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Compressed sensing has triggered a major evolution in signal acquisition. It consists of sampling a

sparse signal at low rate and later using computational power for the exact reconstruction of the signal, so

that only the necessary information is measured. Current reconstruction techniques are limited, however,

to acquisition rates larger than the true density of the signal. We design a new procedure that is able to

reconstruct the signal exactly with a number of measurements that approaches the theoretical limit, i.e.,

the number of nonzero components of the signal, in the limit of large systems. The design is based on the

joint use of three essential ingredients: a probabilistic approach to signal reconstruction, a message-

passing algorithm adapted from belief propagation, and a careful design of the measurement matrix

inspired by the theory of crystal nucleation. The performance of this new algorithm is analyzed by

statistical-physics methods. The obtained improvement is confirmed by numerical studies of several cases.

DOI: 10.1103/PhysRevX.2.021005 Subject Areas: Complex Systems, Computational Physics, Statistical Physics

I. INTRODUCTION

The ability to recover high-dimensional signals using
only a limited number of measurements is crucial in
many fields, ranging from image processing to astron-
omy or systems biology. Examples of direct applications
include speeding up magnetic resonance imaging without
the loss of resolution, sensing and compressing data
simultaneously [1], and the single-pixel camera [2].
Compressed sensing is designed to directly acquire
only the necessary information about the signal. This is
possible whenever the signal is compressible, that is,
sparse in some known basis. In a second step one uses
computational power to reconstruct the signal exactly
[1,3,4]. Currently, the best known generic method for
exact reconstruction is based on converting the recon-
struction problem into one of convex optimization,
which can be solved efficiently using linear program-
ming techniques [3,4]. This so-called ‘1 reconstruction is
able to reconstruct accurately, provided the system size
is large and the ratio of the number of measurements M
to the number of nonzero elements K exceeds a specific
limit which can be proven by careful analysis [4,5].
However, the limiting ratio is significantly larger than 1.
In this paper, we improve on the performance of ‘1 recon-
struction, and in the best possible way: We introduce a new
procedure that is able to reach the optimal limitM=K ! 1.

This procedure, which we call seeded belief propagation
(s-BP), is based on a new, carefully designed, measurement
matrix. It is very powerful, as illustrated in Fig. 1. Its
performancewill be studied herewith a joint use of numeri-
cal and analytic studies using methods from statistical
physics [7].

II. RECONSTRUCTION IN
COMPRESSED SENSING

The mathematical problem posed in compressed-
sensing reconstruction is easily stated. Given an unknown
signal which is an N-dimensional vector s, we make M
measurements, where each measurement amounts to a
projection of s onto some known vector. The measure-
ments are grouped into an M-component vector y, which
is obtained from s by a linear transformation y ¼ Fs.
Depending on the application, this linear transformation
can be, for instance, associated with measurements of
Fourier modes or wavelet coefficients. The observer
knows the M� N matrix F and the M measurements y,
withM<N. His aim is to reconstruct s. This is impossible
in general, but compressed sensing deals with the case
where the signal s is sparse, in the sense that only K <N
of its components are nonzero. We shall study the case
where the nonzero components are real numbers and the
measurements are linearly independent. In this case, exact
signal reconstruction is possible in principle whenever
M � K þ 1, using an exhaustive enumeration method
which tries to solve y ¼ Fx for all ðNKÞ possible choices

of locations of nonzero components of x: Only one
such choice gives a consistent linear system, which can
then be inverted. However, one is typically interested
in instances of large-size signals where N � 1, with
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M ¼ �N and K ¼ �0N. The enumeration method solves
the compressed-sensing problem in the regime where
measurement rates, � are at least as large as the signal
density, � � �0, but in a time which grows exponentially
with N, making it totally impractical. Therefore, � ¼ �0

is the fundamental reconstruction limit for perfect
reconstruction in the noiseless case, when the nonzero
components of the signal are real numbers drawn from a

continuous distribution. A general and detailed discussion
of information-theoretically optimal reconstruction has
been developed recently in [8–10].
In order to design practical ‘‘low-complexity’’ recon-

struction algorithms, it has been proposed [3,4] to find a
vector x which has the smallest ‘1 norm,

P
N
i¼1 jxij, within

the subspace of vectors which satisfy the constraints
y ¼ Fx, using efficient linear-programming techniques.

FIG. 1. Two illustrative examples of compressed sensing in image processing. Top: The original image, known as the Shepp-Logan
phantom, of size N ¼ 1282, is transformed via one step of Haar wavelets into a signal of density �0 � 0:15. With compressed sensing,
one is thus in principle able to reconstruct the image exactly with M � �0N measurements, but practical reconstruction algorithms
generally need M larger than �0N. The five columns show the reconstructed figure obtained from M ¼ �N measurements, with
decreasing acquisition rate �. The first row is obtained with the ‘1-reconstruction algorithm [3,4] for a measurement matrix with
independent identically distributed (iid) elements of zero mean and variance 1=N. The second row is obtained with belief propagation,
using exactly the same measurements as used in the ‘1 reconstruction. The third row is the result of the seeded belief propagation,
introduced in this work, which uses a measurement matrix based on a chain of coupled blocks (see Fig. 4). The running time of all
three algorithms is comparable. (Asymptotically, they are all quadratic in the limit of the large signal size.) In the lower set of images,
we took as the sparse signal the relevant coefficients after two-step Haar transform of the picture of Lena. Again for this signal, with
density �0 ¼ 0:24, the s-BP procedure reconstructs exactly down to very low measurement rates. (Details are in Appendix G; the data
is available online [6].)
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In order to measure the performance of this strategy, one
can focus on the measurement matrix F generated ran-
domly, with independent Gaussian-distributed matrix
elements of mean zero and variance 1=N, and the signal
vector s having density 0< �0 < 1. The analytic study of
the ‘1 reconstruction in the thermodynamic limit N ! 1
can be done using either geometric or probabilistic meth-
ods [5,11], or with the replica method [12–14]. The analy-
sis shows the existence of a sharp phase transition at a
value �‘1ð�0Þ. When � is larger than this value, the ‘1
reconstruction gives the exact result x ¼ swith probability
going to 1 in the large N limit; when �< �‘1ð�0Þ, the
probability that it gives the exact result goes to zero as N
grows. As shown in Fig. 2, �‘1ð�0Þ>�0 and therefore the

‘1 reconstruction is suboptimal: It requires more measure-
ments than would be absolutely necessary, in the sense
that, if one were willing to do brute-force combinatorial
optimization, no more than �0N measurements would be
necessary.

We introduce a new measurement and reconstruction
approach, designated the seeded belief propagation
(s-BP), that allows one to reconstruct the signal by a
practical method that needs only � �0N measurements.
We shall now discuss s-BP’s three ingredients: (1) a
probabilistic approach to signal reconstruction, (2) a
message-passing algorithm adapted from belief propaga-
tion [15], which is a procedure known to be efficient in
various hard computational problems [16,17], and (3) an

innovative design of the measurement matrix inspired
by the theory of crystal nucleation in statistical physics
and from recent developments in coding theory [18–21].
Some previous works on compressed sensing have
used these ingredients separately. In particular, adapta-
tions of belief propagation have been developed for the
compressed-sensing reconstruction, both in the context
of ‘1 reconstruction [11,22,23] and in a probabilistic
approach [24]. It is the combined use of these three
ingredients that allows us to reach the � ¼ �0 limit.

