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Abstract—We study non-adaptive pooling strategies for detec-
tion of rare faulty items. Given a binary sparse N -dimensional
signal x, how to construct a sparse binary M × N pooling
matrix F such that the signal can be reconstructed from the
smallest possible number M of measurements y = Fx? We show
that a very low number of measurements is possible for random
spatially coupled design of pools F . Our design might find
application in genetic screening or compressed genotyping. We
show that our results are robust with respect to the uncertainty
in the matrix F when some elements are mistaken.

I. INTRODUCTION

Group testing [1], [2], also known as pooling in molecular
biology, is designed to reduce the number of tests required to
identify rare faulty items. In the most naive setting each item is
tested separately and the number of tests is equal to the number
of items. If, however, only a small fraction of the items are
faulty, then the number of tests can be decreased significantly
by creating “pools”, i.e. by including more than one item in
one test and allowing each item to take part in several different
tests. The main problem is how to design these pools such
that their number is the smallest possible while allowing for
a tractable, and robust to noise, reconstruction procedure.

In adaptive group testing the new pools are designed using
the results of previous pools. However, many experimental
situations require a non-adaptive testing where all pools must
be specified without knowing the outcomes of other pools.
Mainly two kinds of tests are relevant for practical applica-
tions. In Boolean group testing, each test outputs negative if
it does not contain a faulty item and positive if it contains
at least one faulty item. In linear group testing, each test
outputs the number of faulty items. In practical applications
the experimental constraints often require that the size of each
pool is relatively small and one item does not belong to too
many pools. In this paper we analyse the non-adaptive (single
stage) pooling with linear tests and limited size of each pool.

A number of recent works have discussed a close relation
between non-adaptive pooling with linear tests and compressed
sensing [3], [4], [5], [6], [7], [8], [9], [10]. Here, we follow this
direction of works and build on recent advances in compressed
sensing that used spatially coupled design of measurements
and permitted to decrease the number of measurements down
to the information theoretical limit [11], [12], [13].

Our results are meant to find applications in various cur-
rently relevant problems e.g. genetic screening [4] or com-
pressed genotyping [7]. In these applications, genes of several
individuals are mixed together and one measures how many
of the genes in a given pool are ”faulty”, e.g. related to certain
genetic problem. This is usually done by introducing markers
that attach to these faulty genes. The main source of noise
in such experiments is that the marker does not attach, i.e.
whereas one thought that a given gene belonged to a given
pool, in reality it did not. We shall investigate the robustness
of our results under this type of noise.

II. SETTING AND RELATED WORKS

The non-adaptive pooling for detection of rare faulty items
that we investigate is defined as follows: Consider a sparse
binary N -dimensional vector x. Its components (items) are
denoted by xi, i = 1, . . . , N . The vector is sparse: only ρN of
the components are xi = 1 (faulty) and the others are xi = 0
(correct), with ρ � 1. A pool a is a subset of components
a ⊂ {1, . . . , N}. We denote Fai = 1 if component i belongs
to pool a and Fai = 0 otherwise. The result of a pool/test

ya =
∑
i∈a

xi =
∑
i

Faixi (1)

is the number of faulty items in the pool. The goal is to design
a smallest possible number M of pools such that the vector
x can be reconstructed in a tractable way from the results of
these pools y = (y1, . . . , yM ). In practice the result of a pool
becomes often unreliable if the pool contains many items and
also if one item belongs to many pools, because the sample
corresponding to one item then needs to be split into many
small pieces. We are hence interested in the case where the
size of every pool Ka is small (compared to N ) and every
item belongs to only a small number Li of pools.

This problem is reminiscent of compressed sensing [14],
[15] which is designed to measure signals directly in their
compressed form. In fact our problem is compressed sensing
with the additional constraint that the signal is binary and with
a sparse binary measurement matrix Fai. We also consider
matrix uncertainty: some elements assumed to be Fai=1 are
in fact Fai = 0 with probability p. The field of low-density
parity check (LDPC) error correcting codes [16] provides
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information about sparse measurement matrices with which
tractable reconstruction can be achieved. Indeed, the only
difference between non-adaptive group testing with linear tests
and LPDC is that the algebra is over integers in group testing
instead of GF (2) in LDPC. The spatially coupled pooling
design we study here was first discovered and validated in the
field of error correcting codes [17], [18], [19], [20].

