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Dipartimento di Fisica, Sapienza Università di Roma, P.le A. Moro 2, 00185 Roma, Italy

Louis Carillo
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Among the performance-enhancing procedures for Hopfield-type networks that implement asso-
ciative memory, Hebbian Unlearning (or dreaming) strikes for its simplicity and its clear biological
interpretation. Yet, it does not easily lend itself to a clear analytical understanding. Here we show
how Hebbian Unlearning can be effectively described in terms of a simple evolution of the spectrum
and the eigenvectors of the coupling matrix. We use these ideas to design new dreaming algorithms
that are effective from a computational point of view, and are analytically far more transparent
than the original scheme.

I. INTRODUCTION

Consider a fully connected network of N binary vari-
ables {Si = ±1}, i ∈ [1, .., N ], linked by couplings Jij .
The network is endowed with a dynamics

Si(t+ 1) = sign

 N∑
j=1

JijSj(t)

 , i = 1, .., N (1)

which can be run either in parallel (i.e. synchronously)
or in series (i.e. asynchronously in a predetermined or in
a random order) over the i indices. This kind of network
can be used as an associative memory device, namely for
reconstructing an extensive number P = αN of binary
patterns {ξµi } = ±1, µ ∈ [1, ..., P ], called memories. In
this work, we will focus on i.i.d. memories, generated
with a probability P (ξµi = ±1) = 1/2. We consider a
recognition process based on initializing the network dy-
namics to a configuration similar enough to one of the
memories, and iterating eq. (1) asynchronously until a
fixed point is reached. The network performs well if such
asymptotic states are similar enough to the memories.
Whether this is the case depends on the number of pat-
terns one wants to store and on the choice of the coupling
matrix J . Hebb’s learning prescription [1]

JH
ij =

1

N

p∑
µ=1

ξµi ξ
µ
j , JH

ii = 0 (2)

used in the seminal work of Hopfield [2], allows retrieving
memories up to a critical capacity αH

c ∼ 0.14 [3].
In this model even when α < αH

c memories are not
perfectly recalled, but the state of the system always

presents a small finite fraction of misaligned spins. This
feature is linked to the value of the minimum stability
∆min, defined as

∆min ≡ mini,µ{∆µ
i }, (3)

where the stability ∆µ
i is defined by

∆µ
i =

ξµi√
Nσi

∑
j=1

Jijξ
µ
j , σi =

√√√√ N∑
j=1

J2
ij/N. (4)

The value of the stability tells us if a given pattern is
aligned or not to its memory field. As soon as ∆min > 0,
memories themselves become fixed points of the dynam-
ics [4], allowing error-less retrieval when the dynamics is
initialized close enough to one of them.

Several techniques have been developed to build better
performing coupling matrices, i.e. to reduce the retrieval
error and increase the critical capacity as well as the size
of the basins of attraction to which the memories belong
[5–9]. One such technique is Hebbian Unlearning.

II. HEBBIAN UNLEARNING (HU)

Inspired by the brain functioning during REM sleep
[10], the unlearning algorithm [11–14] is a training pro-
cedure for the coupling matrix J , leading to error-less
retrieval and increased critical capacity in a symmetric
neural network. The coupling matrix is built according
to the following iterative procedure:
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FIG. 1. The minimum stability ∆min as a function of the
normalized number of dreams, for different values of α. The
threshold ∆ = 0 is indicated with the gray dotted line. For
α < 0.59, ∆min crosses zero at Din, peaks at D = Dtop and
then becomes negative again at D = Dfin. Where appro-
priate the three relevant amounts of dreams are indicated:
D = Din by ”x”, D = Dtop by a dot, D = Dfin by a ”+”.
All measurements are averaged over 50 realizations of the net-
work. N = 400, ϵ = 10−2.

Algorithm 1 Hebbian unlearning

Initialize J using Hebb’s rule eq. (2)
for d = 1 to Dmax do

Initialize network to a random state σ.
Follow dynamics eq. (1) to a stable point σ∗.
for i ̸= j do

Jij ← Jij − ϵ
N
σ∗
i σ

∗
j

end for
end for

The learning rate ϵ and the number of dreams Dmax

are free parameters of the algorithm. The algorithm 1
does not change the diagonal elements of the coupling
matrix, which are fixed to Jii = 0. For sufficiently
small values of the learning rate, below the critical load
α < αHU

c ∼ 0.6 the evolution of ∆min follows a non-
monotonic curve as a function of Dmax, as illustrated
in fig. 1. The number of dreams D = Din marks the
point where ∆min crosses 0. Here all the memories
are fixed points of the dynamics. Other two points,
D = (Dtop, Dfin) are shown in the plot, corresponding
to the maximum of ∆min and the point where ∆min be-
comes negative again. The scaling of (Din, Dtop, Dfin)
was studied in [14].