III. A PROBABILISTIC APPROACH

For the purpose of our analysis, we consider the case
where the signal s has independent identically distributed
(iid) components: P0ðsÞ¼

Q
N
i¼1½ð1��0Þ�ðsiÞþ�0�0ðsiÞ�,

with 0<�0 < 1. In the large-N limit, the number of non-
zero components is �0N. Our approach handles general
distributions �0ðsiÞ.
Instead of using a minimization procedure, we shall

adopt a probabilistic approach. We introduce a probability

measure P̂ðxÞ over vectors x 2 RN which is the restriction
of the Gauss-Bernoulli measure PðxÞ¼Q

N
i¼1½ð1��Þ�

�ðxiÞþ��ðxiÞ� to the subspace jy � Fxj ¼ 0 [25]. In
this paper, we use a distribution �ðxÞ, which is a
Gaussian with mean �x and variance �2, but other choices
for �ðxÞ are possible. It is crucial to note that we do not
require a priori knowledge of the statistical properties of

FIG. 2. Phase diagrams for compressed-sensing reconstruction for two different signal distributions. On the left, the �0N nonzero
components of the signal are independent Gaussian random variables with zero mean and unit variance. On the right, they are
independent �1 variables. The measurement rate is � ¼ M=N. On both sides, we show, from top to bottom: (a) The phase transition
�‘1 for ‘1 reconstruction [5,11,12] (which does not depend on the signal distribution). (b) The phase transition �EM-BP for EM-BP

reconstruction based for both sides on the probabilistic model with Gaussian�. (c) The data points which are numerical-reconstruction
thresholds obtained with the s-BP procedure with L ¼ 20. The point gives the value of � where exact reconstruction was obtained in
50% of the tested samples; the top of the error bar corresponds to a success rate of 90%; the bottom of the bar to a success of 10%. The
shrinking of the error bar with increasing N gives numerical support to the existence of the phase transition that we have studied
analytically. These empirical reconstruction thresholds of s-BP are quite close to the � ¼ �0 optimal line, and they move closer to it
with increasing N. The parameters used in these numerical experiments are detailed in Appendix E. (d) The line � ¼ �0 that is the
theoretical reconstruction limit for signals with continuous �0. An alternative presentation of the same data using the convention of
Donoho and Tanner [5] is shown in Appendix F.
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the signal: We use a value of � not necessarily equal to �0,
and the � that we use is not necessarily equal to �0. The
important point is to use � < 1 (which reflects the fact that
one searches for a sparse signal).

Assuming that F is a random matrix, either where all the
elements are drawn as independent Gaussian random var-
iables with zero mean and the same variance or are of the
carefully designed type of ‘‘seeding matrices’’ described
below, we demonstrate in Appendix A that, for any
�0-dense original signal s and any �> �0, the probability

P̂ðsÞ of the original signal goes to 1 when N ! 1. This
result holds independent of the distribution �0 of the
original signal, which does not need to be known. In
practice, we see that s also dominates the measure when
N is not very large. In principle, sampling configurations x
proportionally to the restricted Gauss-Bernoulli measure

P̂ðxÞ thus gives asymptotically the exact reconstruction in
the whole region �> �0. This idea stands at the root of our
approach and is at the origin of the connection with statis-
tical physics (where one samples with the Boltzmann
measure).

IV. SAMPLING WITH EXPECTATION-
MAXIMIZATION BELIEF PROPAGATION

The exact sampling from a distribution such as P̂ðxÞ,
Eq. (A2), is known to be computationally intractable [26].
However, an efficient approximate sampling can be per-
formed using a message-passing procedure that we now
describe [24,27–29]. We start from the general belief-
propagation formalism [17,30,31]: For each measurement
� ¼ 1; . . . ;M and each signal component i ¼ 1; . . . ; N,
one introduces a ‘‘message,’’ mi!�ðxiÞ, which is the

probability of xi in a modified measure where measure-
ment � has been erased. In the present case, the canonical
belief-propagation equations relating these messages can
be simplified [11,22–24,32] into a closed form that uses

only the expectation aðtÞi!� and the variance vðtÞi!� of the

distribution mðtÞi!�ðxiÞ (see Appendix B). An important

ingredient that we add to this approach is the learning
of the parameters in PðxÞ: the density �, and the mean �x
and variance �2 of the Gaussian distribution �ðxÞ. These
are three parameters to be learned using update equations
based on the gradient of the so-called Bethe free entropy,
in a way analogous to the expectation maximization
[33–35]. This leads to the expectation-maximization-
belief-propagation (EM-BP) algorithm that we will use
in the following discussion for reconstruction in com-
pressed sensing. It consists of iterating the messages
and the three parameters, starting from random messages

að0Þi!� and vð0Þi!�, until a fixed point is obtained. Perfect

reconstruction is found when the messages converge to
the fixed point where ai!� ¼ si and vi!� ¼ 0.

Like the ‘1 reconstruction, the EM-BP reconstruction
also has a phase transition. Perfect reconstruction is

achieved with probability 1 in the large-N limit if and
only if �> �EM-BP. Using the asymptotic replica
analysis, as explained below, we have computed the
line �EM-BPð�0Þ when the elements of the M� N
measurement matrix F are independent Gaussian ran-
dom variables with zero mean and variance 1=N and
the signal components are iid. The location of this
transition line does depend on the signal distribution
(see Fig. 2), contrary to the location of the ‘1 phase
transition.
Notice that our analysis is fully based on the case when

the probabilistic model has a Gaussian�. Not surprisingly,
EM-BP performs better when� ¼ �0 (see the left panel of
Fig. 2), where EM-BP provides a sizable improvement
over ‘1. In contrast, the right panel of Fig. 2 shows an
adversary case when we use a Gaussian � to reconstruct a
binary �0; in this case, there is nearly no improvement
over the ‘1 reconstruction.

V. DESIGNING SEEDING MATRICES

In order for the EM-BP message-passing algorithm to be

able to reconstruct the signal down to the theoretically

optimal number of measurements � ¼ �0, one needs to

use a special family of measurement matrices F that we

call ‘‘seeding matrices.’’ If one uses an unstructured F, for
instance, a matrix with independent Gaussian-distributed

random elements, EM-BP samples correctly at large �. At
small enough �, however, a metastable state appears in the

measure P̂ðxÞ. The EM-BP algorithm is trapped in this

state and is therefore unable to find the original signal

(see Fig. 3), just as a supercooled liquid gets trapped in a

glassy state instead of crystallizing. It is well known in

crystallization theory that the crucial step is to nucleate a

large enough seed of crystal. This is the purpose of the

following design of F.
We divide the N variables into L groups of N=L

variables, and the M measurements into L groups. The

number of measurements in the p-th group is Mp ¼
�pN=L, so that M ¼ ½ð1=LÞPL

p¼1 �p�N ¼ �N. We

then choose the matrix elements F�i independently in

such a way that, if i belongs to group p and � to group

q, then F�i is a random number chosen from the normal

distribution with mean zero and variance Jq;p=N (see

Fig. 4). The matrix Jq;p is an L� L coupling matrix

(and the standard compressed-sensing matrices are ob-

tained using L ¼ 1 and �1 ¼ �). Using these new ma-

trices, one can shift the BP phase transition very close to

the theoretical limit. In order to get an efficient recon-

struction with message passing, one should use a large

enough �1. With a good choice of the coupling matrix

Jp;q, the reconstruction first takes place in the first block

and then propagates as a wave in the following blocks
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p ¼ 2; 3; . . . , even if their measurement rate �p is small.

In practice, we use �2 ¼ . . . ¼ �L ¼ �0, so that the total

measurement rate is � ¼ ½�1 þ ðL� 1Þ�0�=L. The

whole reconstruction process is then analogous to crystal

nucleation, where a crystal is growing from its seed (see

Fig. 5). Similar ideas have been used recently in the

design of sparse coding matrices for error-correcting

codes [18–21].

