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What is inference? Brain, deduction, reasoning, 
learning…

Psychology : inference = production of new 
internal representations on the basis of 
previously held representations 
eg : - perceptions         expectations       action
       - conceptual thinking
Not necessarily conscious (while reasoning is)

see eg Mercier Sperber 2011



Urn with 10.000 balls. Draw 100, find 70 white balls and 30 black

Best guess for the composition of the urn? How reliable? Probability 

that it has 6000 white- 4000 black?

Infer a hidden rule, or hidden variables, from data.
Restricted sense : find parameters of a probability distribution

If only black and white balls , with fraction      of white, 

probability to pick-up 70 white balls is 

x✓
100

70

◆
x70(1� x)30

Log likelihood of     :x L(x) = 70 log x+ 30 log(1� x)

Maximum at x⇤ = .7 Probability of .6 : eL(.6)�L(.7)

StatisticsWhat is inference?



Bayesian inference

Unknown parameters x

Measurements y
Prior P (x)

Likelihood P (y|x)

Posterior P (x|y) = P (y|x)P (x)

P (y)
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What is inference?

Find a machine that reads handwritten digits…

Artificial intelligence, 
machine learning

5

…inferring its parameters from examples



MNIST database : 70,000 images of digits, segmented,  
28     28 pixels each, greyscale. Known output 
(supervised learning)

⇥
�6



What is inference?

« Neural network » : artificial neurons

Artificial intelligence, 
machine learning

5



y = f(w0 + w1x1 + w2x2 + w3x3)

x3

x1

x2 y

w1

Formal neural network

�8



What is inference?

Machine with  hundreds of thousands of  parameters, 
trained on very large data base: infer the parameters from 
data (supervised learning)

Artificial intelligence, 
machine learning

5



What is inference? Information theory, 
communication, signal 
processing

Information 
transfer : error 
correction by the use 
of redundancy
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Decoding is an
 inference process



Statistical inference
Challenge = rules with many hidden parameters. eg : 
machine learning with large machine and big data, decoding 
in commonication,…
x = (x1, . . . , xN ) N � 1

Many measurements y = (y1, . . . , yM ) M � 1

Measure of the amount of data ↵ = M/N

Prediction on the quality of inference, on the 

performance of the algorithms, on the type of situations 

where they can be applied

Algorithms



Bayesian inference with many unknown 
and many measurements

Unknown parameters 
Measurements

Factorized prior

x = (x1, . . . , xN )

y = (y1, . . . , yM )

Independent measurements 
Often (but not necessarily):

P (y|x) =
Y

µ

Pµ(yµ|x)

P 0(x) =
Y

i

P 0
i (xi)

Posterior P (x) =
1

Z(y)

 
Y

i

P 0
i (xi)

!
exp

"
�
X

µ

Eµ(x, yµ)

#

Eµ(x, yµ) = � logPµ(yµ|x)

Bayesian inference

P (y|x)
P 0(x)

P (x|y) / P (y|x)P 0(x)

Prior 



Bayesian inference with many unknown 
and many measurements

P (x) =
1

Z(y)

 
Y

i

P 0
i (xi)

!
exp

"
�
X

µ

Eµ(x, yµ)

#

Eµ(x, yµ) = � logPµ(yµ|x)

Statistical mechanics.

✦Discrete or continuous variables xi

✦Interactions through                      can bee�Eµ(x,yµ)

•pairwise : 

•multibody

« Spin glass »
✦Disordered system, ensemble

i

µ

✦Thermodynamic limit, phase transitions

Eµ = Jµxi(µ)xj(µ)



