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ABSTRACT passing algorithm (AMP)_|€,17,18] that treats matrix uncer-
tainty (MU-AMP) and outperforms other methods. Empiri-

In compressed sensing one measures sparse signals dire ly, they show that the MU-AMP algorithm performs near
in a compressed form via a linear transform and then recons acle bounds

structs the original signal. However, it is often the casd th
the linear transform itself is known only approximatelyjia s the best theoretically possible performance of reconstruc

uation ca_llled matrix uncertainty, and that the_ measurement, , algorithms under matrix uncertainty using the replica
process is noisy. Here we present two contnbutmns_to thiS ethod 0! 10,11, 12] 8. 13], and show that in a large region
problem: first, we use the replica me'ghod to determm.e the pararﬁeters this performance is indeed matched by MU-
mean-sq_uared error of th_e Bayes-qptlmal reconstrucuon. 0/i\MP. And second we consider a slightly different algorithm
sparse sugna]s under matrix ungertamty. Second, We,oe'ns'dthat we refer to as robust-AMP algorithm (using a minimal
a robust variant of the approximate message passing alg8hange first suggested inl [6]) and show that it is asymptoti-
rithm and demonstrate numerically that in the limit of IargeCaIIy equivalent to MU-AMP and thus also it reaches Bayes
systems,.this algorithm matches the optimal performanae in optimal MSE while not assuming the knowledge of the mea-
large region of parameters. surement noise, nor the level of matrix uncertainty.

Index Terms— Compressed sensing, Measurement un-
certainty, Belief propagation, Message passing, Perfooma 2 DEEINITIONS
analysis. '

Our goal in this paper is twofold. First we compute

In our analysis we consider a sparSedimensional signak
1. INTRODUCTION h_aving on averagé&’ non-zero iid components chosen from a
distributiong(x). Defining the density = K/N we have

Compressed sensing (CS) is designed to measure sparse sig- N N
nals directly in a compressed form by acquiring a small (with _ N _ - _

respect to the dimension of the signal) number of random lin- Pix) = 1;[1P(xz) N H[p(b(a?l) + A =pote)l. @)

ear projections of the signal, and subsequently recortstgic

computationally the signal. In particular, it has been smow Note that our analysis applies as well to non-iid signaldiwit

[d, 2] that this reconstruction is possible and computationempirical distribution of components convergingd#@r), as

ally feasible in many cases usirig-minimization based al- discussed e.g. in [14]. For concreteness, here we shall use a
gorithms. It is often the case in practical applications thaGaussian(z) of zero mean and unit variance. Although our
the linear transform itself is known only approximatelyr fo results depend guantitatively on the formgfr), the over-
instance this is the case if calibration has not been done peall qualitative picture is robust with respect to this cleic
fectly. Several works have analyzed the performancé of We further assume that the parametersfgk) are known
regularization based algorithm under matrix uncertaiafy, (if this is not the case they can be learned via expectation-
[3.[4] and references therein. In this paper we shall useaast maximization [8/ 1B 15]). One could use an approximately
a Bayesian approach. In this framework CS under matrix unsparse signal as in [16] as well.

certainty was studied recently by [5]. In particular thereus The M measurementg, are obtained via noisy linear

of [5] propose a generalization of the approximate messag@andom projections of the signal
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where we model the noisg, as a Gaussian random variable 05
with mean0 and variance\, and whereF® has iid random

components of meahand variancé /N. The parameter = 04t |
M /N is the measurement, or sampling, rate. 03 1
Additionally, we consider that the matrR is not known 02 | 1
perfectly, and that we know only its noisy version: T oql |
g o
, Bt X/ 3) or p=0.29 ——
i VI+tn o1l gzg%; e
whereX,,; is a white noise with meaf and varianced /N, 02} gzg;gé -
and wherep measures the uncertainty on the matrix. When 03 ‘ ‘ ‘  p=04 ——
n — 0, the measurement matrix is perfectly known (this is 'le-06 1e-05 0.0001 0001 001 0.1 1
the usual compressed sensing situation) whilerfors oo E

nothing is known about the measurement matrix. Assuming
a Gaussian distribution for the matrix elements and theenoisFig. 1. The potential®(F), eq. [8), for measurement rate
X, we obtain the posterior probability of one matrix elementa = 0.5, matrix uncertainty) = 10—, and noise\ = 10710,
P(F};|F},;) to be a Gaussian with mean and variance for different values of density. The global maximun®(E*)
determines the values of the Bayes-optielE = E*. As
the density varies the valug*(p) has a discontinuity which is
eI+’ HOON(I+n) usually referred to as a “first-order” or “discontinuous’gse

