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We study the problem of estimating the origin of an epidemic outbreak: given a contact network
and a snapshot of epidemic spread at a certain time, determine the infection source. This problem is
important in different contexts of computer or social networks. Assuming that the epidemic spread
follows the usual susceptible-infected-recovered model, we introduce an inference algorithm based
on dynamic message-passing equations and we show that it leads to significant improvement of
performance compared to existing approaches. Importantly, this algorithm remains efficient in the
case where the snapshot sees only a part of the network.
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I. INTRODUCTION

Understanding and controlling the spread of epidemics
on networks of contacts is an important task of today’s
science. It has far-reaching applications in mitigating the
results of epidemics caused by infectious diseases, com-
puter viruses, rumor spreading in social media and oth-
ers. In the present article we address the problem of
estimation of the origin of the epidemic outbreak (the
so-called patient zero, or infection source - in what fol-
lows, these terms are used alternately): given a contact
network and a snapshot of epidemic spread at a certain
time, determine the infection source. Information about
the origin could be extremely useful to reduce or prevent
future outbreaks. Whereas the dynamics and the pre-
diction of epidemic spreading in networks have attracted
a considerable number of works, for a review see [1–3],
the problem of estimating the epidemic origin has been
mathematically formulated only recently [4], followed by
a burst of research on this practically important prob-
lem [5–11]. In order to make the estimation of the ori-
gin of spreading a well-defined problem we need to have
some knowledge about the spreading mechanism. We
shall adopt here the same framework as in existing works,
namely we assume that the epidemic spread follows the
widely used susceptible-infected-recovered (SIR) model
or some of its special cases [12, 13].

The stochastic nature of infection propagation makes
the estimation of the epidemic origin intrinsically hard:
indeed, different initial conditions can lead to the same
configuration at the observation time. Finding an estima-
tor that locates the most probable origin, given observed
configuration, is in general computationally intractable,
except in very special cases such as the case where the
contact network is a line or a regular tree [4, 6, 11]. The
methods that have been studied in the existing works are
mostly based on various kinds of graph-centrality mea-
sures. Examples include the distance centrality or the
Jordan center of a graph [4–7]. The problem was gener-
alized to estimating a set of epidemic origins using spec-
tral methods in [8, 9]. Another line of approach uses

more detailed information about the epidemic than just
a snapshot at a given time [10]. Note, however, that
all the present methods are limited, for instance none of
them makes an efficient use of the information about the
nodes to which the epidemic did not spread.

In this paper we introduce a new algorithm for the es-
timation of the origin of an SIR epidemic from the knowl-
edge of the network and the snapshot of some nodes at
a certain time. Our algorithm estimates the probability
that the observed snapshot resulted from a given patient
zero in a way which is crucially different from existing
approaches. For every possible origin of the epidemic,
we use a fast dynamic message-passing method to esti-
mate the probability that a given node in the network
was in the observed state (S, I or R). We then use a
mean-field-like approximation to compute the probabil-
ity of the observed snapshot as a product of the marginal
probabilities. We finally rank the possible origins accord-
ing to that probability.

The dynamic message-passing (DMP) algorithm that
we use in order to estimate the probability of a given
node to be in a given state is interesting in itself. It
belongs to the class of message-passing algorithms that
includes the standard belief propagation (BP) method,
also known in different fields as cavity method or sum-
product equations [14, 15]. BP is a distributed tech-
nique that allows to estimate marginal probability distri-
butions in problems on factor graphs and networks, and
appeared to be very successful when applied to Bayesian
networks [16], error-correcting codes [17] and optimiza-
tion problems [18]. The BP equations are derived from
the Boltzmann-Gibbs distribution under the assumption
that the marginals defined on an auxiliary cavity graph
(a graph with a removed node) are uncorrelated, which
is exact if the underlying network is a tree (for a general
discussion, see [15]). From a numerical point of view,
the solution of the BP equations is obtained by iteration
until convergence.

