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 lMarc Mézard – École normale supérieure, PSL University – DOI: https://doi.org/10.1051/epn/2022103

Spin glasses are useless. Even the most imaginative physicists, submitted to grant 
pressure, could not find applications for these materials. Yet their study, triggered  
by pure intellectual interest, has created a formidable new branch of statistical physics 
distinguished this year by the Nobel prize attributed to Giorgio Parisi. 

S
everal decades after being deciphered, the spin 
glass mystery has found applications in many 
other fields, from protein folding to computa-
tional neurosciences, information theory, eco-

nomics theory, signal processing or machine learning. 
All of these problems are described by large dimen-

sional complex energy landscapes, in which one seeks 
low energy configurations. These optimization tasks 
are particularly challenging because of the very large 
dimensionality. This is precisely the “thermodynamic 
limit” where spin-glass based approaches bring new con-
cepts for analyzing the landscape and its phase transi-
tions, ideas of new algorithms and methods to analyze 
their performance.

Spin glass as an archetypical 
optimization problem
About fifty years ago, the attention of a few physicists 
was drawn to the anomalous magnetic response of some 
special magnetic alloys like Cu-Mn, in which the mag-
netic moments of Mn interact by pairs through random 
exchange couplings which can be ferromagnetic or anti-
ferromagnetic, depending on their distance. Specifically, 
two magnetic moment si and sj described as Ising spins 
taking values ± 1, have an interaction energy -Jij si sj. If the 
coupling Jij is positive, the low energy configurations are 
those with parallel spins (ferromagnetic situation), if it 
is negative, the energy is lower when they are antiparallel 
(antiferromagnetic). In a spin glass, where both types of 
interactions are present, finding the lowest energy con-
figuration, the “ground state”, among the 2N configura-
tions of N spins is very hard. It is in fact an example of a 
so-called NP-hard problem: there is no known algorithm 
that can find the ground state in a computer time grow-
ing like a power of $N$, all known algorithms are expo-
nential (and all algorithms are exponential if the famous 

conjecture P≠NP is correct). Physically, the relaxation 
time of spin glasses increases very rapidly when lowering 
the temperature, and in the spin-glass phase one cannot 
reach equilibrium.

Searching the ground-state is one of the many chal-
lenges of spin glasses. One also wants to understand what 
are the properties of spin configurations when the sys-
tem is at equilibrium at a finite temperature, what type of 
random order sets-up in the low temperature spin-glass 
phase, and what is the nature of the phase transition.

BOX 1: MESSAGE PASSING ALGORITHMS

Mean field methods go back to more than a century ago, with the 
work of Pierre Weiss to understand the basic mechanism of ferro-
magnetism. In the last two decades it has been found how to write 
mean field equations, called in this context belief propagation or BP 
equations, for a very broad class of constraint satisfaction problems. 
These are problems in which N variables interact by groups of K: the 
joint probability distribution of the N variables is expressed as a prod-
uct of factors, each involving K variables. The correlation structure 
is best understood in terms of a factor graph (see Fig. 1). In the ther-
modynamic limit N→∞ at fixed K), the mean field equations can be 
written as messages passed between the vertices of the graph, from 
variable to facto and from factor to variable. Solving them iteratively 
provides a new class of powerful algorithms, based on. 

! FIG. 1: Left: an example of a factor graph: the probability law of the four variables is written 
as a product of 4 factors: P(x1,x2,x3,x4)=Ψa(x1,x2, x4) Ψb(x2,x3,x4) Ψc(x1,x2,x3) Ψd(x1,x3,x4). Middle: 
the message m1→a is the probability of x1 if the factor a is absent. Right: the message mc→1 
is the probability of x1 if it is connected only to c. The BP equations relate these various 
messages, the message going out from a node being computed from the incoming message. 
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temperature each spin tends to point in a favorite direc-
tion, and the local magnetization mi of spin i, the expecta-
tion value of si, is non-zero. But the magnetizations mi are 
all distinct. One can thus aim at finding all the mi. At the 
mean-field level one can write self-consistent equations that 
relate all these magnetizations, called “TAP equations” [3]. 
If they can be solved efficiently, this provides an algorithm. 

The third main challenge is the multiplicity of states: there 
actually exist many ways in which the spins can freeze. A 
more macroscopic order parameter considers all the pos-
sible spontaneous orders of spins (all solutions of the TAP 
equations) and provides a statistical description of how they 
differ. This geometry of the space of solutions is the one that 
is encoded in the famous replica solution of Parisi. The pre-
cise link between this macroscopic order parameter and the 
microscopic magnetizations of TAP was understood through 
the cavity method [2] which also opened the way to rigorous 
mathematical proofs of the validity of the Parisi solution [4].

Optimizing with spin glass methods
It was soon realized that the new statistical mechanics of 
disordered systems developed for spin glasses might have 
applications in many different fields [2]. In fact, large-size 
systems of many “atoms” (in the Greek sense) interact-
ing with disordered potentials are ubiquitous in science, 
including social sciences. In the theory of optimization 
problems, phase transitions have now become an im-
portant chapter, and the theoretical methods invented in 
spin glass theory, mostly the replica and cavity method, 
provide very useful tools for their analysis.

In parallel, the development of appropriate mean-field 
equations for glassy systems with short-range interactions 
[2,5] has opened the way to powerful new types of mes-
sage passing algorithms, which have become important 
in information theory and signal processing. They pro-
vide a fast and distributed way of estimating the marginal 
probability of each variable. In the general case they rely 
on a mean-field type of approximation that neglect some 
correlations, but in some well-designed problems like 
those appearing in information theory, they can become 
exact in the relevant limit of large-size systems.

