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ABSTRACT

In compressed sensing one measures sparse signals directly
in a compressed form via a linear transform and then recon-
structs the original signal. However, it is often the case that
the linear transform itself is known only approximately, a sit-
uation called matrix uncertainty, and that the measurement
process is noisy. Here we present two contributions to this
problem: first, we use the replica method to determine the
mean-squared error of the Bayes-optimal reconstruction of
sparse signals under matrix uncertainty. Second, we consider
a robust variant of the approximate message passing algo-
rithm and demonstrate numerically that in the limit of large
systems, this algorithm matches the optimal performance ina
large region of parameters.

Index Terms— Compressed sensing, Measurement un-
certainty, Belief propagation, Message passing, Performance
analysis.

1. INTRODUCTION

Compressed sensing (CS) is designed to measure sparse sig-
nals directly in a compressed form by acquiring a small (with
respect to the dimension of the signal) number of random lin-
ear projections of the signal, and subsequently reconstructing
computationally the signal. In particular, it has been shown
[1, 2] that this reconstruction is possible and computation-
ally feasible in many cases usingℓ1-minimization based al-
gorithms. It is often the case in practical applications that
the linear transform itself is known only approximately; for
instance this is the case if calibration has not been done per-
fectly. Several works have analyzed the performance ofℓ1-
regularization based algorithm under matrix uncertainty,e.g.
[3, 4] and references therein. In this paper we shall use instead
a Bayesian approach. In this framework CS under matrix un-
certainty was studied recently by [5]. In particular the authors
of [5] propose a generalization of the approximate message
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passing algorithm (AMP) [6, 7, 8] that treats matrix uncer-
tainty (MU-AMP) and outperforms other methods. Empiri-
cally, they show that the MU-AMP algorithm performs near
oracle bounds.

Our goal in this paper is twofold. First we compute
the best theoretically possible performance of reconstruc-
tion algorithms under matrix uncertainty using the replica
method [9, 10, 11, 12, 8, 13], and show that in a large region
of parameters this performance is indeed matched by MU-
AMP. And second we consider a slightly different algorithm
that we refer to as robust-AMP algorithm (using a minimal
change first suggested in [6]) and show that it is asymptoti-
cally equivalent to MU-AMP and thus also it reaches Bayes
optimal MSE while not assuming the knowledge of the mea-
surement noise, nor the level of matrix uncertainty.

2. DEFINITIONS

In our analysis we consider a sparseN -dimensional signalx
having on averageK non-zero iid components chosen from a
distributionφ(x). Defining the densityρ = K/N we have

P (x) =
N
∏

i=1

P (xi) =

N
∏

i=1

[ρφ(xi) + (1− ρ)δ(xi)] . (1)

Note that our analysis applies as well to non-iid signals with
empirical distribution of components converging toφ(x), as
discussed e.g. in [14]. For concreteness, here we shall use a
Gaussianφ(x) of zero mean and unit variance. Although our
results depend quantitatively on the form ofφ(x), the over-
all qualitative picture is robust with respect to this choice.
We further assume that the parameters ofP (x) are known
(if this is not the case they can be learned via expectation-
maximization [8, 13, 15]). One could use an approximately
sparse signal as in [16] as well.

The M measurementsyµ are obtained via noisy linear
random projections of the signal

yµ =

N
∑

i=1

F 0
µisi + ξµ , µ = 1, . . . ,M . (2)
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where we model the noiseξµ as a Gaussian random variable
with mean0 and variance∆, and whereF0 has iid random
components of mean0 and variance1/N . The parameterα =
M/N is the measurement, or sampling, rate.

Additionally, we consider that the matrixF0 is not known
perfectly, and that we know only its noisy version:

F ′

µi =
F 0
µi +Xµi

√
η

√
1 + η

, (3)

whereXµi is a white noise with mean0 and variance1/N ,
and whereη measures the uncertainty on the matrix. When
η → 0, the measurement matrix is perfectly known (this is
the usual compressed sensing situation) while forη → ∞
nothing is known about the measurement matrix. Assuming
a Gaussian distribution for the matrix elements and the noise
X, we obtain the posterior probability of one matrix element
P (F 0

µi|F ′

µi) to be a Gaussian with mean and variance

Fµi =
F ′

µi√
1 + η

, Sµi =
η

N(1 + η)
. (4)