Spin glasses

• Disordered magnetic systems

i

jJ ij

e.g.:  CuMn

E = �
X

i,j

Jijsisj
si = ±1

P (s1, . . . , sN ) =
1

Z
e�E/T



Spin glasses

• Disordered magnetic systems

i

jJ ij

e.g.:  CuMn

➡ Each spin ‘sees’ a different local field

E = �
X

i,j

Jijsisj
si = ±1

P (s1, . . . , sN ) =
1

Z
e�E/T



Phase transition with many states: 
spin glasses

• Many atoms, microscopic interactions are 
known, “disordered systems”

i

jJ ij

e.g.:  CuMn

➡ Each spin ‘sees’ a different local field
➡ Low temperature: frustration

J<0 J<0

J<0

? or ?
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Phase transition with many states: 
spin glasses

➡ Each spin ‘sees’ a different local field
➡ Low temperature: frustration
➡ Spins freeze in random directions
➡ Difficult to find min. of E

J<0 J<0

J<0

? or ?

  Useless, but thousands of papers...

Energy

Configurations

Spin glass

Many quasi-ground 
states unrelated by 
symmetries, many 
metastable states

Slow dynamics, aging



Inference, spin-
glass and crystal:  
tomography of 
binary mixtures 

Measurements
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      angles: L

L2 measurements
L2 pixels



 Tomography 
of binary 
mixtures 

      angles: L

L2 measurements
L2 pixels

If the size of domains is      pixel: possible to 
reconstruct with           measurements
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Tomography of 
binary 

mixtures 

If the size of domains is      pixel: possible to 
reconstruct with           measurements

�
⌧ L2

This picture, digitalized on 
                   grid, can be1000⇥ 1000

reconstructed fom 
measurements with 

angles16

Gouillart et al.,
Inverse problems 2013Compressed 

sensing



{si}Prior knowledge on       : 
neighboring pixels more 
likely to be equal

yµ =
X

i2�µ

si

Studied with 
mean-field

µ



{si}Prior knowledge on       : 
neighboring pixels more 
likely to be equal

yµ =
X

i2�µ

si

Studied with 
mean-field

µ

P (S) =
Y

ij2grid

eJsisj
Y

µ

�

0

@yµ,
X

i2@µ

si

1

A

measurement prior



P (S) =
Y

ij2grid

eJsisj
Y

µ

�
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@yµ,
X

i2@µ

si

1

A

If enough measurements:  The most 
probable S (the ground state) gives 
the perfect composition of the 
sample. 

« Crystal » : much more probable

But in some cases « crystal hunting » 
may be computationally very hard !



P (S) =
Y

ij2grid

eJsisj
Y

µ

�

0

@yµ,
X

i2@µ

si

1

A

If enough measurements:  The most 
probable S (the ground state) gives 
the perfect composition of the 
sample. 

« Crystal » : much more probable

But in some cases « crystal hunting » 
may be computationally very hard !

Energy

Configurations

Energy

Configurations

Spin glass with crystal



Inference with many unknowns : 
« crystal hunting » with mean-field 

based algorithms



Historical development of mean field equations :

- In homogeneous ferromagnets:
• Weiss (infinite range, 1907)
• Bethe Peierls  (finite connectivity, 1935)                       

- In glassy systems:
• Thouless Anderson Palmer 1977, 
• M. Parisi Virasoro 1986 (infinite range)
• M. Parisi  2001 (finite connectivity)                       

- As an algorithm:

• Gallager 1963
• Pearl 1986
• M. Parisi Zecchina 2002
• Kabashima 2003, 2008
• Donoho Bayati Montanari 2009
• Rangan 2010
•  Krzakala M. Zdeborova 2012 …                    



BP = Bethe-Peierls = Belief Propagation

1

2

3

4

5

a

b

c

d

ef

g

P (x1, · · · , x5) = �a(x1, x2, x4)�b(x2, x3) · · ·



BP equations

1

2

3

4

5

a

b

c

d

ef

g

Probability of         in the 
absence of a: 

x1

m1�a(x1)

First type of messages:
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Probability of        when it 
is connected only to      :

x1

mc�1(x1)

c

BP equations

Second type of messages:
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x1,x3

�c(x1, x2, x3)m1�c(x1)m3�c(x3)

BP equations
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�

x1,x3

�c(x1, x2, x3)m1�c(x1)m3�c(x3)

m1�c(x1) = Cmd�1(x1)me�1(x1)mf�1(x1)

BP equations
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along the edges, update 
messages at vertices, 
using elementary local 
probabilistic rules
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g

Propagate messages 
along the edges, update 
messages at vertices, 
using elementary local 
probabilistic rules

mg!3(x3)

m3!g(x3)

BP equations

Closed set of equations: two messages  
“propagate” on each edge of the factor graph. 