In addition to error-less retrieval, when α < αHU
c ,

dreaming creates large basins of attraction around the
memories. This can be measured in terms of the retrieval
map

mf (m0) ≡
〈 1

N

N∑
i=1

ξµi S
µ
i (∞)

〉
. (5)

FIG. 2. Retrieval map mf (m0) for the unlearning algorithm
at the three relevant steps indicated in Fig. 1, and before un-
learning. All measurements are averaged over 10 realizations
of the network. N = 1000, α = 0.4, ϵ = 10−2. The perfor-
mance of the algorithm is maximal ad D = Din.

Here, S⃗µ(∞) is the stable fixed point reached when the

dynamics is initialized to a configuration S⃗µ(0) having

overlap m0 with a given memory ξ⃗µ. The symbol · de-
notes the average over different realizations of the mem-
ories and ⟨·⟩ the average over different realizations of

S⃗µ(0). We show in Fig. 2 the retrieval map for N = 1000
and α = 0.4. The performance of HU is best at D = Din.
Interestingly, as discussed in [14], the curve relative to
Gardner’s optimal symmetric perceptron [4, 5] and to
unlearning at D = Din coincide with good accuracy.

III. TWO NOVEL DREAMING ALGORITHMS

An interesting interpretation of the HU algorithm
emerges when analyzing the evolution of the spectrum
and of the eigenvectors of the coupling matrix J during
the dreaming procedure. Before dreaming, the spectrum
of J is of the Marchenko–Pastur type [15], and the N -
dimensional vector space is split between a degenerate
N−P dimensional eigenspace orthogonal to all the mem-
ories, and a P dimensional space spanned by the memo-
ries, split in non-degenerate eigenspaces. Fig. 3 focuses
on the evolution under dreaming of the ranked spectrum
of J . The evolution of the ranked spectrum indicates that
HU is targeting, and reducing, the largest eigenvalues of
the coupling matrix, while all other eigenvalues are in-
creased by a constant amount at every dream, maintain-
ing a traceless coupling. This leads to a plateau on the
high end of the ranked spectrum. In fig. 4 we qualify the

evolution of the eigenvectors ζ⃗ of the coupling matrix J
as a function of the dreaming number. For each D, eigen-
values are ranked from 1 to N. For each rank, we measure

the overlap ω(ζ⃗(D), ζ⃗(D−1)) between the corresponding
eigenvector at step D and at step D − 1. Eigenvalues in
the same rank at different dreaming steps are connected
by a continuous line, colored with a color code connected
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FIG. 3. On the y-axes, the value of the eigenvalues; on
the x-axes their ranking. Curves of different colors corre-
spond to measures of the ranked spectrum taken after dif-
ferent amounts of dreams. Before dreaming, the spectrum is
of the Marchenko–Pastur type. HU progressively flattens the
high portion of the ranked spectrum

FIG. 4. On the x-axis, normalized number of steps of the
dreaming algorithm. On the y-axes, eigenvalues of the cou-
pling matrix, for one sample, N = 100. Eigenvalues at dif-
ferent steps of the algorithm are connected by colored lines.
Darker colors indicate a high overlap between the correspond-
ing eigenvectors. Only lines corresponding to overlaps larger
than 0.1 are shown. The overlap among subsequent eigen-
vectors is high, except for the highest and lowest part of the
ranked spectrum, where the eigenvalues are effectively degen-
erate.

to ω. For clarity, only lines corresponding to overlaps
larger than 0.1 are shown. As the dreaming procedure
unfolds, the majority of the eigenvectors does not change
much (blue lines), and lines do not cross. This means that
eigenvalues evolve continuously, while the corresponding
eigenvectors barely change. The highest and lowest part
of the ranked spectrum, on the other hand, show some
crossing of lines, and low values of the overlaps (in red).
This is due to the eigenvalues becoming almost equal,
leading to an effectively degenerate eigenspace, corre-
sponding to the plateau in fig. 3.

These observations suggest the following alternative al-

gorithm.

A. Eigenvector dreaming

Algorithm 2 EVdreaming

Initialize J using Hebb’s rule eq. (2)
for D = 1 to Dmax do

1-Find an orthonormal basis of eigenvectors ζµ of J .
2-Select the eigenvector ζuD with the largest absolute

eigenvalue.
3-Update Jij ← Jij − ϵζuD

i ζuD
j .