) ) transition. AMP algorithms are performing a steepest ascen

Our goalis to reconstruct the sigrehased on the knowl- ¢ 1he hotential and get trapped at the maximum with the

edge ofy andF". The Bayes-optimal estimate of a signal |, 4est value of E, instead of reaching the global one (sge e.

x*,Nthat mini*inzes the mean-squared error (MSBE = o caqe, — (.33). The appearance of this trapping local
2= (si — =)/ with the original signas, is given by maxima is referred to as the “spinodal” transition.

F
F =t Spi = ——— (4)

xr = /dxi x; vi(x;), (5)
. . . . with
wherey; (z;) is the marginal distribution af; with respect to:
n o(l-D)
1 0,\2 D=— y = . 9
P(x|y,F') = % /dFOP(F0|F’)e—ﬁ(Y—F )", (6) 1+7 "TATE+(p-E)D ©
Note how closely related is this expression to the one dérive
3. REPLICA METHOD: OPTIMUM in [13] for the usual compressed sensing with known mea-
RECONSTRUCTION BOUNDS surement matrix (which is recovered taking-= 0).

The potential[(B) is shown in Fig] 1. Maximizing the po-
The MSE obtained from the Bayes-optimal approach can bgntial, one obtains the Bayes-optimal MSE which we show
computed in the limit of largeV via the replica method. Al- in Fig.[2 as a function of for different densitiep. We see a
though this method is in general non-rigorous, it is some$m phenomenology similar to that described in[13, 16] for othe
possibles to prove that the results derived from it are exactypes of noise. Because of a two-maxima shape of the func-
seel[9.10, 11,12]8, 13]. We shall leave out a detailed derivaion ®(F), the Bayes-optimal MSE displays a sharp transition
tion and refer instead to|[8, 113] for a very similar compwiati  separating a region of parameters with a small MSE, compa-
The result is that in the large signal limit, the MSE is given b rable tomax(A,n), from a region with a large(1) value
of the MSE. In this second region of parameters compressed
sensing technics —regardless of the reconstruction method
) o will not be useful. This is a “first order” phase transition.
where the “potential® () is given by Another important transition (the “spinodal”) that can be
o A+p studied from the form of the potential functidn(F) is the
@(E):—i[log [A+E+(p— E)DH ATE+(p—E)D } appearance of a high-MSE local maxima. Since the AMP al-
p—E)D] gorithm performs a steepest ascent ind{&) function (see

MSE(a, p, A, 1) = argmax &(E), @)

p 22m 7 . .. . .
+ (1-p) /Dz log {1 —p+ ew} e.g. [13]) this transition separates the region of pararadite
vm+1 which the performance of AMP will be asymptotically opti-
P 22m mal from the one where AMP is suboptimal. An important
+ p/DZ log {1 Pt Jmaio ] ) () feature of this transition, shown in Fig. 3, is that its piosit



1 0.45
01 [0.42 F !
0.39 |
0.01 036 |
0.33 | =
& o001 |03 ‘ — ¥
s ’ 1le-08 1e-06 0.0001 0.0 \Z
00001 ¢ p=0.315 —— Donoho-Tanner transition ------
p=0.31 —— 02 L~ First-order transition, no noise ]
1e-05 + p=0.3 1 T AMP Spinodal, o noisg -
p=0.28 —— First-order transition, r]:10'4,A:10’6 _—
p=0.2 —— 0 ‘ AMP Spinodal, n=10"",A=10"" "
le-06 : : : !
1le-06  1e-05  0.0001  0.001 0.01 0.1 0 0.2 0.4 0.6 0.8 1
n o=M/N