The reconstruction algorithm that is most commonly used
in compressed sensing and that has been also discussed several
times for reconstruction in group testing and pooling experi-
ments [3], [5], [6] is based on a linear relaxation of the problem
to real signal components 0 ≤ xi ≤ 1. One then minimizes
the `1-norm of the signal under the constraints y = Fx. This
is a convex problem that can be solved efficiently using linear
programing. In what follows we will use the `1 reconstruction
as a reference benchmark to demonstrate the improvement
that can be achieved using our pooling design and the belief
propagation based reconstruction.

The problem of non-adaptive group testing with linear tests,
but with no constraints on the sparsity of the matrix F ,
is also known as the coin weighting problem [21], [22]. A
detailed review of previous results can be found in [21]. It
was shown [23] that, in the limit that interests us where
N → ∞, reconstruction is not possible with less than
M = (2 log 2)N/ logN tests. On the other hand a successful
deterministic construction of the measurement matrix, together
with a polynomial reconstruction algorithm, was found with
M = (2 log 2)N [1 + o(1)]/ logN [24] measurements. As far
as we know, however, the problem with a small (constant)
number of items in every pool, as treated here, is still open.

Note that when the number of faulty items R is much
smaller than N , then another line of works should be con-
sidered. The best polynomial time non-adaptive algorithms
known for the coin weighting problem then need M =
R log2N measurements [25]. Our approach is thus useful only
in regimes where the number of faulty items is larger than
R > 2(log 2)2N/ log2N . Another problem that is closely
related to non-adaptive pooling as considered here is the sparse
code division multiple access (CDMA) method [26], [27];
with the difference that the signal x is not sparse and that
there is usually a considerable Gaussian additive noise on the
measurement vector y. The goal in CDMA is not to minimize
the number of measurements M (the number of chips), but to
support the largest possible amount of noise. Spatial coupling
was investigated for (dense) CDMA in [28], [29].

III. SPATIALLY COUPLED DESIGN OF POOLS

The first design of pools (Dr) that we consider is based on
a random construction. Each pool a contains K items. Each
item i belongs to L pools. The assignment of items into pools
is chosen uniformly out of all such possible ones. An example
of a such random pooling matrix is plotted in Fig. 1 left.

The second design of pools (Ds), for which the total
number of tests needed for successful reconstruction will be
considerably smaller, is the “seeded” or “spatially-coupled”
design, illustrated in Fig. 1 right. First, we divide the N items

into B equally sized blocks. Pools are also divided into B
blocks, the first of them (the “seed”) being larger than the
others. We will fix to L the degree of all items, to Ks the
degree of pools in the first block, and to Kf the degrees
of pools in the other B − 1 blocks. The size of the first
block is then Ms=NL/(KsB), and that of the other blocks
Mf =NL/(KfB). The overall under-sampling ratio is then
α=L/(KsB)+(B−1)L/(KfB). When deciding connections
between items and pools, we first connect randomly each pool
to items in the block with the same index. Then we apply
the following rewiring procedure: with probability J for each
edge (i.e. connection between an item and a pool), we chose
randomly another edge whose item is in one of the w previous
blocks (and that has not been rewired yet) and switch the two
edges. The details of this rewiring procedure do not change
our results as long as a fraction of about J of new connections
is created up to distance w.

Fig. 1. Left: Random pooling design, each blue point corresponds to an item
i belonging to a pool a. We took N=2000 items, M=700 pools, each item
participates in L=7 pools, and each pool has K=20 items. Right: Seeded
(or spatially coupled) design of pools, with N=2000 items, M=490 pools,
B=10 blocks with Ks=20, Kf =30, J=0.2 and w=2.