4-Reset diagonal terms to zero Jii ≡ 0
end for

In this algorithm, the update of the couplings reduces
the value of the highest eigenvalue by an amount ϵ, leav-
ing the eigenvectors unchanged. Resetting the diagonal
to zero, on the other hand, increases the value of ev-
ery eigenvalue by a stochastic amount (see section III B),
and also modifies the eigenvectors. Each step of this al-
gorithm is based on the spectrum of the current coupling
matrix. Note that this algorithm could be implemented
using purely local rules, by iterating the synchronous up-
date σt+1 = f(Jσt) withf(x) = x

||x||2 , which converges

towards the eigenvector of J with the largest eigenvalue.

B. Initial Eigenvector dreaming

An even simpler dreaming procedure, which does re-
produce the qualitative features of HU (specifically the
centrality of the spectrum evolution and the marginality
of the eigenspaces evolution) is obtained by modifying
the coupling matrix on the basis of the eigenvectors of the
initial coupling matrix JH , as listed in algorithm 3. We
call this procedure Initial Eigenvector dreaming (IEV-
dreaming).

Algorithm 3 IEVdreaming

1-Initialize J using Hebb’s rule eq. (2)
2-Find an orthonormal basis of eigenvectors ζµ of the initial
coupling matrix.
for D = 1 to Dmax do

3-Consider the most recent coupling matrix JD−1, and
select the eigenvector ζuD with the largest absolute eigen-
value.

4-Update Jij ← Jij − ϵζuD
i ζuD

j .
5-Remove the average value of the diagonal elements of

J : Jii ← Jii − ϵ
N
.

end for

This algorithm is simple enough that it can be analyzed
in some detail.
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C. A first analysis of IEVdreaming

As a first approach, imagine removing step 5 of the
iterative process, and simply setting the diagonal to zero
after the for cycle. The resulting J reads

JD
ij =

N∑
µ=1

ζµi ζ
µ
j

(
λµ − ϵ

D∑
d=1

δud
µ

)
+ ϵ

D∑
d=1

(ζud
i )2δij

=

N∑
µ=1

ζµi ζ
µ
j

(
λµ − ϵ

D∑
d=1

δud
µ

)
+ ϵ

D∑
d=1

⟨(ζud
i )2⟩δij+

+ ϵ

D∑
d=1

[
(ζud

i )2 − ⟨(ζud
i )2⟩

]
δij ,

(6)
where the average ⟨(ζud

i )2⟩ is computed over the statis-
tics generated by the choice of the eigenvector uD to
be dreamed at each step, given the realization of dis-
order (i.e. the value of the eigenvectors ζµi ). Since the
eigenvectors of a Wishart matrix are isotropically dis-
tributed on the (N −1)-dimensional sphere, one has that
⟨(ζud

i )2⟩ = 1/N . The result is then

JD
ij ≃

N∑
µ=1

ζµi ζ
µ
j (λµ − ϵ dµ) + ϵ

D

N
δij + ηij , (7)

where dµ =
∑D

D=1 δ
uD
µ and ηij is a diagonal random ma-

trix

ηij ≡ ϵ

D∑
d=1

[
(ζud

i )2 − ⟨(ζud
i )2⟩

]
δij . (8)

The first two terms preserve the eigenvectors of J . The
η correction changes both the eigenvectors and eigenval-
ues of the coupling matrix, and assuming that η is small
enough, we can compute those changes perturbatively.
In particular, the degenerate eigenspace corresponding
to the low eigenvalue plateau will be split by corrections
λ → λ+ δλi, i = 1, ..., N − P given by the N − P eigen-
values of the matrix

Aµν ≡ ζµ⊤ηζν , µ, ν = 1, ..., N − P , (9)

where the eigenvectors all belong to the low eigenvalue
degenerate plateau (any orthonormal set of eigenvectors
is equivalent). In the thermodynamic limit, the impact
of η on J becomes negligible, as shown in fig. 5. The x-
axis represents N . The y-axis represents the eigenvalues
of the A matrix eq. (9) divided by the absolute height of
the low plateau. In the thermodynamic limit, all curves
tend to zero, showing that the corrections become neg-
ligible compared to the low plateau value. Some insight
into this behavior can be gained by considering the statis-
tics of the diagonal element of η. Their average is zero,
by definition. If the ξµi involved in eq. (8) were a finite
number, they could be treated as i.i.d. normal variables
N (0, 1/N), and the statistics of η could be heuristically