When is BP exact?

Fluctuations are handled correctly, but beware of correlations 

•Exact in one dimension (transfer matrix 
= dynamic programming)

•Exact on a tree (uncorrelated b.c)
•Exact on locally tree-like graphs (Erdös 

Renyi etc.) if correlations decay fast 
enough (single pure state) and 
uncorrelated disorder

•Exact in infinite range problems  if 
correlations decay fast enough (single 
pure state) and uncorrelated disorder

2

m1�c(x1) = Cmd�1(x1)me�1(x1)mf�1(x1)

mc�2(x2) =
�

x1,x3

�c(x1, x2, x3)m1�c(x1)m3�c(x3)

1
d

e
f

3

c

a

Loop length 
O(logN)

m1�c(x1) = Cmd�1(x1)me�1(x1)mf�1(x1)

mc�2(x2) =
�

x1,x3

�c(x1, x2, x3)m1�c(x1)m3�c(x3)



1) The special case of infinite-range models

Two important developments

2) What happens in a glass phase, when there are many pure 
states, and therefore many solutions ?



Infinite range models

…

…

…

i

µ mi!µ(xi) =
Y

⌫( 6=µ)

m⌫!i(xi)

Mi(xi) =
Y

⌫

m⌫!i(xi)

Small difference, treated 
perturbatively
Mean-field equations can be 
written only in terms of site 
pdfs:                . TAP, AMP…Mi(xi)

Hi =
X

k

Jki tanh(�Hk)� � tanh(�Hi)
X

k

J
2
ki[1� tanh2(�Hk)]

t+ 1 t t� 1 t� 1

eg TAP equations for spin glasses:
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2) What happens in a glass phase, when there are many pure 
states, and therefore many solutions ?

Loop length O(logN)

BP equations

Correct if, in absence of the i-j 
interaction, the correlations 
between       and       can be 
neglected.

`k
1

d

e
f

3

c

a

mi!µ(xi) =
Y

⌫( 6=µ)

m⌫!i(xi)



2) What happens in a glass phase, when there are many pure 
states, and therefore many solutions ?

Loop length O(logN)

BP equations

Correct if, in absence of the i-j 
interaction, the correlations 
between       and       can be 
neglected.

`k

Energy

Configurations

Glassy phase: many states, 
many solutions of BP

mi!µ(xi) =
Y

⌫( 6=µ)

m⌫!i(xi)
↵ ↵

1
d

e
f

3

c

a

mi!µ(xi) =
Y

⌫( 6=µ)

m⌫!i(xi)



2) What happens in a glass phase, when there are many pure 
states, and therefore many solutions ?

Correct if, in absence of the i-j 
interaction, the correlations 
between       and       can be 
neglected.

`k

Statistics of 
over the many states ↵

related to 

Survey propagation
M Parisi Zecchina
2002

BP equations mi!µ(xi) =
Y

⌫( 6=µ)

m⌫!i(xi)

Energy

Configurations

Glassy phase: many states, 
many solutions of BP

mi!µ(xi) =
Y

⌫( 6=µ)

m⌫!i(xi)
↵ ↵

m↵
i!µ(xi)

Pi!µ(m)

P⌫!i(m)



Power of message passing algorithms

Approximate solution of very hard, and very large constraint 
satisfaction  problems, ...FAST! (typically linear time)

• BP: Best decoders for LDPC error correcting codes
• SP: Best solver of random satisfiability problems
• BP: Best algorithm for learning patterns in neural networks (e.g. 

binary perceptron)
• Data clustering, graph coloring, Steiner trees,  etc…
• Fully connected networks : TAP (=AMP). Compressed sensing, 

linear estimation, etc.