FIG. 3. When sampling from the probability P̂ðxÞ, in the limit of large N, the probability that the reconstructed signal x is at a
squared distance D ¼ P

iðxi � siÞ2=N from the original signal s is written as ceN�ðDÞ, where c is a constant and �ðDÞ is the free
entropy. Left: �ðDÞ for a Gauss-Bernoulli signal with �0 ¼ � ¼ 0:4 in the case of an unstructured measurement matrix F with
independent random Gaussian-distributed elements. The evolution of the EM-BP algorithm is basically a steepest ascent in �ðDÞ
starting from large values of D. It goes to the correct maximum at D ¼ 0 for large values of �, but it is blocked in the local maximum
that appears for �< �EM-BPð�0 ¼ 0:4Þ � 0:59. For �< �0, the maximum is not at D ¼ 0, and exact inference is impossible. The
seeding matrix F, leading to the s-BP algorithm, succeeds in eliminating this local maximum. Right: Convergence time of the EM-BP
and s-BP algorithms obtained through the replica analysis for �0 ¼ 0:4. The EM-BP convergence time diverges as �! �EM-BP with
the standard L ¼ 1 matrices. The s-BP strategy allows one to go beyond the threshold: Using �1 ¼ 0:7 and increasing the structure of
the seeding matrix (here, L ¼ 2, 5, 10, 20), we approach the limit � ¼ �0. (Details of the parameters are given in Appendix E.)

FIG. 4. Construction of the measurement matrix F for seeded
compressed sensing. The elements of the signal vector are split
into L (here, L ¼ 8) equal-sized blocks; the number of mea-
surements in each block is Mp ¼ �pN=L (here, �1 ¼ 1, �p ¼
0:5 for p ¼ 2; . . . ; 8). The matrix elements F�i are chosen as

random Gaussian variables with variance Jq;p=N if variable i is

in the block p and measurement � is in the block q. In the s-BP
algorithm, we use Jp;q ¼ 0, except for Jp;p ¼ 1, Jp;p�1 ¼ J1,

and Jp�1;p ¼ J2. Good performance is typically obtained with

relatively large J1 and small J2.

FIG. 5. Evolution of the mean-squared error at different times
as a function of the block index for the s-BP algorithm. Exact
reconstruction first appears in the left block whose rate �1 >
�EM-BP allows for seeded nucleation. It then propagates gradu-
ally block by block, driven by the free-entropy difference be-
tween the metastable and equilibrium states. After little more
than 300 iterations, the whole signal of density �0 ¼ 0:4 and size
N ¼ 50 000 is exactly reconstructed well inside the zone forbid-
den for BP (see Fig. 2). Here, we used L ¼ 20, J1 ¼ 20, J2 ¼
0:2, �1 ¼ 1:0, � ¼ 0:5.
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VI. ANALYSIS OF THE PERFORMANCE OF THE
SEEDED BELIEF PROPAGATION PROCEDURE

The s-BP procedure is based on the joint use of seeding-
measurement matrices and of the EM-BP message-passing
reconstruction. We have studied it with two methods:
direct numerical simulations and analysis of the perform-
ance in the large-N limit. The analytical result is obtained
by a combination of the ‘‘replica’’ method and the
‘‘cavity’’ method (also known as ‘‘density evolution’’ or
‘‘state evolution’’). The replica method is a standard
method in statistical physics [7], which has been applied
successfully to several problems of information theory
[17,28,36,37], including compressed sensing [12–14]. It
can be used to compute the free-entropy function � asso-

ciated with the probability P̂ðxÞ (see Appendix D). The
cavity method shows that the dynamics of the message-
passing algorithm is a gradient dynamics leading to a
maximum of this free entropy.

When applied to the usual case of the full F matrix with
independent Gaussian-distributed elements (case L ¼ 1),
the replica computation shows that the free-entropy func-
tion �ðDÞ for configurations constrained to be at a mean-
squared distance D has a global maximum at D ¼ 0 when
�> �0, which confirms that the Gauss-Bernoulli probabi-
listic reconstruction is in principle able to reach the optimal
compression limit � ¼ �0. However, for �EM-BP >�>
�0, where �EM-BP is a threshold that depends on the signal
and on the distribution PðxÞ, a secondary local maximum
of �ðDÞ appears at D> 0 (see Fig. 3). In this case, the
EM-BP algorithm converges instead to this secondary
maximum and does not reach exact reconstruction. The
threshold �EM-BP is obtained analytically as the smallest
value of � such that �ðDÞ is decreasing (Fig. 2). This
theoretical study has been confirmed by numerical mea-
surements of the number of iterations needed for EM-BP to
reach its fixed point (within a given accuracy). This con-
vergence time of EM-BP to the exact reconstruction of the
signal diverges when �! �EM-BP (see Fig. 3). For �<
�EM-BP the EM-BP algorithm converges to a fixed point
with strictly positive mean-squared error (MSE). This
‘‘dynamical’’ transition is similar to the one found in the
cooling of liquids which go into a supercooled glassy state
instead of crystallizing, and it appears in the decoding of
error-correcting codes [16,17] as well.

We have applied the same technique to the case of
seeding-measurement matrices (L > 1). The cavity
method allows us to analytically locate the dynamical
phase transition of s-BP. In the limit of large N, the
MSE Ep and the variance messages Vp in each block

p ¼ 1; . . .L, the density �, the mean �x, and the variance
�2 of PðxÞ all evolve according to a dynamical system
which can be computed exactly (see Appendix E). One can
see numerically if this dynamical system converges to the
fixed point corresponding to exact reconstruction (Ep ¼ 0

for all p). This study can be used to optimize the design of

the seeding matrix F by choosing �1, L, and Jp;q in such a

way that the convergence to exact reconstruction is as fast
as possible. In Fig. 3, we show the convergence time of
s-BP predicted by the replica theory for different sets of
parameters. For optimized values of the parameters, in the
limit of a large number of blocks L and large system sizes
N=L, s-BP is capable of exact reconstruction close to the
smallest possible number of measurements, �! �0. In
practice, finite-size effects slightly degrade this asymptotic
threshold saturation, but the s-BP algorithm nevertheless
reconstructs signals at rates close to the optimal one re-
gardless of the signal distribution, as illustrated in Fig. 2.
We illustrate the evolution of the s-BP algorithm in

Fig. 5. The nonzero signal elements are Gaussian with
zero mean, unit variance, density �0 ¼ 0:4, and measure-
ment rate � ¼ 0:5, which is deep in the glassy region
where all other known algorithms fail. The s-BP algorithm
first nucleates the native state in the first block and then
propagates it through the system. We have also tested the
s-BP algorithm on real images where the nonzero compo-
nents of the signal are far from Gaussian, and the results are
nevertheless very good, as shown in Fig. 1. This illustration
shows that the quality of the result is not due to a good
guess of PðxÞ. It is also important to mention that the gain
in performance in using seeding-measurement matrices is
really specific to the probabilistic approach: We have
computed the phase diagram of ‘1 minimization with these
matrices and found that, in general, the performance is
slightly degraded with respect to the phase diagram of
the full measurement matrices, in the large N limit. This
result demonstrates that it is the combination of the proba-
bilistic approach, the message-passing reconstruction with
parameter learning, and the seeding design of the measure-
ment matrix that is able to reach the best possible
performance.