The DMP equations can be derived be generalizing
BP to dynamic problems, using as variables in the cor-
responding graphical model the whole time trajectories
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of a given node, see e.g. [19, 20]. For general dynamics,
the complexity of the equations increases exponentially
with time, making it impossible to solve the dynamic
BP equation for the whole trajectory except for only few
time steps. However, crucial simplifications occur for the
models with irreversible dynamics, such as the random
field Ising model [21] and the SIR model, considered in
this paper. Indeed, the time trajectories in these models
can be fully parametrized with only few flipping times,
leading to important simplification of the corresponding
BP equations on trajectories. As a result, they can be
rewritten in terms of closed DMP equations, using dy-
namic variables that appear to be the weighted sums of
messages of the dynamic BP equations. In this work, we
present a more straightforward derivation that makes use
of arguments similar to those used in the cavity method
[15].

A precursor of DMP equations appeared in [22] in a
form averaged over initial conditions, which does not lend
itself to algorithmic use. Here we derive and use the
DMP on a given network for given initial conditions. If
averaged also over the graph ensemble, it can be used
to obtain the asymptotically exact dynamic equations
of [23, 24] for SIR, or those of [21] for avalanches in the
random field Ising model. Note that although DMP bares
some similarity with BP, it is crucially different in several
aspects: it is not directly derived from a Boltzmann-like
probability distribution, and it does not need to be it-
erated until convergence; instead the iteration time cor-
responds directly to the real time in the associated SIR
dynamics. A nice property that DMP shares with BP is
that it gives exact results if the contact network is a tree.
We use it here as an approximation for loopy-but-sparse
contact networks in the same way that BP is commonly
used with success in equilibrium studies of such networks.

We test our algorithm on synthetic spreading data and
show that it performs better than existing approaches
(except for a special region of parameters where the Jor-
dan center is on average better). The algorithm is very
robust, for instance it remains efficient even in the case
where the states of only a fraction of nodes in the network
are observed. From our tests we also identify a range of
parameters for which the estimation of the origin of epi-
demic spreading is relatively easy, and a region where
this problem is hard. Hence, our dataset can also serve
as a test-bed for new approaches.

II. SIR MODEL AND DYNAMIC
MESSAGE-PASSING EQUATIONS

A. Spreading model

The mathematical modeling of epidemic spreading is
a subject of growing interest because of its importance
for practical applications, such as analysis, evaluation
and prevention of consequences of epidemiological pro-
cesses. Percolation-like processes have been addressed

in a number of physics studies, in particular aiming at
understanding the role of the network topology on the
spreading results. The most popular and studied epi-
demiological models are susceptible-infected-susceptible
(SIS) and susceptible-infected-recovered (SIR) models.
The SIS model is used to model endemic diseases that
can be maintained in a population for a long time be-
cause of the reinfection of individuals. In the SIR model,
the infection can not persist indefinitely due to deple-
tion of susceptible agents, and the quantity of interest is
typically the fraction of population touched by the infec-
tion. The general properties and the phase diagram of
these models on random networks were studied in many
works, see e.g. [3] and references therein. In this paper,
we focus on the SIR model, corresponding to the irre-
versible dynamic process where the nodes that catch the
infection ultimately get either immunized or dead. The
real cases that fall into this category include diseases that
confer immunity to their survivors, or computer viruses
in a setting of a permanent virus-checking against attacks
of the same virus in a computer network.

The typical assumptions in the studies of the SIR dy-
namics on networks include the uniformity of the infec-
tion and recovery probabilities and the mass-action mix-
ing hypothesis, i.e. an assumption that in principle each
pair of individuals can interact, ignoring the actual topol-
ogy of the physical contacts. These assumptions allow
to write simple “naive” mean field differential equations
on the densities of susceptible, infected and recovered
nodes in the population, providing for a qualitative un-
derstanding of mechanisms and thresholds of epidemic
spreading and a rough fitting of some real epidemic data
[12, 13]. However, these assumptions are obviously un-
realistic since they do not account for heterogeneities in
contacts and transmission probabilities. A number of
recent investigations addressed these issues by consider-
ing more accurate settings, e.g. using random networks,
however, averaging over the graph ensembles or initial
conditions (for reviews see [3, 22, 25]). Still, most of
the studies on random graphs are limited to numerical
simulations or to the use of naive mean field equations,
which might be a crude approximation for some applica-
tions. In this paper, we study the SIR model on a given
graph. The dynamic equations that we use are exact for
locally tree-like networks; for real-world problems they
often provide a good approximation, allowing a better
determination of the infection source. Throughout this
work we study a static network of interacting individu-
als, although dynamically changing networks can also be
considered within our approach, see discussion below.