1

2

3

Local, simple update equations: 
Each message is updated using 
information from incoming 
messages on the same node. 
Distributed, solves hard global pb
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zµ =
X

i

Fµixi

yµ Pout(yµ|zµ)
Y

i

P (xi)

xi i = 1, . . . , N

An example of fully connected model: 
Generalized Linear Regression

Unknowns:

Linear combinations: µ = 1, . . . ,M

Outputs generated from

Prior factorized

Bayes

P (x|y) = 1

Z(y)

Y

i

P (xi)
Y

µ

Pout(yµ|
X

i

Fµixi)

Examples: tomography, linear regression, perceptron learning, 
compressed sensing…



Perceptron 
learning

yxi

Pattern 

P (x|y) = 1

Z(y)

Y

i

P (xi)
Y

µ

Pout(yµ|
X

i

Fµixi)

µ

Fµi

= �(yµ, Sign(zµ))Pout =

Linear regression:
Individual µ : expression of disease yµ

Value of factor      for individual     :i µ Fµi

Find the best weights of factors xi

Minimize mean square error with regularization
1

2

X

µ

(yµ �
X

i

Fµixi)
2 +

X

i

||xi||

= e�(yµ�zµ)
2/(2�)Pout

P (xi) = e�||xi||/�



Compressed sensing

P (x|y) = 1

Z(y)

Y

i

P (xi)
Y

µ

Pout(yµ|
X

i

Fµixi)

Unknown variables xi

Linear measurements yµ =
X

i

Fµixi + ⌘µ

= e�(yµ�zµ)
2/(2�)Pout

Compressed sensing regime : M < N

sparse prior (in appropriate basis)

P (xi) = (1� ⇢)�(xi) + ⇢�(xi)



P (x|y) = 1

Z(y)

Y

i

P (xi)
Y

µ

Pout(yµ|
X

i

Fµixi)

xi

P (xi)

Pout(yµ|zµ)

Fµi

: iid, known Fµi

Spin glass with multispin 
interactions, infinite range: write 
mean field equations. 

TAP equations written in terms 
of ai = hxii

ci = hx2
i i � hxii2

Iteration              algorithm : AMP

Statistical study            phase diagram         

M 1989, OW 96, K 
2003, K 2008 , DMM 
2009,  R2011,  
KMSSZ 2012     



Benchmark: noiseless limit of compressed 
sensing with iid measurements

System of linear measurements

y =

0

BB@

y1

.

.
yM

1

CCA

F = M ⇥N matrix

Signal
Measurements

Random F : «random projections» (incoherent with signal)

s =

0

BBBB@

s1
.
.
.
sN

1

CCCCA

Pb: Find when and is sparses M < N s

y = Fx

x1

xN

x x

x



y = Fx
Find a    - component vector      such that the       
equations                are satisfied and        is minimal

N x M

||x||

Phase diagram
N � 1

M = �N

R = �N

variables

equations
non-zero variables

«Thermodynamic limit»

Solvable by enumeration when ↵ > ⇢ but O(eN )

norm approach`1

AMP = Bayesian approach

P (x) =
NY

i=1

[(1� ⇥)�(xi) + ⇥⇤(xi)]
PY

µ=1

�

 
yµ �

X

i

Fµixi

!

