For the experiments demonstrating the learning of fun-
ctions of increasing complexity discussed in Sec. VA, we

(C3)

constructed datasets for binary classification by splitting
the image datasets as follows:

(i) MNIST.—Even vs odd numbers.

(i1) Fashion-MNIST.—T-shirt or top, pullover, dress,
sandal, and bag vs trouser, coat, shirt, sneaker,
and ankle boot.

(ili) CIFARI0.—Airplane, bird, deer, frog, and ship vs
automobile, cat, dog, horse, and truck.

We first demonstrate in Fig. 10 that sigmoidal networks
show the same learning of functions of increasing complex-
ity discussed in Sec. VA for CIFAR10 when trained on
MNIST or fashion-MNIST. Note that for CIFAR10, in
particular, we see the effects of overtraining set in after
several epochs, when the generalization error starts to
increase again (we use plain SGD without any explicit
regularization in these experiments).

We also repeat these experiments for ReLU networks
with activation function g(x) =max(0,x). While the

FMNIST
n=0.01

CIFAR1O
n=0.001

gmse

1071 10° 10! 107 107

Epochs

10° 10! 1071 10° 10!
Epochs

Epochs

FIG. 10. Two-layer sigmoidal neural networks learn functions of increasing complexity on different datasets. We plot the mean-
squared error as a function of training time for sigmoidal networks with an increasing hidden layer when trained on three different
datasets. The curves are obtained by averaging ten different runs, starting from different initial weights. Error bars indicate one standard

deviation. For all plots, g(x) = erf(x/+/2), Gaussian initial weights with standard deviation 10>, and batch size 32.
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Two-layer ReLU neural networks also learn functions of increasing complexity and show more run-to-run variance. We plot

the mean-squared error as a function of training time for sigmoidal networks with an increasing number of nodes K when trained on
three different datasets. For all plots, g(x) = max (0, x), Gaussian initial weights with standard deviation 1073, and batch size 32. For
online learning, we choose a teacher with g(x) = max(x,0), M = 10, and ?" = 1 /M.

dynamics of ReLU students also show a progression from
simple to more complex classifiers, the run-to-run fluc-
tuations are much larger than for the sigmoidal students.
This result is true both quantitatively, but also qualita-
tively: For example, networks sometimes get stuck in
really suboptimal minimizers for a long time. Hence,
plotting the mean trajectories is not as informative, as the
standard variations would be very high, so in Fig. 11 we
instead show representative curves for individual runs of
ReLU students for all three datasets and for online
learning from a teacher with §(x) = max(x,0), M = 10,
and 7" = 1/M.
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