VII. PERSPECTIVES

The seeded compressed-sensing approach introduced
here is versatile enough to allow for various extensions.
One aspect worth mentioning is the possibility to write the
EM-BP equations in terms of N messages instead of the
M� N parameters as described in Appendix C. This is
basically the step that goes from the relaxed-BP [24] to the
approximate-message-passing (AMP) [11] algorithm. It
could be particularly useful when the measurement matrix
has some special structure, so that the measurements y can
be obtained in many fewer than M� N operations (typi-
cally in N logN operations). We have also checked that the
approach is robust enough for the introduction of a small
amount of noise in the measurements (see Appendix H).
Finally, let us mention that, in the case where a priori
information on the signal is available, it can be incorpo-
rated in this approach through a better choice of �, which
can considerably improve the performance of the algo-
rithm. For signal with density �0, the worst case, which

KRZAKALA et al. PHYS. REV. X 2, 021005 (2012)

021005-6



we addressed here, is when the nonzero components of the
signal are drawn from a continuous distribution. Better
performance can be obtained with our method if these
nonzero components come from a discrete distribution
and one uses this distribution in the choice of �. Another
interesting direction in which our formalism can be ex-
tended naturally is the use of nonlinear measurements and
different types of noises. Altogether, this approach turns
out to be very efficient for both random and structured data,
as illustrated in Fig. 1, and offers an interesting perspective
for practical compressed-sensing applications. Data and
code are available online at [6].
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Note added.—During the review process for our paper,
we became aware of the work [38], in which the authors
give a rigorous proof of our result that the threshold � ¼
�0 can be reached asymptotically by the s-BP procedure.

APPENDIX A: PROOF OF THE OPTIMALITY OF
THE PROBABILISTIC APPROACH

Here we give the main lines of the proof that our
probabilistic approach is asymptotically optimal. We con-
sider the case where the signal s has iid components

P0ðsÞ ¼
YN
i¼1
½ð1� �0Þ�ðsiÞ þ �0�0ðsiÞ�; (A1)

with 0< �0 < 1. And we study the probability distribution

P̂ðxÞ ¼ 1

Z

YN
i¼1
fdxi½ð1� �Þ�ðxiÞ þ ��ðxiÞ�g

� YM
�¼1

��

�X
i

F�iðxi � siÞ
�
; (A2)

with a Gaussian �ðxÞ of mean zero and unit variance. We
stress here that we consider general �0, i.e., �0 is not
necessarily equal to �ðxÞ (and �0 is not necessarily equal
to �). The measurement matrix F is composed of iid
elements F�i such that, if � belongs to block q and i

belongs to block p, then F�i is a random number generated

from the Gaussian distribution with zero mean and vari-
ance Jq;p=N. The function ��ðxÞ is a centered Gaussian

distribution with variance �2.
We show that, with probability going to 1 in the large N

limit (at fixed � ¼ M=N), the measure P̂ (obtained with a
generic seeding matrix F as described in the main text) is
dominated by the signal if �> �0, �

0 > �0 [as long as
�0ð0Þ is finite].

We introduce the constrained partition function:

YðD;�Þ¼
Z YN

i¼1
ðdxi½ð1��Þ�ðxiÞþ��ðxiÞ�Þ

�YM
�¼1

��

�X
i

F�iðxi�siÞ
�
1

�XN
i¼1
ðxi�siÞ2>ND

�
;

(A3)

and the corresponding ‘‘free-entropy density’’: YðD; �Þ ¼
limN!1EFEs logYðD; �Þ=N. The notations EF and Es de-
note, respectively, the expectation value with respect to F
and to s. 1 denotes an indicator function, equal to one if its
argument is true, and equal to zero otherwise.
The proof of optimality is obtained by showing that,

under the conditions above, lim�!0YðD; �Þ=½ð�� �0Þ�
logð1=�Þ� is finite ifD ¼ 0 (statement 1), and it vanishes if

D> 0 (statement 2). This proves that the measure P̂ is
dominated by D ¼ 0, i.e., by the neighborhood of the
signal xi ¼ si. The standard ‘‘self-averageness’’ property,
which states that the distribution (with respect to the choice
of F and s) of logYðD; �Þ=N concentrates around YðD; �Þ
when N ! 1, completes the proof. We give here the main
lines of the first two steps of the proof.
We first sketch the proof of statement 2. The fact that

lim�!0YðD; �Þ=½ð�� �0Þ logð1=�Þ� ¼ 0 when D> 0 can
be derived by a first moment bound:

Y ðD; �Þ � lim
N!1

1

N
Es logYannðD; �Þ; (A4)

where YannðD;�Þ is the ‘‘annealed partition function’’
defined as

YannðD; �Þ ¼ EFYðD; �Þ: (A5)

In order to evaluate YannðD; �Þ, one can first compute the
annealed partition function in which the distances between
x and the signal are fixed in each block. More precisely, we
define

Zðr1; 	 	 	 ; rL; �Þ ¼ EF
Z YN

i¼1
fdxi½ð1� �Þ�ðxiÞ þ ��ðxiÞ�g

�YM
�¼1

��

�X
i

F�iðxi � siÞ
�

�YL
p¼1

�

�
rp � L

N

X
i2Bp

ðxi � siÞ2
�
:

By noticing that the M random variables a� ¼P
iF�iðxi � siÞ are independent Gaussian random varia-

bles, one obtains

Zðr1;			;rL;�Þ¼
YL
p¼1

�
2�

�
�2þ 1

L

XL
q¼1

Jpqrq

���N�p=2

�YL
p¼1

eðN=LÞc ðrpÞ; (A6)
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where

c ðrÞ ¼ lim
n!1

1

n
log

�Z Yn
i¼1
ðdxi½ð1� �Þ�ðxiÞ

þ ��ðxiÞ�Þ�
�
r� 1

n

Xn
i¼1
ðxi � siÞ2

��
: (A7)

The behavior of c ðrÞ is easily obtained by standard saddle-
point methods. In particular, when r! 0, one has c ðrÞ ’
1
2�0 logr.

Using (A6), we obtain, in the small � limit:

lim
N!1

1

N
Es logYannðD;�Þ

¼ max
r1;			;rL

�
�0

2

1

L

XL
p¼1

logrp� 1

L

XL
p¼1

�p

2
log

�
�2þ 1

L

XL
q¼1

Jpqrq

��
;

(A8)

where the maximum over r1; . . . ; rL is to be taken under the
constraint r1 þ . . .þ rL > LD. Taking the limit of �! 0
with a finite D, at least one of the distance rp must remain

finite. It is then easy to show that

lim
N!1

1

N
Es logYannðD;�Þ¼ logð1=�Þ

�
���0� 1

L
ð2�0 ��0Þ

�
;

(A9)

where �0 is the fraction of measurements in blocks 2 to L.
As �0 >�0, this is less singular than logð1=�Þð�� �0Þ,
which proves statement 2.

On the contrary, when D ¼ 0, we obtain from the same
analysis

lim
N!1

1

N
Es logYannðD; �Þ ¼ logð1=�Þð�� �0Þ: (A10)

This annealed estimate actually gives the correct scaling at
small �, as can be shown by the following lower bound.
When D ¼ 0, we define V 0 as the subset of indices i
where si ¼ 0, jV 0j ¼ Nð1� �0Þ, and V 1 as the subset
of indices i where si � 0, jV 1j ¼ N�0. We obtain a lower
bound on Yð0; �Þ by substituting PðxÞ with the factors
ð1� �Þ�ðxiÞ when i 2V 0 and with ��ðxiÞ when
i 2V 1. This gives

Yð0; �Þ> expfN½ð1� �0Þ logð1� �Þ þ �0 logð�Þ
� ð�=2Þ logð2�Þ þ ð�0 � �Þ log�Þ�g
�

Z Y
i2V 1

dui�ðsi þ �uiÞ exp
�
�1

2

X
i;j2V 1

Mijuiuj

�
;

(A11)

where Mij ¼
P

�N
�¼1 F�iF�j. The matrix M, of size �0N �

�0N, is a Wishart-like random matrix. For �> �0, generi-
cally, its eigenvalues are strictly positive, as we show
below. Using this property, one can show that, if