Fig. 2. Bayes-optimal MSE for = 0.5, A = 10-9 asa Fig. 3. The phase diagram “a la” Donoho-Tanrlerl[17] in the

function of matrix uncertainty for different densitieg. The  limit of large signals,N' — oo. The horizontal axis is the
MSE of the trapping local maximum is shown in dashed line Sampling ratiod/ /N and the vertical one measures the gain
The results of the AMP algorithm on some instances are als#/M provided by compressed sensing. The dotted black line
shown (points, done witt' = 20000). The results of these is the transition for the&; reconstruction [17] in zero noise.
AMP runs (points) agree perfectly with the prediction (e  The blue lines (from([8, 13]) show the location of the spin-
In the inset, we show the location of the two phase transitionodal (dotted blue) and first-order (full blue) phase traosg

in the p, 1 plane: the upper line determines the “first-order”for the noiseless Bayesian approach. While a perfect recon-
threshold beyond which the optimal-MSE suddenly degradestruction (MSE®) can be obtained in principle unjil = «,
while the lower line is the “spinodal” transition that matke ~ the AMP algorithm allows such perfect reconstruction only
degradation of the performance of AMP. Note that the spinUp to the spinodal line (dotted blue). The noisy counterpart

odal is almost independent of the noigén a large range of Of these two transitions is shown in red, using= 10"
values. andn = 1076, While the region where a good reconstruc-

tion is possible (below the full red line) has shrunk a log th
spinodal line (dotted red line) that marks the onset of good

_ ) performance of AMP is left almost unchanged bejow 0.8
is only very weakly dependent on the value of the matrix Unyemonstrating the robustness of the AMP to noises.
certainty. This means that the performance of AMP is ex-

tremely robust to matrix uncertainty The same result was
also obtained for additive measurement noise

in [13] and fo I . . ]
approximate sparsity i [16]. fows (for the derivation with these notations see€ [13]):

V= S w2, (10)
4. ROBUST MESSAGE-PASSING ALGORITHM # ( »
t+1 ¢ \Yp — Wy 2t

The Bayesian approach to compressed sensing combined with w, = Z Flui ai = Vit Z Fravi, (11)
belief propagation based reconstruction algorithm leadse lth ’
so-called approximate message passing (AMP) algorithm as (2?1)2 = =——5. (12)
first derived in [6] for the minimization of;, and subse- Zu Fii
qguently generalized in [18] [7, 13]. This approach was adhpte 1 . ZH Fui(y, — wfjl)
by Parker, Cevher and Schniter to treat the matrix unceytain R; = o+ S FZ ’ (13)
MU-AMP in [B]. Here we shall consider a version of the . 1o Ht-ﬁ-l
canonical AMP, that we call robust-AMP, that turns out to ai ™t = fa (DA R, (14)
be robust to noisy measurement and matrix uncertainty, so vttt = f. ((Eﬁl)?,}gﬁl) . (15)

that it can be used indifferently of the presence or absence ) .
of noise and matrix uncertainty. We show in the next sectiory/here only the functiong, and f. depend explicitly on the
that robust-AMP and MU-AMP are equivalent in the limit of modelP(x):
infinite systems. 5 _ 5

For every measurement compongnive define one real fa(¥7, R) = /dz“w\/l(E ), (16)
numberw,,, for each signal componentve define four real ) B ) ) 5 o
numbersy;, R;, a;, v;. These guantities are updated as fol- fe(X7,R) = /dfm M(E%, R, x) = fo(X%R), (17)



whereM (32, R, x) is the following probability distribution 01

4
1 1 (e~ R)> 0.01 | m
M3 R, x) = = P(z) e "mr . (18) -
2(22, R) vV 2 0.001 +
The explicit expression fof,, and f.. for the Gauss-Bernoulli |,  0.0001 +
signal is given in[[1B] while the case of approximate spgrsit 2
4 : . A le-05 | ,
was considered ir_[16]. The above equations are initialized ORI
with a!=0 = 0, /=0 = p, /=" = y,, then the equations are 1e-06 —GS—_%-ifgc}Qosn’l—l%f-’lg
. , =0.25 A=10"° n=10"
iterated t|_|| convergence. . . 16-07 | =025 pe10™ 2:10.3
The difference between the present algorithm with respect 0=0.2 A=10"* n=10"3
to the more common version of AMP is in the way the esti- 1le-08 o 1‘0 2‘0 2 ‘ 4‘0 50

mate of the current error on the measurement element is com-
puted in eq.[(Z0). Most previous works (e.d. [7] 13]) used

