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We study how the degree of symmetry in the couplings influences the performance of
three mean field methods used for solving the direct and inverse problems for generalized
Sherrington-Kirkpatrick models. In this context, the direct problem is predicting the po-
tentially time-varying magnetizations. The three theories include the first and second order
Plefka expansions, referred to as naive mean field (nMF) and TAP, respectively, and a mean
field theory which is exact for fully asymmetric couplings. We call the last of these simply
MF theory. We show that for the direct problem, nMF performs worse than the other two
approximations, TAP outperforms MF when the coupling matrix is nearly symmetric, while
MF works better when it is strongly asymmetric. For the inverse problem, MF performs better
than both TAP and nMF, although an ad hoc adjustment of TAP can make it comparable
to MF. For high temperatures the performance of TAP and MF approach each other.
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1. Introduction

Predicting the dynamical properties of a disordered system given a specific reali-
sation of its parameters is an old and important problem in statistical mechanics.
This is what one can call a direct problem. Apart from being important on its own,
solving the direct problem is also a crucial step in solving the inverse problem: in-
ferring the parameters of a system from measurements of its dynamics. With the
rapid advance of methods for observing the dynamics of biological systems com-
posed of many elements, the inverse problem has received a lot of recent attention.
This line of research has allowed inferring functional and physical connections in
neuronal networks [1–5], gene regulatory networks [6] and protein residue contacts
[7].
A useful platform for studying the inverse problem is a dynamical version of the

Sherrington-Kirkpatrick (SK) model: a set of N classical spins, si = ±1 subject
to a potentially time-varying external field hi(t) with couplings Jij between them
and a stochastic update rule. In the direct problem one tries to predict the magne-
tizations mi(t) given the coupling and fields. In the inverse problem one does the
opposite, i.e. one infers the couplings and the fields from measured magnetizations
and correlations.
When the system is in equilibrium and the distribution of states follows the

Boltzmann distribution, several approaches for both direct and inverse problems
have been developed. These include both exact and approximate iterative algo-
rithms, such as Boltzmann learning and Susceptibility propagation [8, 9] relating
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the magnetizations to model parameters, as well as closed-form equations based on
naive mean field (nMF) and TAP [10, 11] equations for the SK model. Motivated
by the fact that biological systems are usually out of equilibrium, some recent
work has focused on reconstructing the parameters of a dynamical Ising spin glass
model obeying either synchronous or asynchronous updating from observing its
out-of-equilibrium dynamics [5, 12, 13].
In this paper, we investigate how three recently proposed mean field methods

for the direct and inverse problems perform on models with different degrees of
symmetry in their coupling matrices. The three methods are the nMF and TAP
equations, derived using the high-temperature Plefka expansions of the generating
functional to first order and second order [14], and a mean field theory (denoted
simply MF) [13] that is exact for the SK model with fully asymmetric couplings.

2. Solutions to the direct and inverse problems

We consider a model in which the probability of being in state s at time step t,
pt(s), is given by

pt+1(s) =
∑

s′

Wt[s; s
′]pt(s

′) (1a)

Wt[s; s
′] =

∏

i

exp(siθi)

2 cosh θi
(1b)

θi(t) = hi(t) +
∑

j

Jijs
′

j(t). (1c)

For the choice of couplings Jij , we follow [15], taking

Jij = Jsym
ij + kJasym

ij (2)

where Jsym
ij = Jsym

ji is the symmetric part of the couplings while Jasym
ij = −Jasym

ji is

the antiymmetric part. All the couplings Jsym
ij and Jasym

ij are drawn independently
from a zero-mean Gaussian distribution with variance

[Jsymm
ij ]2 = [Jasym

ij ]2 =
g2

(1 + k2)N
. (3)

With Eqs. 2 and 3, the couplings Jij have variance of g2/N and the degree of
symmetry is controlled by k: for k = 0 the model is fully symmetric (Jij = Jji)
while for k = 1, it is fully asymmetric (Jij independent of Jji).
The direct problem consists in estimating the instantaneous magnetization of

spin i at time t, mi(t). The estimation obtained from the nMF, TAP and MF are
respectively:

mi(t+ 1) = tanh
[

hi(t) +
∑

j

Jijmj(t)
]