�T (x)
1

Planted: 
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Zdeborova 2011

�T (x) =
1p
2⇡

e�x2/2 �T (x) =
1

2
(�x,1 + �x,�1)



Analysis of random instances : phase 
transitions

(real) variables,       measurements (linear functions)N M

Analysis of random instances : phase transitions
Reconstruction of signal using BP. Fixed    , decrease    ⇢ ↵

Easy Hard Impossible

N/M = 1/↵Algorithmic 
threshold

Ultimate 
(information 
theoretic) 
threshold



Easy

Crystal

Many glass 
states

Hard

Crystal

Impossible

Many « crystals »

N/M

Belief 
Propagation

«Seeded » BP
Not enough 
measurements

EE E

Dynamical phase transition. Ubiquitous in statistical 
inference. Conjecture « All local algorithms 
freeze »… How universal?



Getting around the glass trap: design the matrix F 
so that one nucleates the naive state (crystal 
nucleation idea, 
...borrowed from error correcting codes : « spatial 
coupling »)

Step 3: design the measurement matrix in 
order to get around the glass transition

Felström-Zigangirov, 
Kudekar Richardson Urbanke,
Hassani Macris Urbanke,
...

«Seeded BP»



Nucleation and seeding



Nucleation and seeding
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y F s

: unit coupling

: no coupling (null elements)

: coupling J1
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1

CCCCCCCCCCCCA
Structured 
measurement matrix. 
Variances of the 
matrix elements

Fµi = independent random Gaussian variables, 
zero mean and variance Jb(µ)b(i)/N
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L = 8

Ni = N/L

Mi = �iN/L

�1 > �BP

�j = �0 < �BP j � 2

� =
1

L
(�1 + (L� 1)�0)

Block 1 has a large value of 
M such that the solution arise 
in this block...

... and then propagate in the 
whole system!

s
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Performance of the probabilistic 
approach + message passing + 

parameter learning+ seeding matrix

Z =

Z NY

j=1

dxj

NY

i=1

[(1� ⇥)�(xi) + ⇥⇤(xi)]
MY

µ=1

�

 
yµ �

NX

i=1

Fµixi

!

‣Simulations
‣Analytic approaches 
(replicas and cavity)
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Reaches the ultimate information-theoretic threshold
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Easy

Many glass 
states

Hard Impossible
N/M

EE E

Phase transitions are crucial in large inference problems 
Hard-Impossible = absolute limit (Shannon-like) 
Easy- Hard = limit for large class of algorithms (local)
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A very sophisticated and powerful  corpus of conceptual 
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and has found applications in many different fields of 

information theory and computer science

Portrait of Ottavio Strada,

Tintoretto, Venice 1567

Rijk’s Museum Amsterdam





Efficient codes : parity checks 
(LDPC codes)

1 2 3

a b c

4 5 76

x1 + x4 + x5 + x7 = 0 (mod 2)
x2 + x4 + x6 + x7 = 0 (mod 2)
x3 + x5 + x6 + x7 = 0 (mod 2)

24

27

Add redundancy, with structure allowing to decode

codewords

among words

xi 2 {0, 1}

a :

c :

b :

Back to error correction
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Error decoding: « crystal hunting » 
inference problem

Spin glass problem with multispin interactions, 
discontinuous glass transition (1 step RSB)
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Spin glass problem with multispin interactions, 
discontinuous glass transition (1 step RSB)
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constraints

Spin glass problem with multispin interactions, 
discontinuous glass transition (1 step RSB)
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Error decoding: inference problem

One possible decoding algorithm: use belief-propagation 
mean-field equations relating the local fields 

Solve them iteratively (Gallager)
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Phase Transitions in Error correcting codes

1
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Prob
transmission

Noise level

Shannon

N �⇥

Shannon 1948 (random code ensemble)

MAP

Typical structured code ensemble (e.g. LDPC), 
with optimal decoding

Algo

Typical structured code ensemble , with fast BP-
based decoding algorithm

Geometrical phase 
transitions

Glass transition 
(proliferation of metastable states)
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Phase transitions in decoding

Probability of perfect 
decoding:
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Algo Max Prob Shannon
 = noise
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Hard Impossible

EE E

Noise

Phase transitions in decoding
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