Our goal is to reconstruct the signalsbased on the knowl-
edge ofy andF

′. The Bayes-optimal estimate of a signal
x⋆, that minimizes the mean-squared error (MSE)MSE =
∑N

i=1(si − x⋆
i )

2/N with the original signals, is given by

x⋆
i =

∫

dxi xi νi(xi) , (5)

whereνi(xi) is the marginal distribution ofxi with respect to:

P (x|y,F′) =
P (x)
Z

∫

dF0P (F0|F′)e−
1

2∆ (y−F
0x)2 . (6)

3. REPLICA METHOD: OPTIMUM
RECONSTRUCTION BOUNDS

The MSE obtained from the Bayes-optimal approach can be
computed in the limit of largeN via the replica method. Al-
though this method is in general non-rigorous, it is sometimes
possibles to prove that the results derived from it are exact,
see [9, 10, 11, 12, 8, 13]. We shall leave out a detailed deriva-
tion and refer instead to [8, 13] for a very similar computation.
The result is that in the large signal limit, the MSE is given by

MSE(α, ρ,∆, η) = argmax
E

Φ(E) , (7)

where the “potential”Φ(E) is given by

Φ(E)=−α

2

[

log [∆+E+(ρ− E)D]+
∆ + ρ

[∆+E+(ρ− E)D]

]

+ (1− ρ)

∫

Dz log

[

1− ρ+
ρ√

m+ 1
e

z
2
m

2(m+1)

]

+ ρ

∫

Dz log

[

1− ρ+
ρ√

m+ 1
e

z
2
m

2

]

, (8)
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Fig. 1. The potentialΦ(E), eq. (8), for measurement rate
α = 0.5, matrix uncertaintyη = 10−4, and noise∆ = 10−10,
for different values of densityρ. The global maximumΦ(E∗)
determines the values of the Bayes-optimalMSE = E∗. As
the density varies the valueE∗(ρ) has a discontinuity which is
usually referred to as a “first-order” or “discontinuous” phase
transition. AMP algorithms are performing a steepest ascent
of the potential and get trapped at the maximum with the
largest value of E, instead of reaching the global one (see e.g.
the caseρ = 0.33). The appearance of this trapping local
maxima is referred to as the “spinodal” transition.

with

D =
η

1 + η
, m =

α(1−D)

∆ + E + (ρ− E)D
. (9)

Note how closely related is this expression to the one derived
in [13] for the usual compressed sensing with known mea-
surement matrix (which is recovered takingη = 0).

The potential (8) is shown in Fig. 1. Maximizing the po-
tential, one obtains the Bayes-optimal MSE which we show
in Fig. 2 as a function ofη for different densitiesρ. We see a
phenomenology similar to that described in [13, 16] for other
types of noise. Because of a two-maxima shape of the func-
tionΦ(E), the Bayes-optimal MSE displays a sharp transition
separating a region of parameters with a small MSE, compa-
rable tomax(∆, η), from a region with a largeO(1) value
of the MSE. In this second region of parameters compressed
sensing technics –regardless of the reconstruction method–
will not be useful. This is a “first order” phase transition.

Another important transition (the “spinodal”) that can be
studied from the form of the potential functionΦ(E) is the
appearance of a high-MSE local maxima. Since the AMP al-
gorithm performs a steepest ascent in theΦ(E) function (see
e.g. [13]) this transition separates the region of parameters in
which the performance of AMP will be asymptotically opti-
mal from the one where AMP is suboptimal. An important
feature of this transition, shown in Fig. 3, is that its position
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Fig. 2. Bayes-optimal MSE forα = 0.5, ∆ = 10−10 as a
function of matrix uncertaintyη for different densitiesρ. The
MSE of the trapping local maximum is shown in dashed line.
The results of the AMP algorithm on some instances are also
shown (points, done withN = 20000). The results of these
AMP runs (points) agree perfectly with the prediction (lines).
In the inset, we show the location of the two phase transitions
in theρ, η plane: the upper line determines the “first-order”
threshold beyond which the optimal-MSE suddenly degrades,
while the lower line is the “spinodal” transition that marksthe
degradation of the performance of AMP. Note that the spin-
odal is almost independent of the noiseη in a large range of
values.

is only very weakly dependent on the value of the matrix un-
certainty. This means that the performance of AMP is ex-
tremely robust to matrix uncertaintyη. The same result was
also obtained for additive measurement noise in [13] and for
approximate sparsity in [16].