(4a)
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mi(t+ 1) = tanh
[

hi(t) +
∑

j

Jijmj(t)−mi(t+ 1)
∑

j

J2
ij(1−m2

j(t))
]

(4b)

mi(t+ 1) =

∫

dx√
2π

e−x2/2 tanh
[

hi(t) +
∑

j

Jijmj(t) + x
√

∆i(t)
]

(4c)

where in the last equation

∆i(t) =
∑

j

J2
ij(1−m2

i (t)) . (5)

For deriving Eqs. 4a and 4b, i.e. nMF and TAP, one first writes down the gener-
ating functional for the process defined by Eq. 1, performs a Legendre transform to
fix the magnetizations and expands the results for small g (i.e. high temperature).
To the first order, this expansion gives the nMF equations, Eq. 4a. Keeping terms
up to the second order yields a correction to the nMF equations resulting in the the
TAP equations, Eq. 4b, for this dynamical model. nMF and TAP are, therefore,
high temperature expansions for an arbitrary set of couplings, with no assumption
about their distribution or its degree of symmetry. The third equation is derived
for arbitrary g, but under the mean-field assumption that at each time step the
fields acting on the spins are independent Gaussian variables. This is exact for this
SK model when the coupling matrix is fully asymmetric i.e. when k = 1.
These direct equations can also be used for solving the inverse problem. The

idea is to use the data in order to measure the magnetizations mi(t), the equal
time correlations Cij = 〈δsi(t)δsj(t)〉, and the time-delayed correlations Dij =
〈δsi(t + 1)δsj(t)〉, where δsi(t) = si(t) − mi(t). For the process in Eq. 1, one can
write the time-delayed correlations as

Dij = 〈tanh
[

θi(t)
]

sj(t)〉 − 〈tanh
[

θi(t)
]

〉〈sj(t)〉. (6)

To derive the inverse TAP and nMF, one then uses Eq. 6, expands the tanh around
mi that satisfies one of the direct equations 4a and 4b. In the case of MF, one writes
an expression for the joint distribution of θi(t) and θj(t) that is exact for a fully
asymmetric SK model. This joint distribution can then be used to relate JD to C

in the limit of small Cij ; for details see [5, 13]. Within all three approximations,
nMF, TAP, and MF, the resulting expression takes the form

D = AJC , (7)

where the matrix A is a diagonal matrix that depends on the approximation:

AnMF
ij = δij(1−m2

i ) , (8a)

ATAP
ij = δij(1−m2

i )(1 − Fi) , (8b)

AMF
ij = δij

∫

dx√
2π

e−x2/2
[

1− tanh2(hi(t) +
∑

j

Jijmj + x
√

∆i)
]

. (8c)
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In Eq. 8b Fi satisfies a cubic equation. For details see [5] and [13]. Not surprisingly,
expanding Eq. 8c to linear or second order in Jij yields A

nMF and ATAP in Eqs. 8a
and 8b, respectively.
Eq. 7 can be solved for J = A−1DC−1, provided one has enough data so that

the estimation of C is good, allowing its numerical inversion.

3. Effect of Symmetry

As mentioned before, for the direct problem, we expect that the MF becomes exact
for k = 1 for any coupling strength g. TAP equations should also become exact
for k = 0 in the limit of weak couplings. This is shown in Fig. 1, where we plot
the mean squared error in predicting the magnetizations at time t + 1 given the
magnetizations at time t. This is done both for a constant field and for an external
field that varies sinusoidally with time. As can be seen in this figure, for both types
of external fields, TAP equations outperform the other two methods for small k.
As temperature is increased, all three approximations perform better and become
almost equally good. As k increases, MF wins over TAP while nMF performs worse
than both of them.
The situation for the inverse problem is slightly more complicated. This is be-

cause, for strong couplings, the cubic equation that Fi solves develops complex
roots. In this case one can take three approaches: (i) take the nMF result, (ii) take
the real part of the solution, (iii) take the solution for the largest g for which the
solutions are real. This value can be shown to be Fi = 1/3. The results for the
last two strategies almost coincide, with strategy (iii) performing slightly better in
lower temperatures, so we chose this one. In strategy (i) the results just coincide
with the nMF approach after the temperature at which the cubic equation for Fi