The SIR model is defined as follows. Let G ≡ (V,E) be
a connected undirected graph containingN nodes defined
by the set of vertices V and the set of edges E. Each
node i ∈ V at discrete time t can be in one of three
states qi(t): susceptible, qi(t) = S, infected, qi(t) = I, or
recovered, qi(t) = R. At each time step, an infected node
i will recover with probability µi, and a susceptible node
i will become infected with probability 1 −

∏
k∈∂i(1 −
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λkiδqk(t),I), where ∂i is the set of neighbors of node i,
and λki measures the efficiency of spread from node k to
node i. The recovered nodes never change their state.
We assume that the graph G and parameters λij , µi are
known (or have been already inferred).

B. Dynamic message-passing equations

Let us derive the dynamic message-passing equations
(DMP) for the SIR model that are used later in the in-
ference algorithm. In particular, we will show that the
probabilities of being susceptible/infected/recovered at a
given time t as provided by the DMP equations are exact
for all initial conditions and every realization of the trans-
mission and recovery probabilities λij and µi if the graph
of contacts is a tree. We define P iS(t), P iI (t) and P iR(t) as
the marginal probabilities that qi(t) = S, qi(t) = I and
qi(t) = R. These marginals sum to one and thus

P iI (t+ 1) = 1− P iS(t+ 1)− P iR(t+ 1). (1)

Since the recovery process from state I to state R is in-
dependent of neighbors, we have

P iR(t+ 1) = P iR(t) + µiP
i
I (t). (2)

The epidemic process on a graph can be interpreted
as the propagation of infection signals from infected to
susceptible nodes. The infection signal di→j(t) is defined
as a random variable which is equal to one with proba-
bility δqi(t−1),Iλij , and equal to zero otherwise. Consider
an auxiliary dynamics Dj where node j receives infec-
tion signals, but ignores them and thus is fixed to the S
state at all times. Since the infection cannot propagate
through node j in this dynamic setting, different graph
branches rooted at node j become independent if the un-
derlying graph is a tree. This is the natural generalization
of the cavity method used for deriving BP (see [15]) to
dynamic processes. Notice that the auxiliary dynamics
Dj is identical to the original dynamics D for all times
such that qj(t) = S. We also define an auxiliary dynam-
ics Dij in which the state of a pair of neighboring nodes
i and j is always S.

In order to obtain a closed system of message-passing
equations, we write the remaining update rules in terms
of three kinds of cavity messages, defined as follows. We
first define the message θk→i(t) as the probability that
the infection signal has not been passed from node k to
node i up to time t in the dynamics Di:

θk→i(t) = ProbDi

(
t∑

t′=0

dk→i(t′) = 0

)
. (3)

The quantity φk→i(t) is the probability that the infection
signal has not been passed from node k to node i up to
time t in the dynamics Di and that node k is in the state

I at time t:

φk→i(t) = ProbDi

(
t∑

t′=0

dk→i(t′) = 0, qk(t) = I

)
. (4)

Finally, P k→iS (t) is the probability that node k is in the
state S at time t in the dynamics Di:

P k→iS (t) = ProbDi (qk(t) = S) . (5)

In what follows, we prove that

P i→jS (t+ 1) = P iS(0)
∏

k∈∂i\j

θk→i(t+ 1), (6)

where ∂i\j means the set of neighbors of i excluding j.
Indeed, by definition

P i→jS (t+1) = ProbDj (qi(t+ 1) = S)

= P iS(0) ProbDj

 ∑
k∈∂i\j

t+1∑
t′=0

dk→i(t′)

 . (7)

Since the auxiliary dynamics Dij coincides with dynam-
ics Dj as long as node i is in the S state, we can write

P i→jS (t+ 1) = P iS(0) ProbDij

 ∑
k∈∂i\j

t+1∑
t′=0

dk→i(t′)

 .

(8)

Since different branches of the graph containing nodes
k ∈ ∂i\j are connected only through node i, they are
independent of each other, hence

P i→jS (t+ 1) = P iS(0)
∏

k∈∂i\j

ProbDij

(
t+1∑
t′=0

dk→i(t′)

)
.