FIG. 5. Dispersion of the corrections to the low plateau eigen-
values, divided by the low plateau eigenvalue, at Dtop, as a
function of N, for different values of α. As the system size is
increased, the corrections become negligible compared to the
low plateau eigenvalue.

understood as proportional to a χ2 distribution, whose
variance scales as 1/N (this is not exact, since not ev-
ery eigenvector is dreamed the same number of times).
Since we are dreaming an extensive number of eigenvec-
tors, the ξµi are not independent (for one thing, they are

constrained by normalization
∑N

µ=1 ξ
µ
i = 1). Intuitively

though, this has the effect of reducing the variance of ηii.
Hence, the χ2 distribution is an upper bound for the size
of η, going to zero. Given this, the dreaming procedure
is described by the simple update rule

JD
ij ≃

N∑
µ=1

ζµi ζ
µ
j (λµ − ϵdµ) + ϵ

D

N
δij . (10)

This algorithm is very inexpensive from the computa-
tional point of view, since one does not need to compute
eigenvectors multiple times.
Whether the correction to the diagonal elements of J

is carried out at each step of the algorithm or at the end,
affects the choice of the eigenvector that gets dreamed:
if the correction is carried out at the end, the negative
degenerate plateau will quite soon be higher in abso-
lute value than the high plateau (we call this inversion).
Then, the algorithm will start selecting eigenvectors from
the low plateau, which are orthogonal to the memories,
having no effect on the stabilities. On the other hand, the
choice in algorithm 3 reproduces the qualitative behavior
of HU in an analytically simple setting, since taking out
the diagonal at each step decreases the absolute value
of the low negative plateau while increasing the absolute
value of the positive plateau, delaying the inversion.

IV. ALGORITHM PERFORMANCE

In fig. 6 we show representative examples of the evolu-
tion of ∆min according to the different dreaming proce-
dures. The newly introduced algorithms have very simi-



5

FIG. 6. Evolution of ∆min while iterating different dreaming
procedures, for some α values. N = 400, ϵ = 0.001. Dtop is
indicated by a cross, Dinv is indicated by a dot. The new algo-
rithms have very similar performances before Dinv, indicating
the IEVdreaming is indeed a good model of EVdreaming.

lar performance before the inversion point Dinv (marked
by circles on the curves in fig. 6). This also indicates that
the IEVdreaming is indeed a good model of EVdreaming.
They also display the same qualitative behavior as HU. In
fig. 6, crosses on the curves indicate when the algorithms
start dreaming for the first time the lowest eigenvalue
of the high portion of the ranked spectrum. This con-
dition corresponds to the highest portion of the ranked
spectrum becoming a plateau. In our new procedures
this instant is very close to Dtop. After Dtop, IEV and
EV display a plateau in the stability curve, which lasts
until the inversion point, marked by dots in the curves.
After the inversion point, which experimentally happens
first in EVdreaming, EV and IEV display different be-
haviors, since the procedure becomes very sensitive to
the eigenvectors dreamt. The behavior of IEV dreaming
is detailed in section V.

In fig. 7 we compare the different algorithms in terms
of the retrieval mapping, at d = Din, where the per-
formance is optimal. The quantitative differences in the
∆min profile between the algorithms are reduced to vir-
tually no difference, when the retrieval mapping is con-
cerned. Below the critical load wide basins of attractions
are produced around the memories.

Defining the critical capacity of an algorithm αc as the
highest load such that ∆min > 0 is reached before Dinv,
we find αIEV d

c ∼ 0.57 and αEV d
c ∼ 0.55, to be compared

with αHU
c ∼ 0.59.

V. ANALYTICAL CHARACTERIZATION OF
IEVDREAMING

In the case of IEVdreaming, both the values of Dtop

and Dinv can be computed analytically. Let us define
by λl(D) the height of the low plateau, by λ1−α(D) the
height of the lowest eigenvalue in the high part of the
ranked spectrum, and by δ(D) the distance between the

FIG. 7. Retrieval mapping for the various dreaming proce-
dures, at D = Din, where attraction basins are the largest.
N = 400, α = 0.4, ϵ = 0.01. Different curves coincide, sug-
gesting that our new dreaming procedures capture the essence
of HU.