Q
i2V 1

�ðsiÞ> 0, the integral over the variables ui in

(A11) is strictly positive in the limit �! 0. The divergence
of Yð0; �Þ in the limit �! 0 is due to the explicit term
exp½Nð�0 � �Þ log�� in Eq. (A11).
The fact that all eigenvalues of M are strictly positive is

well known in the case of L ¼ 1 where the spectrum has
been obtained by Marčenko and Pastur [39]. In general, the
fact that all the eigenvalues of M are strictly positive is
equivalent to saying that all the lines of the �N � �0N
matrix F (which is the restriction of the measurement
matrix to columns with nonzero signal components) are
linearly independent. In the case of seeding matrices with
general L, this statement is basically obvious by construc-
tion of the matrices, in the regime where, in each block q,
�q > �0 and Jqq > 0. A more formal proof can be obtained

as follows. We consider the Gaussian integral

ZðvÞ ¼
Z Yn

i¼1
d�i exp

�
� 1

2

X
i;j;�

F�iF�j�i�j þ v

2

X
i

�2
i

�
:

(A12)

This quantity is finite if and only if v is smaller than the
smallest eigenvalue, 	min, of M. We now compute the
annealed average ZannðvÞ ¼ EFZðvÞ. If ZannðvÞ is finite,
then the probability that 	min � v goes to zero in the large
N limit. Using methods similar to the one above, one can
show that

2L

n
logEFZðvÞ ¼ max

r1;...;rp

�XL
p¼1
ðlogrp þ vrpÞ

� XL
p¼1

�p

�0

log

�
1þ 1

L

X
q

Jpqrq

��
: (A13)

The saddle-point equations

1

rp
þ v ¼ 1

L

XL
q¼1

�q

�0

Jqp

1þ 1
L

P
s
Jqsrs

(A14)

have a solution at v ¼ 0 (and by continuity also at v > 0
small enough), when 1

L

P
L
q¼1

�q

�0
¼ �

�0
> 1. (It can be found,

for instance, by iteration.) Therefore, 2Ln logEFZðvÞ is finite
for some v > 0 small enough, and therefore 	min > 0.

APPENDIX B: DERIVATION OF EXPECTATION-
MAXIMIZATION BELIEF PROPAGATION

In this and the next sections, we present the message-
passing algorithm that we used for reconstruction in com-
pressed sensing. In this section, we derive its message-
passing form, where OðNMÞ messages are being sent
between each signal component i and each measurement
�. This algorithm was used in [24], where it was called the
relaxed belief propagation, as an approximate algorithm
for the case of a sparse measurement matrix F. In the case
that we use here of a measurement matrix which is not
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sparse (that is, a finite fraction of the elements of F is

nonzero, and all the nonzero elements scale as 1=
ffiffiffiffi
N
p

), the
algorithm is asymptotically exact. We show here for com-
pleteness how to derive it. In the next section, we then
derive asymptotically equivalent equations that depend
only on OðNÞ messages. In statistical physics terms, this
corresponds to the TAP equations [27] with the Onsager
reaction term, which are asymptotically equivalent to the
BP on fully connected models. In the context of com-
pressed sensing, this form of equations has been used
previously [11], and it is called approximate message
passing (AMP). In cases when the matrix F can be com-
puted recursively (e.g., via fast Fourier transform), the
running time of the AMP-type message passing is
OðN logNÞ (compared to the OðNMÞ for the non-AMP
form). Apart from this speeding up, both classes of mes-
sage passing give the same performance.

We derive here the message-passing algorithm in the
case where measurements have additive Gaussian noise;
the noiseless case limit is easily obtained at the end. The

posterior probability of x after the measurement of y is
given by

P̂ðxÞ ¼ 1

Z

YN
i¼1
½ð1� �Þ�ðxiÞ þ ��ðxiÞ�

� YM
�¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2���

q e�ð1=2��Þðy��
P

N
i¼1 F�ixiÞ2 ; (B1)

where Z is a normalization constant (the partition function)
and �� is the variance of the noise in measurement�. The

noiseless case is recovered in the limit �� ! 0. The

optimal estimate, which minimizes the MSE with respect
to the original signal s, is obtained from averages of xi with

respect to the probability measure P̂ðxÞ. Exact computation
of these averages would require exponential time; belief
propagation provides a standard approximation. The ca-

nonical BP equations for probability measure P̂ðxÞ read

m�!iðxiÞ ¼ 1

Z�!i

Z �Y
jð�iÞ

mj!�ðxjÞdxj
�
e
�ð1=2��Þð

P
j�i

F�jxjþF�ixi�y�Þ2
; (B2)

mi!�ðxiÞ ¼ 1

Zi!� ½ð1� �Þ�ðxiÞ þ ��ðxiÞ�
Y

��

m
!iðxiÞ; (B3)

where Z�!i and Zi!� are normalization factors ensuring
that

R
dxim�!iðxiÞ ¼

R
dximi!�ðxiÞ ¼ 1. These are inte-

gral equations for probability distributions that are still
practically intractable in this form. We can, however,
take advantage of the fact that, after we properly rescale
the linear system y ¼ Fx in such a way that elements of y
and x are of Oð1Þ, the matrix F�i has random elements

with variance of Oð1=NÞ. Using the Hubbard-Stratonovich
transformation [40]

e�ð!2=2�Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2��
p

Z
d	e�ð	2=2�Þþði	!=�Þ (B4)

for! ¼ ðPj�iF�jxjÞ, we can simplify Eq. (B2) as follows:

m�!iðxiÞ ¼ 1

Z�!i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2���

q e�ð1=2��ÞðF�ixi�y�Þ2
Z

d	e�ð	2=2��Þ
Y
j�i

�Z
dxjmj!�ðxjÞeF�jxj=��ðy��F�ixiþi	Þ

�
: (B5)

Now we expand the last exponential around zero; because the term F�j is small inN, we keep all terms that are ofOð1=NÞ.
Introducing means and variances as new messages

ai!� 

Z

dxiximi!�ðxiÞ; (B6)

vi!� 

Z

dxix
2
i mi!�ðxiÞ � a2i!�; (B7)

we obtain

m�!iðxiÞ¼ 1

Z�!i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2���

q e�ð1=2��ÞðF�ixi�y�Þ2
Z
d	e�ð	2=2��Þ

Y
j�i

½eðF�jaj!�=��Þðy��F�ixiþi	ÞþðF2
�jvj!�=2�

2
�Þðy��F�ixiþi	Þ2�: (B8)
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Performing the Gaussian integral over 	, we obtain

m�!iðxiÞ ¼ 1
~Z�!i

e�ðx2i =2ÞA�!iþB�!ixi ;

~Z�!i ¼
ffiffiffiffiffiffiffiffiffiffiffi
2�

A�!i

s
eB

2
�!i=2A�!i ;

(B9)

where we introduce

A�!i ¼
F2
�i

�� þ
P
j�i

F2
�jvj!�

; (B10)

B�!i ¼
F�iðy� �

P
j�i

F�jaj!�Þ
�� þ P

j�i
F2
�jvj!�

; (B11)

and the normalization ~Z�!i contains all the xi-independent
factors. The noiseless case corresponds to �� ¼ 0.

To close the equations on messages ai!� and vi!�, we

notice that

mi!�ðxiÞ ¼ 1
~Zi!�

½ð1� �Þ�ðxiÞ þ ��ðxiÞ�

� e
�ðx2i =2Þ

P

��

A
!iþxi
P

��

B
!i

: (B12)

Messages ai!� and vi!� are, respectively, the mean and

variance of the probability distribution mi!�ðxiÞ. For gen-
eral �ðxiÞ the mean and variance (B6) and (B7) will be
computed using numerical integration over xi. Equations
(B6) and (B7) together with (B10)–(B12) then lead to
closed iterative message-passing equations.