IV. UPPER AND LOWER BOUNDS FOR NUMBER OF POOLS

A simple lower bound on the number of necessary measure-
ments M can be obtained as follows: To reconstruct exactly
the N -component signal of R = ρN non-zero components
each possible configuration of the signal x should correspond
to a distinct result of the pools y. In other words the number
of possible outcomes of the measurements must be larger than
the number of possible signals. If K denotes the number of
items in each test this gives

(
N
R

)
≤ (K + 1)M . In the limit

of large systems, and constant density of faulty items ρ this
gives αLB = H(ρ)/ log (K + 1), where we use the entropy
function H(ρ) = −ρ log ρ− (1− ρ) log(1− ρ). Note that this
lower bound holds also for adaptive pooling design.

We also derived a first moment upper bound on the critical
ratio above which reconstruction is in principle possible for
the random design (Dr). Calling N (ε) the number of vectors
x compatible with the measurements y at distance 1− ε from
the original signal, one obtains:

E(N (ε)) = eNΦ(ρ,ε) = eN [α logP (ε,K,ρ)+H(ε,ρ)], (2)
where H(ε, ρ) = −ερ log ερ− 2(1− ε)ρ log (1− ε)ρ

−(1− 2ρ+ ερ) log (1− 2ρ+ ερ)−H(ρ),

and P (ε,K, ρ) =

K
2∑

a=0

K! [1− 2ρ(1− ε)]K−2a
[(1− ε)ρ]2a

(a!)2(K − 2a)!
.



When Φ(ρ, ε) is negative everywhere except in the vicinity of
ε = 1 then the linear system y = Fx has only one solution
that corresponds to the signal to be reconstructed. This leads
to a threshold value αUB above which reconstruction is in
principle possible. As we will see this upper bound is very
close to the actual threshold. With K → ∞, one can show
that αUB = 2H(ρ)

logK . For dense matrices F with K = N , this
is a tight bound, as mentioned in the context of coin weighting.

V. SIGNAL RECOVERY ALGORITHMS

Knowing the set of tests or pools, i.e. the binary matrix
F , and the measurement results y, one wants to reconstruct
the signal. In compressed sensing the algorithms that achieve
exact reconstruction with a smallest possible number of mea-
surement are based on Bayesian inference, see [11], [12]. We
thus adopt the same strategy here.

The probability distribution of observing measurements y
given the signal x and set of pools F is given as

P (y|x, F ) =

M∏
a=1

(∑
i∈a xi
ya

)
(1− p)yap(

∑
i∈a xi−ya) (3)

To estimate P (x|y, F ), with the use of Bayes rule
P (x|y, F ) = P (y|x, F )P (x|F )/P (y|F ), we need to assume
some knowledge of statistical properties of the signal x.
Denoting the fraction of non-zero elements ρ we use a prior

P (x) =

N∏
i=1

[(1− ρ)δ(xi) + ρδ(xi − 1)] (4)

In compressed sensing it was argued [12] that for pooling
matrices with random elements this assumption works as well
for iid signal components as for correlated signals. Of course
if an additional knowledge about the correlations in the signal
were available it could be exploited and the performance
improved further. We shall, however, not assume any such
additional knowledge. The value of xi that minimizes the
number of errors is obtained as the value that is more probable
according to the marginal distribution for that element

µ(xi) =
∑
{xj}j 6=i

P (x|y, F ). (5)

To estimate these marginals we use the canonical belief
propagation (BP) algorithm [30]. Following the usual deriva-
tion we introduce for each non-zero matrix element Fai two
messages, χi→a and ψa→i, which are two-component vectors
(normalized to χi→a0 +χi→a1 = 1 and ψa→i0 +ψa→i1 = 1), and
we write iterative update equations for these as

χi→axi
=

ρxi(1− ρ)1−xi
∏
b∈∂i\a ψ

b→i
xi

ρ
∏
b∈∂i\a ψ

b→i
1 + (1− ρ)

∏
b∈∂i\a ψ

b→i
0

, (6)

ψa→ixi
=

1

Za→i

K−xi∑
B=ya−xi

(
B + xi
ya

)
(1− p)yapB+xi−ya

∑
{xj}j∈∂a\i,

∑
j xj=B

∏
j∈∂a\i

χj→axj
. (7)