The three phases of constraint 
satisfaction problems
One remarkable example of fruitful interactions concerns 
constraint satisfaction problems [5,6]. Deciding the satisfia-
bility of a Boolean formula is a NP-hard optimization prob-
lem, actually it is at the root of the theory of NP-hardness.  
In random satisfiability problems, where the clauses are gen-
erated randomly, one finds a phase transition in the ther-
modynamic limit N,M→∞, keeping the ratio of clauses to 
variables, α=M/N, fixed. Spin-glass based methods [7] al-
lowed to precisely locate this phase transition which sep-
arates a regime of low density of constraints, α<αs where 
almost all problems have a solution from a regime α>αs 

Disordered systems:  
a new chapter of statistical physics 
This spin-glass mystery was solved at the beginning of 
the eighties [1,2]. Its solution required three major con-
ceptual developments of statistical physics.

The first one is taming the disorder. In order to describe 
a given sample of a spin glass, one should give you the val-
ues of interaction couplings between all pairs of spins. If the 
interactions are short range, the number of such couplings 
is proportional to the number of spins, which is of the order 
of Avogadro’s number N. In more general mathematical 
versions with long range interactions the number of cou-
plings grows like N2. In both case the detailed description 
of a sample is impossible. Fortunately, the experimental 
behavior of spin glasses, like their magnetic response to 
an external field, or their specific heat, does not depend 
on all these details: all samples of Cu-Mn with 1% of Mn 
atoms behave the same, provided they are well prepared. 
Mathematically, one introduces ensembles of spin glasses, 
like the one where all couplings are sampled independently 
from a gaussian distribution, and one proves that in the 
large-size limit all samples have the same thermodynamic 
behavior. Yet, all samples are microscopically distinct, and 
have a distinct ground-state, which is NP-hard to find, 
which means impossible in practice even for systems of 
moderate sizes with a few thousands spins.

The second challenge was to identify the right order 
parameters for describing the spin-glass order. At low 

BOX 2: KSATISFIABILITY

A K-SAT formula is a conjunction (an AND function) Φ=C1  ̂C2^…^ CM  
of M clauses, where each clause is a disjunction (an OR) of K 
Boolean variables x1,…,xN or their negation. For instance, the clause  
C=x1

^x2$ is TRUE unless x1 and x2 are FALSE. Formula Φ is satisfiable 
if and only if there exist an assignment of variables that satisfy all 
the clauses, this is then called a solution of the satisfiability prob-
lem. In random K-SAT, one wants to satisfy M= αN clauses, each 
involving K variables randomly chosen or their negation. 

! Fig.2 : The phase diagram of random K-SAT. When the density of constraints α increases, one 
goes from a low-constraint “EASY” phase where the space of solutions is connected (one can 
move from one solution to the next by flipping one variable at a time), to an intermediate 
“HARD” phase where the solution space is shuttered into many pieces very far away from 
each other. At high constraint density, there are no solutions. αs is the “SAT-UNSAT” phase 
transition, while αc is a geometrical phase transition where efficient algorithms get stuck.
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where almost all problems have no solution. But the most 
surprising result obtained from the spin-glass analysis is the 
existence of another phase transition at a value αc<αs due to 
a major change in the geometry of the space of solutions. 
In a generic random satisfiability formula with a density of 
constraints α<αc all the (exponentially many in absolute, 
but exponentially rare with respect to the full space) solu-
tions build a connected cluster, and one can jump from one 
solution to the next by changing the assignment of one well 
chosen variable. Instead, in the intermediate range αc<α<αs 
the space of solution is shattered into many disconnected 
clusters, which are well separated from each other. 

Importantly, this clustering transition of the geometry 
of solution space is correlated with the practical difficulty 
of finding fast algorithms for solving random satisfiability 
formulas. When α<αc the space of solutions is connected 
and there exist algorithms (for instance those based on 
mean-field equations) that are able to find a solution in 
polynomial time: the generic problem is easy. In the inter-
mediate regime αc<α<αs we know that there exist solutions, 
but the algorithms able to find them (like the enumeration 
of all the 2N possible assignments of the variables) take 
an exponential time : the generic problem is in-principle 
solvable, but it is hard from the computational point of 
view: in practice we have no efficient algorithms. When 
α>αs there are no solutions. 

Towards a physical theory  
of algorithmic complexity?
This pattern with three phases, in which the solution of a 
constraint satisfaction problem is easy at low constraint 
density, then becomes algorithmically hard in an inter-
mediate regime, and impossible in the high constraint 
density phase, has been found in many optimization 
problems. It is generally associated with a sudden shat-
tering transition of the space of solutions. In physics lan-
guage, the spin glass models which have this property are 
the one with a discontinuous glass transition (sometimes 
called “one step replica symmetry breaking” transition). 
The existence of well separated clusters of solutions is now 
seen as a possible reason from algorithmic hardness, and 
opens interesting routes for new approaches to algorith-
mic intractability [8]. In contrast to the standard classi-
fication of problems as P versus NP which is based on a 
worst-case analysis, this new construction will deal with 
“typical case” complexity, namely what happens in almost 
all instances generated from some given distribution.  

A lesson
From the original magnetic anomaly in some “useless” al-
loys to its numerous applications in optimization and in so 
many other fields that I could not describe here, it has been 
a long way. This story shows once again that interesting re-
search initially driven by pure intellectual interest can find 
fascinating developments in totally unexpected areas. n  