In all the specific examples shown here and in the main
part of the paper, we have used a Gaussian�ðxiÞwith mean
�x and variance �2. We define two functions

faðX; YÞ ¼
�

�ðY þ �x=�2Þ
�ð1=�2 þ XÞ3=2

�

�
�
ð1� �Þe�½ðYþ �x=�2Þ2=2ð1=�2þXÞ�þð �x2=2�2Þ

þ �

�ð1=�2 þ XÞ1=2
��1

; (B13)

fcðX; YÞ ¼
�

�

�ð1=�2 þ XÞ3=2
�
1þ ðY þ �x=�2Þ2

1=�2 þ X

��

�
�
ð1� �Þe�½ðYþ �x=�2Þ2=2ð1=�2þXÞ�þð �x2=2�2Þ

þ �

�ð1=�2 þ XÞ1=2
��1 � f2aðX; YÞ: (B14)

Then the closed form of the BP update is

ai!� ¼ fa

�X

��

A
!i;
X

��

B
!i

�
;

ai ¼ fa

�X



A
!i;
X



B
!i

�
;

(B15)

vi!� ¼ fc

�X

��

A
!i;
X

��

B
!i

�
;

vi ¼ fc

�X



A
!i;
X



B
!i

�
;

(B16)

where the ai and vi are the mean and variance of the
marginal probabilities of variable xi.
As we discussed in the main text, the parameters �, �x,

and � are usually not known in advance. However, their
values can be learned within the probabilistic approach. A
standard way to do so is called expectation maximization
[33]. One realizes that the partition function

Zð�; �x;�Þ¼
Z YN

i¼1
dxi

YN
i¼1

�
ð1��Þ�ðxiÞ

þ �ffiffiffiffiffiffiffi
2�
p

�
e�½ðxi� �xÞ2=2�2�

�

�YM
�¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2���

q e�ð1=2��Þðy��
P

N
i¼1F�ixiÞ2 ; (B17)

is proportional to the probability of the true parameters �0,
�s, �0, given the measurement y. Hence, to compute the
most probable values of parameters, one searches for
the maximum of this partition function. Within the BP
approach, the logarithm of the partition function is the
Bethe free entropy expressed as [17]

Fð�; �x; �Þ ¼X
�

logZ� þX
i

logZi �X
ð�iÞ

logZ�i; (B18)

where

Zi¼
Z
dxi

Y
�

m�!iðxiÞ½ð1��Þ�ðxiÞþ �ffiffiffiffiffiffiffi
2�
p

�
e�½ðxi� �xÞ2=2�2��;

(B19)

Z� ¼
Z Y

i

dxi
Y
i

mi!�ðxiÞ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2���

q e
�½ðy��

P
i

F�ixiÞ2=2���
;

(B20)

Z�i ¼
Z

dxim�!iðxiÞmi!�ðxiÞ: (B21)

The stationarity condition of Bethe free entropy (B18)
with respect to � leads to
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� ¼
P

i
1=�2þUi

Viþ �x=�2 aiP
i½1� �þ �

�ð1=�2þUiÞ1=2 e
½ðViþ �x=�2Þ2=2ð1=�2þUiÞ��ð �x2=2�2Þ��1 ; (B22)

where Ui ¼ P

A
!i, and Vi ¼ P


B
!i. Stationarity with respect to �x and � gives

�x ¼
P

i ai

�
P
i
½�þ ð1� �Þ�ð1=�2 þUiÞ1=2e�½ðViþ �x=�2Þ2=2ð1=�2þUiÞ�þð �x2=2�2Þ��1 ; (B23)

�2 ¼
P

iðvi þ a2i Þ
�
P

i½�þ ð1� �Þ�ð1=�2 þUiÞ1=2e�½ðViþ �x=�2Þ2=2ð1=�2þUiÞ�þð �x2=2�2Þ��1 � �x2: (B24)

In statistical physics, conditions (B22) are known as
Nishimori conditions [34,36]. In the expectation maximi-
zation equations (B22)–(B24), these conditions are used
iteratively for the update of the current guess of parame-
ters. A reasonable initial guess is �init ¼ �. The value of
�0 �s can also be obtained with a special line of measure-
ment consisting of a unit vector; hence, we assume that,
given an estimate of �, the �x ¼ �0 �s=�. In the case where
the matrix F is random, with Gaussian elements of
zero mean and variance 1=N, we can also use the following
equation for learning the variance:

P
M
�¼1 y2�=N ¼

��0hs2i ¼ ��ð�2 þ �x2Þ.

APPENDIX C: AMP FORM
OF THE MESSAGE PASSING

In the large N limit, the messages ai!� and vi!� are

nearly independent of �, but one must be careful to keep
the correcting Onsager reaction terms. Let us define

!� ¼
X
i

F�iai!�; 
� ¼
X
i

F2
�ivi!�; (C1)

Ui ¼
X
�

A�!i; Vi ¼
X
�

B�!i: (C2)

Then we have

Ui ¼
X
�

F2
�i

�� þ 
� � F2
�ivi!�

’X
�

F2
�i

�� þ 
�

; (C3)

Vi ¼
X
�

F�iðy� �!� þ F�iai!�Þ
�� þ 
� � F2

�ivi!�

’X
�

F�i

ðy� �!�Þ
�� þ 
�

þ faðUi; ViÞ
X
�

F2
�i

1

�� þ 
�

:

(C4)

We now compute !�:

ai!� ¼ faðUi � A�!i; Vi � B�!iÞ

’ ai � A�!i

@fa
@X
ðUi; ViÞ � B�!i

@fa
@Y
ðUi; ViÞ:

(C5)

To express !� ¼
P

iF�iai!�, we see that the first correc-

tion term has a contribution in F3
�i and can be safely

neglected. On the contrary, the second term has a contri-
bution in F2

�i, which one should keep. Therefore,

!� ¼
X
i

F�ifaðUi; ViÞ �
ðy� �!�Þ
�� þ 
�

X
i

F2
�i

@fa
@Y
ðUi; ViÞ:

(C6)

The computation of 
� is similar; it gives:


� ¼
X
i

F2
�ivi �

X
i

F3
�i

ðy� �!�Þ
�� þ 
�

@fc
@Y
ðUi; ViÞ

’X
i

F2
�ifcðUi; ViÞ: (C7)

For a known form of matrix F, these equations can be
slightly simplified further by using the assumptions of the
BP approach about independence of F�i and BP messages.

This plus a law of large number implies that, for matrix F
with Gaussian entries of zero mean and unit variance, one
can effectively ‘‘replace’’ every F2

�i by 1=N in Eqs. (C3),

(C4), (C6), and (C7). This leads, for homogeneous or bloc
matrices, to even simpler equations and a slightly faster
algorithm.
Equations (C3), (C4), (C6), and (C7), with or without

the later simplification, give a system of closed equations.
They are a special form [PðxÞ and hence functions fa, fc
are different in our case] of the approximate message
passing of [11].
The final reconstruction algorithm for the general mea-

surement matrix and with the learning of the PðxÞ parame-
ters can hence be summarized in a schematic way (see
Algorithm 1).
Note that in practice we use ‘‘damping.’’ At each update,

the new message is obtained as u times the old value plus
1� u times the newly computed value, with a damping
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0< u< 1, typically u ¼ 0:5. For both the update of mes-
sages and learning of parameters, empirically this damping
speeds up the convergence. Note also that the algorithm is
relatively robust with respect to the initialization of

messages. The reported initialization was used to obtain
the results in Fig. 1. However, other initializations are
possible. Note also that, for specific classes of signals or
measurement matrices, the initial conditions may be
adjusted to take into account the magnitude of the values
F�i and y�.

For a general matrix F, one iteration takesOðNMÞ steps.
We have observed the number of iterations needed for
convergence to be basically independent of N; however,
the constant depends on the parameters and the signal (see
Fig. 3). For matrices that can be computed recursively (i.e.,
without storing all their NM elements), a speeding-up is
possible, as the message-passing loop takes only OðMþ
NÞ steps.