In the iterative BP algorithm we initialize ψ1 and χ1 as random
numbers from the interval (0, 1) and update equations (6-7) till
convergence. Note that the argument in equation (7) depends
only on the sum of variables, it can thus be updated with
the use of a convolution in (Ka − 1)2/2 steps (compared to
the naive 2Ka−1 steps). Once convergence is reached the BP
estimates of the marginal probabilities are computed by:

χixi
=

ρxi(1− ρ)1−xi
∏
a∈∂i ψ

a→i
xi

ρ
∏
b∈∂i\a ψ

a→i
1 + (1− ρ)

∏
a∈∂i ψ

a→i
0

. (8)

The BP inference of the item i is then x∗i = 1 is χi1 > χi0 and
x∗i = 0 otherwise.

The iteration of message updates, starting from random
messages, is the BP algorithm. It turns out that BP can
also be used to analyse the optimal Bayes inference. For the
purpose of this analysis one initializes BP messages to values
corresponding to the true signal, and iterates the equations
until convergence. In some region of parameters this will
reach a different fixed point than the iterations of randomly
initialized messages. The fixed point that corresponds to the
result that would be achieved by the (exponentially costly)
optimal Bayesian inference procedure is the one having the
largest log-likelihood Φ. The BP estimate of the log-likelihood,
also called Bethe free energy, is given by

Φ =
∑
i

logZi −
∑
a

(Ka − 1) logZa , (9)

Zi = ρ
∏

b∈∂i\a

ψa→i1 + (1− ρ)
∏
a∈∂i

ψa→i0 ,

Za =

K∑
B=ya

(
B

ya

)(
1

p
− 1

)ya
pB

∑
{xj}j∈∂a∑

j xj=B

∏
j∈∂a

χj→axj

In most practical situations the fraction of ”faulty” items ρ
is not known in advance. In such cases it can be learnt via
expectation maximization learning, by iterating the following
expression ρnew =

∑N
i=1 χ

i
1/N , where the r.h.s. is evaluated

using the previously estimated value of ρ.

VI. PERFORMANCE AND PHASE DIAGRAMS

A. Noiseless case

Let us first investigate reconstruction of the signal for the
random design Dr. We are interested in the smallest possible
ratio αc = Mc/N for which exact reconstruction is still
possible in the large N limit. With the BP algorithm, exact
reconstruction is possible if and only if α > αBP . The
threshold (or “phase transition”) αBP is plotted in Fig. 3.
We compare this value to the smallest possible ratio α`1 for
which the standard convex optimization approach, where one
minimizes |x|`1 subject to y = Fx and 0 ≤ xi ≤ 1, provides
exact reconstruction. We see in Fig. 3 that α`1 is only slightly
larger than αBP for all range of L.

Using the method explained in previous section, we have
investigated the performance of Bayes optimal approach by
evaluating the Bethe free energy Φ. BP messages initialized
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Fig. 2. Left: The limit of performance for BP (αBP ), `1 minimization
(α`1 ) and the Bayes optimal inference (αc) for random design of pools. The
values are obtained as averages over 20 instances with N = 104 items and
density of faulty items ρ = 0.1. Right: Fraction of exactly reconstructed
signals using BP and `1 reconstruction with random and seeded pools for
N = 104, L = 7 and ρ = 0.1. Data obtained from 100 random instances.
The seeded matrix has B = 20 blocks, the first block (seed) has Ks = 20,
and following blocks have Kf > 20 corresponding to different total values
of α. Fraction J = 0.4 of links are connected to w = 2 previous blocks.

on the true signal are fixed point in the absence of noise,
corresponding to Φ = 0. Randomly initialized BP reaches
the same fixed point at large values of α, at αBP , Φ jumps
discontinuously to negative values, meaning that there is no
other signal with density ρ satisfying all the tests. The log-
likelihood then grows as α decreases and becomes positive at
αc below which there are other signals of density ρ satisfying
the tests and hence the true signal is undetectable. Above αc
the exactly evaluated Bayes-optimal inference would hence be
able to reconstruct exactly the signal. The value of αc is also
plotted in Fig. 3 and we see that both `1 and BP for random
design of pools Dr are considerably suboptimal.