4. ROBUST MESSAGE-PASSING ALGORITHM

The Bayesian approach to compressed sensing combined with
belief propagation based reconstruction algorithm leads to the
so-called approximate message passing (AMP) algorithm as
first derived in [6] for the minimization ofℓ1, and subse-
quently generalized in [18, 7, 13]. This approach was adapted
by Parker, Cevher and Schniter to treat the matrix uncertainty
MU-AMP in [5]. Here we shall consider a version of the
canonical AMP, that we call robust-AMP, that turns out to
be robust to noisy measurement and matrix uncertainty, so
that it can be used indifferently of the presence or absence
of noise and matrix uncertainty. We show in the next section
that robust-AMP and MU-AMP are equivalent in the limit of
infinite systems.

For every measurement componentµ we define one real
numberωµ, for each signal componenti we define four real
numbersΣi, Ri, ai, vi. These quantities are updated as fol-
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Fig. 3. The phase diagram “a la” Donoho-Tanner [17] in the
limit of large signals,N → ∞. The horizontal axis is the
sampling ratioM/N and the vertical one measures the gain
K/M provided by compressed sensing. The dotted black line
is the transition for theℓ1 reconstruction [17] in zero noise.
The blue lines (from [8, 13]) show the location of the spin-
odal (dotted blue) and first-order (full blue) phase transitions
for the noiseless Bayesian approach. While a perfect recon-
struction (MSE=0) can be obtained in principle untilρ = α,
the AMP algorithm allows such perfect reconstruction only
up to the spinodal line (dotted blue). The noisy counterpart
of these two transitions is shown in red, using∆ = 10−4

andη = 10−6. While the region where a good reconstruc-
tion is possible (below the full red line) has shrunk a lot, the
spinodal line (dotted red line) that marks the onset of good
performance of AMP is left almost unchanged belowρ ≈ 0.8
demonstrating the robustness of the AMP to noises.

lows (for the derivation with these notations see [13]):

V t+1 =
1

M

∑

µ

(yµ − ωt
µ)

2 , (10)

ωt+1
µ =

∑

i

Fµi a
t
i −

(yµ − ωt
µ)

V t

∑

i

F 2
µi v

t
i , (11)

(Σt+1
i )2 =

V t+1

∑

µ F
2
µi

, (12)

Rt+1
i = ati +

∑

µ Fµi(yµ − ωt+1
µ )

∑

µ F
2
µi

, (13)

at+1
i = fa

(

(Σt+1
i )2, Rt+1

i

)

, (14)

vt+1
i = fc

(

(Σt+1
i )2, Rt+1

i

)

. (15)

Where only the functionsfa andfc depend explicitly on the
modelP (x):

fa(Σ
2, R) ≡

∫

dxxM(Σ2, R, x) , (16)

fc(Σ
2, R) ≡

∫

dxx2 M(Σ2, R, x)− f2
a (Σ

2,R) , (17)



whereM(Σ2, R, x) is the following probability distribution

M(Σ2, R, x) ≡ 1

Ẑ(Σ2, R)
P (x)

1√
2πΣ

e−
(x−R)2

2Σ2 . (18)

The explicit expression forfa andfc for the Gauss-Bernoulli
signal is given in [13] while the case of approximate sparsity
was considered in [16]. The above equations are initialized
with at=0

i = 0, vt=0
i = ρ, ωt=0

µ = yµ, then the equations are
iterated till convergence.

The difference between the present algorithm with respect
to the more common version of AMP is in the way the esti-
mate of the current error on the measurement element is com-
puted in eq. (10). Most previous works (e.g. [7, 13]) used
a µ-dependent vectorV t+1

µ = ∆ +
∑

i F
2
µiv

t
i in the case of

noisy measurement with a perfectly known matrix, whereas
the original paper [6] used a value precomputed by the state
evolution. The modification done by the authors of ref. [5]
to incorporate the effect of matrix uncertainty is (in our nota-
tion)V t+1

µ = ∆+
∑

i F
2
µiv

t
i +

∑

i(bi+a2i )η/[N(1+ η)]. As
shown in ref. [5] this leads to a very efficient algorithm with
matrix uncertainty. The expression we use instead in eq. (10)
was also proposed in [6]. Perhaps surprisingly, it is equiva-
lent to the one of ref. [5] when the system sizeN → ∞ even
in the case of matrix uncertainty. The advantage of expres-
sion (10) is that it is not need to explicitly know the value of
η and∆1: the algorithm automatically incorporates the errors
coming from the uncertainty on the matrix and the measure-
ment; and hence we are using the same code regardless the
presence or absence of noise and/or matrix uncertainty. We
thus refer to algorithm (10)-(15) as the “robust”-AMP.