(9)

Moreover, for nodes k ∈ ∂i\j, the dynamics Dij is equiv-
alent to the dynamics Di, so we can replace Dij by Di

in the last expression and hence, using the definition (3),
we obtain equation (6). We complete the updating rules
by writing the equations for θk→i(t) and φk→i(t). The
only way in which θk→i(t) can decrease is by actually
transmitting the infection signal from node k to node i,
and this happens with probability λki multiplied by the
probability that node k was infected, so we have

θk→i(t+ 1)− θk→i(t) = −λkiφk→i(t). (10)

The change for φk→i(t) at each time step comes from
three different possibilities: either node k actually sends
the infection signal to node i (with probability λki), ei-
ther it recovers (with probability µk), or it switches to
I at this time step, being previously in the S state (this
happens with probability Si→j(t− 1)− Si→j(t)):
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φk→i(t)− φk→i(t−1) = −λkiφk→i(t− 1)

−µkφk→i(t− 1) + λkiµkφ
k→i(t− 1)

+ Sk→i(t− 1)− Sk→i(t). (11)

The third compensation term on the right-hand side of
the previous equation has been introduced in order to
avoid double-counting in the situation when node k trans-
mits the infection and recovers at the same time step.

This completes the update rules for cavity messages.
These equations can be iterated in time starting from
initial conditions for cavity messages:

θi→j(0) = 1, (12)

φi→j(0) = δqi(0),I . (13)

The marginal probability in the original dynamics D is
obtained by including all the neighbor nodes k ∈ ∂i in
eq. (6):

P iS(t+ 1) = P iS(0)
∏
k∈∂i

θk→i(t+ 1). (14)

Let us summarize the closed set of recursion rules, given
by the combination of (1, 2, 6, 10, 11, 14):

P i→jS (t+ 1) = P iS(0)
∏

k∈∂i\j

θk→i(t+ 1), (15)

θk→i(t+ 1)− θk→i(t) = −λkiφk→i(t), (16)

φk→i(t) = (1− λki)(1− µk)φk→i(t− 1)

−[PS
k→i(t)− P k→iS (t− 1)]. (17)

The marginal probabilities that node i is in a given state
at time t are then given as

P iS(t+ 1) = P iS(0)
∏
k∈∂i

θk→i(t+ 1) , (18)

P iR(t+ 1) = P iR(t) + µiP
i
I (t) , (19)

P iI (t+ 1) = 1− P iS(t+ 1)− P iR(t+ 1) . (20)

Together with the initial conditions (12-13), these equa-
tions give the exact values of marginal probabilities
P iS(t), P iI (t) and P iR(t) on a tree graph. The algorith-
mic complexity of DMP equations for a given vertex i is
O(tNc), where c is the average degree of the graph.

It should be noted that equations reminiscent of (15-
20) were first derived in [22]. The authors of [22] treated
a more general SIR model where the transmission and re-
covery distributions are non-exponential. For this more
general case, no easily tractable form of the DMP is
known (by this we mean a Markovian form of the DMP,
where the probabilities at time t give the probabilities
at time t + 1 via a set of simple closed equations). The
equations in [22] were instead written in a convolutional
form that is rather complicated for numerical resolution.

The authors noticed that when recovery and transmis-
sion rates are constant, the equations simplify, but did
not write a version of the equations that is applicable on
a given graph for a given initial condition (actually they
only wrote equations averaged over a set of initial condi-
tions). Hence we find it useful to provide the derivation
of the DMP on a single graph in their simple iterative
form.

For the purpose of this paper we use the DMP on a
single instance of the contact network for a given initial
condition. However, if an ensemble of initial conditions
is given as well as an ensemble of random graphs with a
given probability distribution then one can write differen-
tial equations for the fraction of nodes that are suscepti-
ble/infected/recovered at a given time. These equations
were first derived by [23] and appeared also in [22] and
[24]. One should not confuse these averaged DMP equa-
tions with the “naive” mean field equations that are often
written for the SIR model under the assumption of per-
fect mixing, as discussed previously. Whereas the naive
mean field equations provide only a very crude approxi-
mation for the real probabilities, the equations of [23, 24]
are exact in the thermodynamic limit, N → ∞, as long
as, in the random graph ensemble, the probability that
a randomly-chosen node belongs to a finite-length loop
goes to zero in the large graph-size limit.