FIG. 8. Evolution of the ranked spectrum during IEVdream-
ing

high plateau and λ1−α(D) (see fig. 8). Before dreaming,
one has

λl(0) = −α (11)

λ1−α(0) = 1− 2
√
α (12)

δ(0) = 4
√
α . (13)

At each dream, the change in the ranked spectrum con-
sists of an increase of every eigenvalue due to the resetting
to zero of the diagonal elements of J , and a decrease of
the dreamed eigenvalue, as per eq. (10). Prior to Dtop,
i.e. before the high part of the ranked spectrum is com-
pletely flattened into a plateau, the evolution of the spec-
trum can be characterized by:

λl(D) = λl(0) +
ϵD

N
(14)

λ1−α(D) = λ1−α(0) +
ϵD

N
, (15)

while δ(D) can be determined numerically, noting that
the area A(D) is

A(D) =
ϵD

N
. (16)
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FIG. 9. Comparison between analytical estimate and simu-
lations for Dinv and Dtop as a function of α. Parameters for
the simulations are N = 1000, ϵ = 0.001. The agreement is
excellent, as finite size effects are already small at this size.

Similar geometrical reasoning for D > Dtop leads to even
simpler equations:

λl(D) = λl(Dtop) +
ϵ(Dtop −D)

N
(17)

λ1−α(D) = λ1−α(Dtop) +
ϵ(Dtop −D)

N

(
1− 1

α

)
(18)

δ(D) = 0 . (19)

Given these relations, Dtop and Dinv are determined by

δ
(
Dtop

)
= 0 (20)∣∣λl(Dinv)
∣∣ = ∣∣λ1−α(Dinv) + δ(Dinv)

∣∣ . (21)

These theoretical results for Dtop and Dinv are compared
to the results of the numerical simulations in fig. 9, with
excellent agreement.

In IEV dreaming, the evolution of the stabilities is de-
termined exclusively by the evolution of the spectrum of
J , since the eigenvectors do not change.

∆µ
i = ξµi

∑N
ν=1 λνζ

ν
i w

µ
ν√∑N

ν=1 (λνζνi )
2
, (22)

where wµ
ν are the coordinates of the memories in the basis

of the eigenvectors

wµ
ν ≡ (ζν · ξµ) . (23)

After Dtop, when the spectrum is composed by two
plateaus P±, this expression simplifies to

∆µ
i = ξµi

∑
ν∈P+

ζνi w
µ
ν√∑

ν∈P+
(ζνi )

2
+
(

λl(D)
λ1−α(D)

)2∑
ν∈P−

(ζνi )
2

,

(24)
which is constant (after Dtop) as a consequence of
eqs. (17) and (18). This explains the plateaus in fig. 6.

For α < 0.5, one has Dinv = P/ϵ, and λl(Dinv) =
λ1−α(Dinv) = 0. This means that atDinv we have J = 0.
In numerical simulations, given the finite value of ϵ, this
never happens. Instead, from Dinv the network dreams
every eigenvector of the high plateau, making it smaller
than the low plateau, and then every eigenvector in the
low plateau. Over N dreams, all eigenvectors have been
dreamed once. Thus, each eigenvalue is decreased once
by −ϵ and increased N times by ϵ

N , restoring it to the
initial value. This reflects in a periodic behavior of ∆min,
which oscillates (see fig. 6). For α > 0.5, on the other
hand, the inversion happens with well separated plateaus
λl(Dinv) < 0 < λ1−α(Dinv). Hence, around Dinv, when
the high plateau and the low plateau become closer than ϵ
in absolute value, the network starts dreaming one eigen-
vector of the low plateau. At each dream, the corre-
sponding eigenvalue is made even smaller, i.e. bigger in
absolute value, and the network gets stuck dreaming it
repeatedly. Asymptotically, this eigenvector (orthogonal
to the memories) dominates the coupling matrix, leading
again to zero stability without oscillations (see fig. 6).

VI. CONCLUSIONS

In this paper we unveiled an interesting feature of Heb-
bian Unlearning, namely the fact that eigenvectors of the
coupling matrix do not change significantly during the
algorithm, and the improvement in recognition perfor-
mance is mostly due to a modification of the spectrum.
Starting from this observation, we have proposed two
new effective unlearning algorithms: Eigenvector dream-
ing and Initial Eigenvector dreaming, which emphasize
the splitting of the learning problem into a trivial eigen-
vector evolution and a non-trivial spectrum evolution.
IEVdreaming is the simplest algorithm, being computa-
tionally efficient and easy to control analytically. IEV-
dreaming turns out to give a very good description of
EVdreaming, and a qualitatively good description of HU.
Finally, in our new algorithms, we found a strong corre-
lation between the moment when lowest eigenvalues of
the high plateau starts being dreamed, and the moment
when the algorithm stops increasing the minimum sta-
bility ∆min. This correlation, which follows from simple
analytical arguments in the case of IEV dreaming, is also
present, to a lesser extent, in HU.
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