APPENDIX D: REPLICA ANALYSIS AND DENSITY
EVOLUTION—FULL MEASUREMENT MATRIX

Averaging over disorder leads to replica equations that
describe the N ! 1 behavior of the partition function as
well as the density evolution of the belief-propagation
algorithm. The replica trick evaluates EF;sðlogZÞ via

� ¼ 1

N
EðlogZÞ ¼ 1

N
lim
n!0

EðZnÞ � 1

n
: (D1)

In the case where the matrix F is the full measurement
with all elements iid from a normal distribution with zero
mean and variance unity, one finds that� is obtained as the
saddle-point value of the function:

�ðQ; q;m; Q̂; q̂; m̂Þ ¼ ��

2

q� 2mþ �0hs2i þ �

�þQ� q
� �

2
logð�þQ� qÞ þQQ̂

2
�mm̂þ qq̂

2

þ
Z

Dz
Z

ds½ð1� �0Þ�ðsÞ þ �0�0ðsÞ� log
�Z

dxe�ðQ̂þq̂=2Þx
2þm̂xsþz

ffiffî
q
p

x½ð1� �Þ�ðxÞ þ ��ðxÞ�
�
:

(D2)

Here,Dz is a Gaussian integration measure with zero mean and variance equal to one; �0 is the density of the signal; and
�0ðsÞ is the distribution of the signal components and hs2i ¼ R

dss2�0ðsÞ is its second moment. � is the variance of the
measurement noise. The noiseless case is recovered by using � ¼ 0.

The physical meaning of the order parameters is

Q ¼ 1

N

X
i

hx2i i; q ¼ 1

N

X
i

hxii2; m ¼ 1

N

X
i

sihxii; (D3)

whereas the other three m̂, q̂, Q̂ are auxiliary parameters. Performing the saddle-point derivative with respect to m, q,
Q� q, m̂, q̂, and Q̂þ q̂, we obtain the following six self-consistent equations [using the Gaussian form of�ðxÞ, with mean
�x and variance �2]:

m̂ ¼ �

�þQ� q
¼ Q̂þ q̂; Q̂ ¼ �

�þQ� q
� �

q� 2mþ �0hs2i þ �

ð�þQ� qÞ2 ; (D4)

Algorithm 1. EM-BPðy�; F�i; criterium; tmaxÞ
Initialize randomly messages Ui from interval [0,1] for

every component;

Initialize randomly messages Vi from interval ½�1; 1� for
every component;

Initialize messages !�  y�;
Initialize randomly messages 
� from interval [0,1] for

every measurement;

Initialize the parameters � �, �x 0, �2  1.
conv criteriumþ 1; t 0;
while conv> criterium and t < tmax:

do t tþ 1;
for each component i:

do xoldi  faðUi; ViÞ;
Update Ui according to Eq. (C3).

Update Vi according to Eq. (C4).

for each measurement �:

do Update !� according to Eq. (C6).

Update 
� according to Eq. (C7).

Update � according to Eq. (B22).

Update �x and �2 according to Eq. (B24).

for each component i:
do xi  faðUi; ViÞ;

conv meanðjxi � xoldi jÞ;
return signal components x
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m ¼ �0�

Q̂þ q̂þ 1=�2

Z
Dz

Z
dss�0ðsÞ m̂sþ z

ffiffiffî
q
p þ �x=�2

ð1� �Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q̂þ q̂þ 1=�2

q
eð �x

2=2�2Þ�½ðm̂sþz
ffiffî
q
p
þ �x=�2Þ2=2ðQ̂þq̂þ1=�2Þ� þ �

; (D5)

Q� q ¼ ð1� �0Þ�
ðQ̂þ q̂þ 1=�2Þ ffiffiffî

q
p

Z
Dzz

z
ffiffiffî
q
p þ �x=�2

ð1� �Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q̂þ q̂þ 1=�2

q
eð �x

2=2�2Þ�½ðz
ffiffî
q
p
þ �x=�2Þ2=2ðQ̂þq̂þ1=�2Þ� þ �

þ �0�

ðQ̂þ q̂þ 1=�2Þ ffiffiffî
q
p

Z
Dzz

Z
ds�0ðsÞ m̂sþ z

ffiffiffî
q
p þ �x=�2

ð1� �Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q̂þ q̂þ 1=�2

q
eð �x

2=2�2Þ�½ðm̂sþz
ffiffî
q
p
þ �x=�2Þ2=2ðQ̂þq̂þ1=�2Þ� þ �

;

(D6)

Q ¼ ð1� �0Þ�
ðQ̂þ q̂þ 1=�2Þ2

Z
Dz

ðz ffiffiffî
q
p þ �x=�2Þ2 þ Q̂þ q̂þ 1=�2

ð1� �Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q̂þ q̂þ 1=�2

q
eð �x

2=2�2Þ�½ðz
ffiffî
q
p
þ �x=�2Þ2=2ðQ̂þq̂þ1=�2Þ� þ �

þ �0�

ðQ̂þ q̂þ 1=�2Þ2
Z

Dz
Z

ds�0ðsÞ ðm̂sþ z
ffiffiffî
q
p þ �x=�2Þ2 þ Q̂þ q̂þ 1=�2

ð1� �Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q̂þ q̂þ 1=�2

q
eð �x

2=2�2Þ�½ðm̂sþz
ffiffî
q
p
þ �x=�2Þ2=2ðQ̂þq̂þ1=�2Þ� þ �

: (D7)

We now show the connection between this replica com-
putation and the evolution of belief-propagation messages,
studying first the case where one does not change the
parameters �, �x, and �. Let us introduce parameters mBP,
qBP, QBP, defined via the belief-propagation messages as:

mðtÞBP ¼
1

N

XN
i¼1

aðtÞi si; qðtÞBP ¼
1

N

XN
i¼1
ðaðtÞi Þ2;

QðtÞBP � qðtÞBP ¼
1

N

XN
i¼1

vðtÞi :

(D8)

The density- (state-)evolution equations for these parame-
ters can be derived in the same way as in [11,32], and this
leads to the result that mBP, qBP, QBP evolve under the
update of BP in exactly the same way as according to
iterations of Eqs. (D5)–(D7). Hence, the analytical equa-
tions (D5)–(D7) allow us to study the performance of the

BP algorithm. Note also that the density-evolution equa-

tions are the same for the message-passing and for the

AMP equations. It turns out that the above equations close

in terms of two parameters: the mean-squared error EðtÞBP ¼
qðtÞBP � 2mðtÞBP þ �0hs2i and the variance VðtÞBP ¼ QðtÞBP � qðtÞBP.
From Eqs. (D4)–(D7) one easily obtains a closed mapping

ðEðtþ1ÞBP ; Vðtþ1ÞBP Þ ¼ fðEðtÞBP; VðtÞBPÞ.
In the main text, we defined the function�ðDÞ, which is

the free entropy restricted to configurations x for which
D ¼ PN

i¼1ðxi � siÞ2=N is fixed. This is evaluated as the

saddle point over Q, q, Q̂, q̂, m̂ of the function

�ðQ; q; ðQ�Dþ �0hs2iÞ=2; Q̂; q̂; m̂Þ. This function is
plotted in Fig. 3(a).
In presence of expectation-maximization learning of the

parameters, the density evolution for the conditions (B22)
and (B24) are

�ðtþ1Þ ¼ �ðtÞ
�Z

Dz
Z

dx0½ð1� �0Þ�ðx0Þ þ �0�0ðx0Þ� gðQ̂þ q̂; m̂x0 þ z
ffiffiffî
q
p Þ

1� �þ �gðQ̂þ q̂; m̂x0 þ z
ffiffiffî
q
p Þ

�

�
�Z

Dz
Z

dx0½ð1� �0Þ�ðx0Þ þ �0�0ðx0Þ� 1

1� �þ �gðQ̂þ q̂; m̂x0 þ z
ffiffiffî
q
p Þ

��1
;