III. INFERENCE OF EPIDEMIC ORIGIN AND
DMP ALGORITHM

To define the problem of estimation of the epidemic
origin, we consider the case where, at initial time t = 0,
only one node is infected (the “patient zero”, i0), and all
others nodes are susceptible. After t0 > 0 time steps (t0
is in general unknown), we observe the state of a set of
nodes O ⊂ V , and the task is to estimate the location of
patient zero based on this snapshot, see Fig. 1.
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FIG. 1. (color online) An example of a single instance of
the inference problem on a random regular graph of degree
c = 4 with N = 40 nodes. The patient zero is labeled by P
and appears in the state R in the snapshot. The epidemic is
generated for λ = 0.5 and µ = 0.5, the snapshot is represented
at time t0 = 5.
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FIG. 2. (color online) A test of inference of the epidemic origin
on random regular graphs of degree c = 4, size N = 1000.
Inset: An epidemic is generated with recovery probability µ =
1, transmission probability λ = 0.6, a snapshot of all the
nodes is taken at time t0 = 8 (in this figure we assume we
know the value of t0), 242 nodes are observed to be in the I
or R state. The dynamic message-passing is used to compute
the energy of every node. This energy is finite for 43 nodes;
it is plotted as a function of their rank r. The true patient
zero is marked by a red cross, and its rank is r(i0) = 2 in this
case. Main figure: an epidemic generated with µ = 1, λ = 0.5,
t0 = 5. The histogram (over 1000 random instances) of the
normalized rank (i.e. the rank divided by the number of R
or I nodes in the snapshot) of the true patient zero is plotted
for the dynamic message-passing (DMP) inference, as well as
for the distance, rumor and Jordan centrality measures.

Let us briefly explain two existing algorithms [4, 6, 7]
that we will use as benchmarks. The authors of [4, 6, 7]
considered only the case when all the nodes were ob-
served, O = V . In appendix A we propose a generali-
sation of these algorithms to a more general case. The
most basic measure for node i to be the epidemic ori-
gin is the distance centrality D(i) which we define as
D(i) ≡

∑
j∈G d(i, j)

(
δqj ,I + δqj ,R/µj

)
, where the graph

G is a connected component of the original graph G con-
taining all infected and recovered nodes and only them,
and d(i, j) is the shortest path between node i and node
j on the graph G. The ad-hoc factor 1/µj is intro-
duced to distinguish recovered nodes that for small µj
tend to be closer to the epidemic origin. In the existing
works this factor was not present, because [4, 6] treated
only the SI model, and [7] considered that susceptible
and recovered nodes are indistinguishable. The authors
of [4, 6] suggested a “rumor centrality” estimator and
showed that, for tree graphs, the rumor centrality and
the distance centrality coincide. Another simple but well-
performing estimator, Jordan centrality J(i), was pro-
posed in [7] and corresponds to a node minimizing the
maximum distance to other infected and recovered nodes:
J(i) ≡ maxj∈G d(i, j). A node i where J(i) is minimal
is known as a ‘Jordan center’ of G in the graph theory
literature. Note that in [7] the Jordan center of only the

infected notes was used, hence our implementation uses
more information.

The core of the algorithm proposed in the present work
is DMP, explained in the previous section, which pro-
vides an estimate of the probabilities P jS(t, i0) (respec-

tively P jI (t, i0), P jR(t, i0)) that a node j is in each of
the three states S, I, R, at time t, for a given patient
zero i0. Let us first assume that the time t0 is known.
With the use of Bayes rule, the probability that node i
is the patient zero given the observed states is propor-
tional to the joint probability of observed states given
the patient zero, P (i|O) ∼ P (O|i). We also define an
energy-like function of every node E(i) ≡ − logP (O|i),
such that nodes with lower energy are more likely to be
the infection source. If one were able to compute P (O|i)
exactly, finding i which minimizes E(i) would be an op-
timal inference scheme of the patient zero. As there is no
tractable way to compute exactly the joint probability of
the observations, we approximate it using a mean-field-
type approach as a product of the marginal probabilities
provided by the dynamic message-passing

P (O|i) '
∏
k∈O

qk(t0)=S

P kS (t, i)
∏
l∈O

ql(t0)=I

P lI(t, i)
∏
m∈O

qm(t0)=R

PmR (t, i) . (21)

To estimate the value of t0, we compute the energy E(i, t)
for different possible values t, and choose the value that
maximizes the “partition function” Z(t) ≡

∑
i e
−E(i,t).