5. DENSITY EVOLUTION

The AMP approach is amenable to asymptotic (N → ∞)
analysis in the case of i.i.d. random measurement matrices
using a method known as the “cavity method” (in statistical
physics) [9], the “density evolution” in coding [19], and the
“state evolution” in the context of CS [6, 20]. We shall not
detail the computation here, it goes in the same lines as in
[13]. Given the parametersρ, α, η, ∆, the MSE follows:

Et+1 =

∫

dxP (x)

∫

Dzfc(1/m
t, x+ z/

√
mt) , (19)

wheremt follows eq. (8), withEt on the right hand side,
Et=0 = ρ, Dz is a Gaussian integral, andfc is defined by
eq. (17). The comparison between the evolution of the MSE
in the algorithm and eq. (19) is shown on Fig. 4; the agree-
ment is very good. Note that we have also applied the density
evolution to the AMP algorithm with matrix uncertainty of
[5], and found that it obeys asymptotically the same equation
(19). More specifically, the termV t from eq. (10) evolves as

1Of course∆ andη can be learned with expectation maximization within
the MU-AMP [8, 13, 15], but this adds considerable computational time.
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Fig. 4. Comparison of the time evolution of MSE computed
with density evolution and the one found numerically using
robust-AMP for systems of sizeN = 25000, ρ = 0.1. The
agreement between theoretical predictions (eq. (19), fullline)
with the data from the AMP algorithm (points) is algorithm.
The arrows show the MSE obtained usingℓ1 minimization on
the same instances, for comparison. The better performance
of the AMP approach overℓ1 is clear.

∆ + Et + (ρ − Et)D in the limit N → ∞ both for the ex-
pression in ref. [5] and in eq. (10). From eq. (19), one can
also derive that the evolution is equivalent to a steepest as-
cent of the potentialφ(E) obtained from the replica method
in eq. (8). This underlines the importance of the spinodal tran-
sition illustrated on Figs. 1, 2, and 3. In particular we see that
the region where the AMP converges to the Bayes-optimal
value of the MSE is quite large, and notably larger than the
region in which theℓ1 minimization is able to give precise re-
construction. Another point worth noting is that the location
of the spinodal depends only very weakly to the value of the
noise, for a large range of matrix and measurement noise (see
inset of Fig. 2 and Fig. 3): this shows that the robust from of
the AMP algorithm is indeed robust to noise(s).

6. CONCLUSIONS

We have computed the Bayes-optimal value of the MSE for
the reconstruction of sparse Gauss-Bernoulli signals in pres-
ence of matrix uncertainty with the replica method, and con-
sider a variant of the AMP algorithm robust to such uncer-
tainty and to measurement noise. Finally, we have shown that
AMP allows one to match the optimum MSE in a large region
of parameters, and that the region is very weakly sensitive to
measurement or matrix noises. Note that the present analysis
applies to random i.i.d. measurement matrices; it is also pos-
sible to use the seeded spatially coupled measurement matri-
ces of [8, 13, 14] and this would lead to an even larger region
of optimality-matching performance for AMP.
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“Compressed sensing of approximately-sparse signals:
Phase transitions and optimal reconstruction,” in50th
Annual Allerton Conference on Communication, Con-
trol, and Computing, 2012.

[17] David L. Donoho and Jared Tanner, “Sparse non-
negative solution of underdetermined linear equations
by linear programming,”Proceedings of the National
Academy of Sciences of the United States of America,
vol. 102, no. 27, pp. 9446–9451, 2005.

[18] D.L. Donoho, A. Maleki, and A. Montanari, “Message
passing algorithms for compressed sensing: I. motiva-
tion and construction,” inInformation Theory Workshop
(ITW), 2010 IEEE, 2010, pp. 1 –5.
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