Using seeded pooling design improves BP performance by
moving the ratio α above which BP is able to reconstruct
exactly the signal down to the Bayes-optimal threshold αc.
Several works have argued that quite generically when the
system size N , the number of block B and the interaction
range w go to infinity (in this order) BP with spatially coupled
design is able to saturate the threshold αc [18], [19], [20],
[11], [12]. This statement applies also to our case. Here we
investigate the performance of BP for seeded pooling design
with realistic values of parameters N , B, w. In Fig. 2 right
we plot the fraction of instances in which the signal was
reconstructed exactly by BP and `1 for the random pooling
design Dr, and for the seeded design Ds, with a set of
parameters specified in Table I. Whereas `1 performs basically
the same for both designs, the performance of BP improves
considerably in the seeded pooling scheme Ds, for realistic
values of the parameters. In Fig. 3 we summarize all our
results for the noiseless case with L = 7, and with a varying
fraction of faulty items ρ. Let us also note that the Bayes-
optimal transition for seeded matrices is not exactly equal to
the one for random matrices, the two are, however, so close
that the difference is not distinguishable in Fig. 3.

B. Noisy case

We investigate now the robustness of our results to
measurement-matrix noise. We denote by p the probability that
a matrix element Fai = 1 was in fact F true

ai = 0, i.e. item i did
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not contribute to the result of the test a. With nonzero values
of p and large system size N → ∞ exact reconstruction is
never possible, there is always a nonzero probability pL that a
faulty item was never included in any measurement. However,
for realistic sizes and small values of p we may still obtain
exact or close-to-exact reconstruction.

In the left part of Fig. 4 we plot the average error (fraction
of wrongly reconstructed items) as a function of the noise
strength p. We see that there is a critical value of p above
which the performance deteriorates significantly. This value
is larger for the seeded pooling design than for the random
pooling design. In the right part of Fig. 4 we then plot the
critical values of ratio α as a function of noise strength p for
the random pooling design αBP , for the best seeded pooling
design αseed that we found with realistic parameters, and
for the Bayes optimal reconstruction αc. For α > 0.35 (for
ρ = 0.1, L = 7) there is no longer a value of p where
the performance deteriorates sharply, instead the transition is
smooth. Such a phase diagram is qualitatively similar to the
one of compressed sensing with other types of noises, see
e.g. [13], [31], [32].



TABLE I

Parameters of seeded matrices in Fig. 3
ρ Ks Kf J ρ Ks Kf J
0.1 20 39 0.1 0.2 15 27 0.1
0.3 13 22 0.1 0.4 11 21 0.1

Parameters of seeded matrices in Fig. 4 left
α Ks Kf J α Ks Kf J
0.226 20 33 0.1 0.279 19 26 0.1

Parameters of seeded matrices in Fig. 4 right
p Ks Kf J p Ks Kf J
0 20 39 0.1 0.01 18 36 0.2
0.02 16 34 0.3 0.03 19 31 0.3
0.04 18 29 0.3 0.05 24 27 0.3
0.06 15 27 0.4 0.07 14 26 0.4
0.08 19 24 0.3 0.09 19 23 0.4
0.1 20 22 0.4 0.11 20 21 0.4
0.12 20 20 0.4

VII. CONCLUSION

We have studied non-adaptive pooling strategies for de-
tection of rare faulty items. We have shown that the belief-
propagation reconstruction algorithm, together with a seeded
(spatially-coupled) design of the pools, leads to the best-known
performance so far in the sense that it minimizes the number
of measurements necessary for exact reconstruction in the
noiseless case. Our results are very close to Bayes optimality
and robust with respect to measurement noise corresponding
to a faulty knowledge of the pools.

It is quite possible that this pooling design and its recon-
struction algorithm will find applications in genetic screening.
We note that our work can be extended to the case when
the non-zeros items in the signal are real-valued. In this case
the BP algorithm needs to be replaced by an AMP type of
algorithm [33]. We are currently investigating this case for
sparse measurement matrices.
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