As mentioned previously, the algorithmic complexity for
computing the energy E(i) of a given vertex i (and there-
fore the probability that it is the epidemic origin) is
O(t0Nc), where c is the average degree of the graph.

IV. PERFORMANCE OF INFERENCE
ALGORITHMS

We first test our algorithm on random regular graphs,
i.e. random graphs drawn uniformly from the set of
graphs where every node has degree c. In all the sim-
ulations we consider uniform transmission and recovery
probabilities λij = λ and µi = µ.

In the first example, inset of Fig. 2, we plot the en-
ergy E(i) resulting from the dynamic message-passing of
the nodes for which the probability of being the epidemic
origin is finite according to our algorithm, we order the
nodes according to the energy value. The true epidemic
origin is marked with a red cross. We define the rank
of candidates for the epidemic origin to be its position in
this ranking (the lowest energy node having rank 0). The
main graph of Fig. 2 shows the histogram of normalized
ranks (i.e. the rank divided by the total number of nodes
that were observed as recovered or infected) of the true
epidemic origin as obtained from our DMP inference al-
gorithm, compared to the rankings obtained by distance,
rumor and Jordan centralities. The DMP inference algo-
rithm considerably outperforms the three centrality mea-
sures, with a comparable computational cost.
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FIG. 4. (color online) Left: An instance of inference problem on the Erdös-Rényi graph with average degree 〈c〉 = 4 and
N = 84. The epidemic is generated for λ = 0.7 and µ = 0.5. In this example, only infected (light) and recovered (dark) nodes
are present in the snapshot at time t0 = 5. The true patient zero is labeled by P , the best-ranked nodes for DMP (M), Jordan
(J) and distance (D) centralities are at distances 1, 2 and 3 from P , correspondingly. Right: Average rank of the true epidemic
origin on Erdös-Rényi graphs of size N ' 1000 with average degree 〈c〉 = 4. Each data point is averaged over 1000 instances.
The snapshot time t0 (assumed to be known) and recovery probability µ are: (a) t0 = 10, µ = 0.5 and (b) t0 = 10, µ = 1. The
dotted line shows the average fraction of nodes that were infected or recovered in the snapshot, |G|/N , we use this number to
normalize the ranks of the epidemic origin.

In Fig. 3 we present the average normalized rank of
the true epidemic origin for random regular graphs for
the whole range of the transmission probability λ, for
different values of the recovery probability µ, and snap-
shot times t0. As an estimation for the spreading time
t0, we take the one maximizing the “partition functiom”
Z(t) =

∑
i e
−E(i,t). The distribution of the estimated

time is concentrated at the true spreading time t0. We
find that for different values of µ, DMP inference always
outperforms the centrality measures (see, e.g., case (a)),
except in a special case (b) (µ = 1, corresponding to the
deterministic recovery), in a range of 0.3 < λ < 0.58
where Jordan center is a better estimation. In other
cases, however, Jordan centrality is less performant. Note
that for µ < 1 Jordan centrality does not distinguish
between recovered and infected nodes, which partly ex-
plains its rather bad performance in that case. The
Fig. 3 (c) shows the dependence on the spreading time
t0 for fixed values of λ and µ. Note that DMP remains

efficient even for relatively large t0, when the centrality
algorithms fail to make a prediction.

Importantly, in some range of parameters, the aver-
age normalized rank of the true epidemic origin is not
so close to zero (note that the value 1/2 of the normal-
ized rank corresponds to a random guess of patient zero
among all the infected or recovered nodes). The problem
of estimating the epidemic origin with a good precision is
very hard in these regions. In some cases the information
about the epidemic origin was lost during the spreading
process. For instance for λ > λc = µ/(c − 2 + µ) [26]
the epidemic percolates at large times t0 � logcN ; then
the information about the epidemic origin is lost. On the
other hand for t0 < logcN , the epidemic is confined to a
tree network and in this case the inference of the origin
is easier, cf. Fig. 3 (c). In Fig. 3, (a) and (b), we mostly
focused on the intermediate case t0 ≈ logcN .