develops complex roots. The results from strategy (iii) are shown in Fig. 2. It is
clear from this figure that nMF always performs worse than the other two and
that the difference between the three methods vanishes in the high-temperature
limit. On the other hand, MF is superior, as expected, when one gets closer to the
asymmetric case i.e. for k is close to 1. The TAP result has a more complicated
behavior, due to the intrinsic limitations imposed by the lack of real solutions of
the cubic equation at strong couplings. However, one can notice that, when k is
close to zero, there is a range of couplings g where TAP becomes better than MF
as it is expected.
As can be seen in the right column of Fig. 2, the mean squared error

(J infered
ij − J real

ij )2 becomes larger for non-zero external fields. This is a general fea-

ture of all three methods. Large fields and/or couplings are estimated with larger
errors than small ones. This is because errors in the estimation of the empirical
magnetizations/correlations, when the later are close to ±1, produce large errors
in the estimation of the fields/couplings (consider for example, in zeroth order
approximation, a sigmoid map between mi and hi , and cij and Jij). Numerical
simulations show that, for large external field amplitude, these errors become so
important that the differences between the three methods are insignificant.

4. Conclusions

Within the mean field approaches that we have studied, the solution of the inverse
problem derives from the solution of the direct problem. We have studied here
three methods that provide an approximate solution to the direct problem in the
case of systems with infinite range interactions. We have explored their behaviors
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on both the direct and the inverse problem in the case of SK models with different
degrees of symmetry of the interactions. As expected, the MF approach is the best
one when the degree of asymmetry is large enough, but the TAP approach turns
out to be slightly better in some range of coupling strength when the couplings are
more symmetric. The nMF approach is just a first order approximation to both
MF and TAP and is systematically worse than the other two methods.
As noted before, the derivation of inverse nMF and TAP rely on expanding the

tanh in the around the solutions of the nMF and TAP. This expansion is not
required for the MF solution: in the case with the assumption of full asymmetry,
the joint distribution of the local field to each pair of spins will be Gaussian and
can be easily calculated. It is therefore possible to write an exact equation relating
Dij to Cij and the couplings which in the limit of small Cij can be linearized and
takes the form of Eq. 7. It would be interesting to see if a similar approach can be
done within the TAP framework: calculate the joint distribution of the local fields
in a systematic small coupling expansion, and use the same procedure done in MF
to relate Dij to Cij .
In real applications, for instance in neural data analysis or gene regulation net-

work reconstruction, one does not deal with data generated from a model with the
particular size dependence of the couplings of the SK model. Our previous work
shows that TAP and nMF perform at the same level in identifying the connections
of a simulated neural network, and they both perform worse than the exact iter-
ative Boltzmann like learning rule that one can write down for the dynamical SK
model [5, 16]. We will leave the comparison of TAP, MF and the exact learning on
biological data to future work.
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Figure 1.
LEFT PANELS: Mean squared error of the three methods for predicting the magnetizations at time t given

at time t− 1, averaged over spins and times, (mpredicted
i

(t) −mmeasured
i

(t))2 . This mean squared error is
plotted as a function of g for a system of size N = 50 with a temporally constant field drawn independently
for each spin from a normal distribution. We have used 100 time steps and 50000 repeats to calculate
the experimental magnetizations and have averaged the errors over 10 realizations of the couplings. The
different figures correspond to different values of k. From top to bottom k = 0, 0.25, 0.5, 0.75, 1. RIGHT
PANELS: The same but with the addition of a sinusoidal external field of period 10 time steps and
amplitude 0.5.
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Figure 2.

LEFT PANELS: Mean squarre error of the three methods on the infered couplings (J infered
ij

− Jreal
ij

)2 as

a function of g for systems of size N = 100 with zero external field, given P = 100000 patterns, averaged
over 10 realizations of the couplings. The different figures correspond to different values of k. From top to
bottom k = 0, 0.25, 0.5, 0.75, 1. RIGHT PANELS: The same but with the addition of a sinusoidal external
field of period 10 time steps and amplitude 0.5.