_ t+1 _ 2 0t . . . .
ap dependent vector, ™ = A + >, F;v; in the_case of Fig. 4. Comparison of the time evolution of MSE computed

With density evolution and the one found numerically using
$bust-AMP for systems of siz& = 25000, p = 0.1. The
agreement between theoretical predictions (g. (19)lifa)

with the data from the AMP algorithm (points) is algorithm.
The arrows show the MSE obtained usiigninimization on

he same instances, for comparison. The better performance
f the AMP approach ovéf is clear.

the original paper [6] used a value precomputed by the sta
evolution. The modification done by the authors of ref. [5]
to incorporate the effect of matrix uncertainty is (in outao
tion) VItt = A+ 37, Frol+ 3, (bi+af)n/[N(1+n)]. As
shown in ref.[[5] this leads to a very efficient algorithm with
matrix uncertainty. The expression we use instead in(eg). (1
was also proposed inl[6]. Perhaps surprisingly, it is equiva
lent to the one of ref[[5] when the system si¥e— co even

in the case of matrix uncertainty. The advantage of expres-

sion [I0) is that it is not need to explicitly know the value of A + E* + (p — E*)D in the limit N — oo both for the ex-

n andAl¥: the algorithm automatically incorporates the errorspression in ref.[[5] and in egl_(L0). From eQ.](19), one can
coming from the uncertainty on the matrix and the measurealso derive that the evolution is equivalent to a steepest as
ment; and hence we are using the same code regardless gent of the potentiap(£) obtained from the replica method
presence or absence of noise and/or matrix uncertainty. We eq. [8). This underlines the importance of the spinodail-tr

thus refer to algorithn{{10J-(15) as the “robust’-AMP. sition illustrated on Fig$.1L]2, afdl 3. In particular we dest t
the region where the AMP converges to the Bayes-optimal
5 DENSITY EVOLUTION value of the MSE is quite large, and notably larger than the

region in which the/; minimization is able to give precise re-

The AMP approach is amenable to asymptofié (- oo) construction. Another point worth noting is that the looati
analysis in the case of i.i.d. random measurement matricé¥ the spinodal depends only very weakly to the value of the
using a method known as the “cavity method” (in statisticalnoise, for a large range of matrix and measurement noise (see
physics) [9], the “density evolution” in coding [L9], andeth inset of Fig[2 and Fid.]3): this shows that the robust from of
“state evolution” in the context of C$1[6, 20]. We shall not the AMP algorithm is indeed robust to noise(s).

detail the computation here, it goes in the same lines as in

[13]. Given the parameteys a, n, A, the MSE follows: 6. CONCLUSIONS

Rl — /da:P(a:)/szc(l/mt,a: +z/v/mt), (19) We have computed the Bayes-optimal value of the MSE for
the reconstruction of sparse Gauss-Bernoulli signalsés-pr

ence of matrix uncertainty with the replica method, and con-
sider a variant of the AMP algorithm robust to such uncer-

eq. [I7). The comparison between the evolution of the MS inty and to measurement noise. Finally, we have shown that

in the algorithm and eq[(19) is shown on Hig. 4; the agree- MP allows one to match the optimum MSE in alarge region
. . -of parameters, and that the region is very weakly sensitive t
ment is very good. Note that we have also applied the densit

evolution to the AMP algorithm with matrix uncertainty of heasurement or matrix noises. Note that the present asalysi

X . ._applies to random i.i.d. measurement matrices; it is alss po
[5], and found that it obeys asymptotically the same equatio _. . .
(). More specifically, the ter® from eq. [I0) evolves as sible to use the seeded_spaually coupled measurement m_atr|
' ' ' ces of [8/ 18, 14] and this would lead to an even larger region
1Of courseA andn can be learned with expectation maximization within Of optimality-matching performance for AMP.
the MU-AMP [8,[13] 15], but this adds considerable compatel time.

wherem! follows eq. [8), withE* on the right hand side,
E'*=0 = p, Dz is a Gaussian integral, anfl is defined by
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