We also present the results for other families of ran-
dom networks, that can be qualitatively more relevant
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FIG. 5. (color online) Left: An instance of inference problem on the scale-free graph with average degree 〈c〉 = 5/3 and N = 77.
The epidemic is generated for λ = 0.7 and µ = 0.5. The snapshot is represented at time t0 = 10. The true patient zero is
labeled by P , the best-ranked nodes for DMP (M), Jordan (J) and distance (D) centralities are at distances 1, 2 and 4 from P ,
correspondingly. Right: Average rank of the true epidemic origin on scale-free graphs of size N ' 1000, generated according to
the Pareto distribution with shape parameter α = 0.25, and minimum value parameter k = 1, average degree 〈c〉 = 5/3. Each
data point is averaged over 3000 instances. The snapshot time t0 (assumed to be known) and recovery probability µ are: (a)
t0 = 10, µ = 0.5 and (b) t0 = 10, µ = 1. The dotted line shows the average fraction of nodes that were infected or recovered in
the snapshot, |G|/N , we use this number to normalize the ranks of the epidemic origin.

for applications. In Fig. 4 we plot the inference results
for the connected component of Erdös-Rényi graphs of
size N ' 1000 with average degree 〈c〉 = 4. Fig. 5 shows
the corresponding results for the connected component of
scale-free networks, that are prototype to the real-world
social networks, of size N ' 1000, generated to have
the Pareto degree distribution with a shape parameter
α = 0.25, and minimum value parameter k = 1, with a
probability distribution function P (x) = αkαx−1−α, de-
fined for x > k. For both networks, the DMP algorithm
considerably outperforms Jordan and distance centrali-
ties. In our opinion the systematic comparison presented
here is a good test-bed for comparing and improving al-
gorithms.

We now show the performance of our algorithm in the
case where the snapshot is incomplete: a fraction ξ of
nodes is not observed. We compare it to the generaliza-
tions of Jordan and distance centralities to this case that
we propose in appendix A. The idea behind this general-
ization consists in a careful construction of a connected
component of infected, recovered and undefined nodes,
for which the centrality algorithms can be applied. Fig. 6
gives the average rank of the true epidemic origin. It
shows that, with incomplete snapshots, the DMP infer-
ence algorithm outperforms both centralities even in the
case where for complete snapshots the Jordan centrality
was better. This observed robustness of DMP is a very
useful property.

In order to illustrate the method on non-randomly gen-
erated network, we studied the performance of DMP for
synthetic data on a real network of the U.S. West-Coast
power grid which contains N = 4941 nodes with a mean
degree 〈c〉 = 2.67 and a maximum degree 19 [27], also
considered as an application to the patient zero prob-
lem in [4]. Our aim here is not to study any problem
relevant to the power grid itself, but we use this well-
documented network in order to test how our algorithm

performs on a network that is not random. This net-
work is in fact a widely used example of a real network
with the small-world property, having a right-skewed de-
gree distribution, and is quite different with respect to
an Erdös-Rényi random graph of the same size and mean
degree: its measure of cliquishness, the clustering coeffi-
cient C = 0.08, is much bigger than the transitivity of a
corresponding random graph Crand = 0.005 [25, 27]. The
results are reported in Fig. 7: we see that the algorithm
works well and DMP estimator gives better prediction
for all range of λ.

Our algorithm is based on an approximate form of
Bayesian optimal inference. There are two possible
sources of sub-optimality on real networks: first, the fact
that the message-passing equations may lead to errors on
loopy graphs; and second, the mean-field-like approxima-
tion (21) of the joint probability distribution. We have
observed that taking into account the two-point correla-
tion in this approximation does not lead to any improve-
ment in our results. It would be interesting to search
for better approximations of the likelihood on a general
graph.

V. CONCLUSION

The approximate solution of dynamics of the SIR
model in terms of message-passing equations allowed us
to develop an efficient probabilistic algorithm for detect-
ing patient zero. Compared to existing algorithms, it
generically (except for a narrow range of parameters)
provides an improved estimate for the source of infec-
tious outbreak. It also performs well when the snapshot
sees only a part of the network. One superiority of our
approach, compared to previous ones, is that it uses ef-
ficiently the information about where the epidemic did
not spread. As is usual for Bayes inference approaches,
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FIG. 7. (color online) Left: A representation of the topol-
ogy of the U.S. West-Coast power grid network, generated
with Gephi. Right: Normalized rank (averaged over 1000 in-
stances) of the true epidemic origin for epidemic spreading
with µ = 0.5 and all nodes observed at time t0 = 10, on
the power grid network. DMP inference is significantly better
than inference based on distance and Jordan centralities.

our algorithm is versatile and easily amenable to gener-
alizations. Let us mention a few possibilities of exten-
sion of our approach, the study of which is left for future
work. The present DMP algorithm can be applied to con-
tact networks that evolve in time. The generalization is
straightforward, one only needs to encode the dynamics
of the network into time-changing transmission probabil-
ities λij(t) and use the equations (15-20). The SIR model
on dynamically changing networks has been already stud-
ied using the graph-averaged version of the DMP equa-

tions in [28, 29]. We anticipate that the DMP equations
on a single graph will also be useful for studies where
specific experimental data about the changing network,
such as those of [30], can be used. Our approach can also
infer multiple infection sources. In the most straightfor-
ward way it would, however, scale exponentially in the
number of sources. This can be easily avoided by real-
izing that with k infection sources, one may do a kind
of Monte-Carlo search for their best positions. Another
interesting problem for which our approach can be gen-
eralized is when the knowledge of the contact network is
incomplete.
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Appendix A: The centrality algorithms for
incomplete snapshots

In the case where the state of all the nodes is known
at time t0, the centrality algorithms work on a connected
component G of infected and recovered nodes. In prac-
tice the information is available only for a fraction 1− ξ
of nodes in the graph G. The snapshot O(t0) can then
be thought of as a configuration of (1− ξ)N nodes in the
states S, I, R (nodes for which we have the information),
and of ξN randomly located nodes in the unknown state
X. Now the infected and recovered nodes in general do
not form a connected component and are located in sev-
eral disconnected components, separated by the nodes in
the unknown states X. Nevertheless, it is clear that not
all the X-nodes have to be checked as possible candidates
to be the actual source of infection. If the cluster of nodes
in the X state is surrounded only by the S-nodes, this
cluster is clearly in the S state itself. Other X-nodes in
principle are susceptible to be the infection source and
thus need to be checked.

We propose the following generalization of centrality
algorithms for the ξ 6= 0 case. First we construct a con-
nected component composed of all the nodes in the I and
R states and clusters ofX nodes which are not completely
encircled by S-nodes. This gives a connected component
of I, R and X nodes attached together. Since now we
have a connected component G, we can run centrality al-
gorithms on it in a usual way. For ξ = 0 the connected
component constructed in this way coincides with a con-
nected component composed of infected and recovered
component.

In Fig. 8 we compare the distributions of ranks for
DMP and Jordan estimators for different ξ (ξ = 0,
ξ = 0.5 and ξ = 0.9) in the special case of “determin-
istic” recovery µ = 1 for λ = 0.5 and λ = 0.7. The
results are presented for a regular random graph com-
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FIG. 8. (color online) Distribution of inferred rank of the epidemic origin measured over the graph G for Jordan centrality
estimator (light brown) and DMP estimator (dark brown) with known spreading time on regular random graphs of degree
c = 4: (a) ξ = 0, λ = 0.5, (b) ξ = 0, λ = 0.7, (c) ξ = 0.5, λ = 0.5, (d) ξ = 0.5, λ = 0.7, (e) ξ = 0.9, λ = 0.5, (f) ξ = 0.9, λ = 0.7.
The average is performed over 500 instances.

posed of N = 1000 nodes with connectivity c = 4, and
we take t0 = 10. The plot shows how often the rank of
the actual epidemic origin i0 is within the value of the
corresponding bin (0% means exact reconstruction). Ac-
cording to the histogram, in 60% of cases we manage to
locate the true infection source within 10% of relevant
nodes (those situated in G) for ξ = 0. This number falls

to 40% for ξ = 0.9, when the states of only 10% of nodes
in the network are known.

We see that although for ξ = 0 the rank distribution
based on the Jordan centrality estimator gives better re-
sults (in the case λ = 0.5), it is no longer efficient when
the number of unknown nodes gets larger (for all ξ > 0.4).
The dependence on ξ for the case λ = 0.7 follows the same
patterns.
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