(D9)

�x ðtþ1Þ ¼ 1

�

�Z
Dz

Z
dx0½ð1� �0Þ�ðx0Þ þ �0�0ðx0Þ�faðQ̂þ q̂; m̂x0 þ z

ffiffiffî
q

p Þ�

�
�Z

Dz
Z

dx0½ð1� �0Þ�ðx0Þ þ �0�0ðx0Þ� gðQ̂þ q̂; m̂x0 þ z
ffiffiffî
q
p Þ

1� �þ �gðQ̂þ q̂; m̂x0 þ z
ffiffiffî
q
p Þ

��1
;

(D10)

ð�2Þðtþ1Þ ¼ 1

�

�Z
Dz

Z
dx0½ð1� �0Þ�ðx0Þ þ �0�0ðx0Þ�½faðQ̂þ q̂; m̂x0 þ z

ffiffiffî
q

p Þ2 þ fcðQ̂þ q̂; m̂x0 þ z
ffiffiffî
q

p Þ��

�
�Z

Dz
Z

dx0½ð1� �0Þ�ðx0Þ þ �0�0ðx0Þ� gðQ̂þ q̂; m̂x0 þ z
ffiffiffî
q
p Þ

1� �þ �gðQ̂þ q̂; m̂x0 þ z
ffiffiffî
q
p Þ

��1 � ½xðtþ1Þ�2: (D11)
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The density-evolution equations now provide a
mapping,

ðEðtþ1ÞEM-BP; V
ðtþ1Þ
EM-BP; �

ðtþ1Þ; �xðtþ1Þ; �ðtþ1ÞÞ
¼ fðEðtÞEM-BP; VðtÞEM-BP; �ðtÞ; �xðtÞ; �ðtÞÞ; (D12)

obtained by complementing the previous equations on

EðtÞEM-BP; V
ðtÞ
EM-BP with the update equations (D9)–(D11).

The next section gives explicitly the full set of equations
in the case of seeding matrices; the ones for the full
matrices are obtained by taking L ¼ 1. These are the
equations that we study to describe analytically the evolu-
tion of the EM-BP algorithm and obtain the phase diagram
for the reconstruction (see Fig. 2).

APPENDIX E: REPLICA ANALYSIS
AND DENSITY EVOLUTION FOR

SEEDING-MEASUREMENT MATRICES

Many choices of J1 and J2 actually work very well,
and good performance for seeding-measurement matrices

can be easily obtained. In fact, the form of the matrix
that we have used is by no means the only one that can
produce the seeding mechanism, and we expect that
better choices, in terms of convergence time, finite-size
effects, and sensibility to noise, could be unveiled in the
near future.

With the matrix presented in this work, and in order to

obtain the best performance (in terms of phase transition

limit and of speed of convergence), one needs to optimize

the value of J1 and J2 depending on the type of signal.

Fortunately, this can be analyzed with the replica method.

The analytic study in the case of seeding-measurement

matrices is in fact done using the same techniques as for

the full matrix. The order parameters are now the MSE

Ep ¼ qp � 2mp þ �0hs2i and variance Vp ¼ Qp � qp in

each block p 2 f1; . . . ; Lg. Consequently, we obtain the

final dynamical system of 2Lþ 3-order parameters de-

scribing the density evolution of the s-BP algorithm. The

order parameters at iteration tþ 1 of the message-passing

algorithm are given by:

Eðtþ1Þq ¼
Z

dx0½ð1� �0Þ�ðx0Þ þ �0�0ðx0Þ�
Z

DzðfaðQ̂q þ q̂q; m̂qx
0 þ z

ffiffiffiffiffi
q̂q

q
Þ � x0Þ2; (E1)

Vðtþ1Þq ¼
Z

dx0½ð1� �0Þ�ðx0Þ þ �0�0ðx0Þ�
Z

DzfcðQ̂q þ q̂q; m̂qx
0 þ z

ffiffiffiffiffi
q̂q

q
Þ; (E2)

�ðtþ1Þ ¼ �ðtÞ
�
1

L

XL
p¼1

Z
Dz

Z
dx0½ð1� �0Þ�ðx0Þ þ �0�0ðx0Þ�

gðQ̂p þ q̂p; m̂px0 þ z
ffiffiffiffiffiffi
q̂p

p Þ
1� �þ �gðQ̂p þ q̂p; m̂px0 þ z

ffiffiffiffiffiffi
q̂p

p Þ
�

�
�
1

L

XL
p¼1

Z
Dz

Z
dx0½ð1� �0Þ�ðx0Þ þ �0�0ðx0Þ� 1

1� �þ �gðQ̂p þ q̂p; m̂px0 þ z
ffiffiffiffiffiffi
q̂p

p Þ
��1

; (E3)

�xðtþ1Þ ¼ 1

�

�
1

L

XL
p¼1

Z
Dz

Z
dx0½ð1� �0Þ�ðx0Þ þ �0�0ðx0Þ�faðQ̂p þ q̂p; m̂px0 þ z

ffiffiffiffiffiffi
q̂p

q
Þ
�

�
�
1

L

XL
p¼1

Z
Dz

Z
dx0½ð1� �0Þ�ðx0Þ þ �0�0ðx0Þ�

gðQ̂p þ q̂p; m̂px0 þ z
ffiffiffiffiffiffi
q̂p

p Þ
1� �þ �gðQ̂p þ q̂p; m̂px0 þ z

ffiffiffiffiffiffi
q̂p

p Þ
��1

; (E4)

ð�2Þðtþ1Þ ¼ 1

�

�
1

L

XL
p¼1

Z
Dz

Z
dx0½ð1��0Þ�ðx0Þþ�0�0ðx0Þ�½faðQ̂pþ q̂p; m̂px0þz

ffiffiffiffiffiffi
q̂p

q
Þ2þfcðQ̂pþq̂p; m̂px0 þ z

ffiffiffiffiffiffi
q̂p

q
Þ�
�

�
�
1

L

XL
p¼1

Z
Dz

Z
dx0½ð1��0Þ�ðx0Þ þ �0�0ðx0Þ�

gðQ̂p þ q̂p; m̂px0 þ z
ffiffiffiffiffiffi
q̂p

p Þ
1� �þ �gðQ̂p þ q̂p; m̂px0 þ z

ffiffiffiffiffiffi
q̂p

p Þ
��1�½xðtþ1Þ�2; (E5)

where:

m̂ q ¼ 1

L

X
p

Jpq�p

�þ ð1=LÞPL
r¼1 JprV

ðtÞ
r

; (E6)

q̂ q ¼ 1

L

X
p

Jpq�p

½�þ ð1=LÞPL
r¼1 JprV

ðtÞ
r �2

1

L

X
s

JpsE
ðtÞ
s ; (E7)
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Q̂ q ¼ 1

L

X
p

�pJpq

�þ ð1=LÞPL
r¼1 JprV

ðtÞ
r

� q̂q ¼ m̂q � q̂q:

(E8)

The functions faðX; YÞ, fcðX; YÞwere defined in (B13) and
(B14), and the function g is defined as

gðX; YÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X�2
p exp

�ðY þ �x=�2Þ2
2ðXþ 1=�2Þ �

�x2

2�2

�
: (E9)

This is the dynamical system that we use in the paper in
the noiseless case (� ¼ 0) in order to optimize the values
of �1, J1, and J2. We can estimate the convergence time of
the algorithm as the number of iterations needed in order to
reach the successful fixed point (where all Ep and Vp

vanish within some given accuracy). Figure 6 shows the
convergence time of the algorithm as a function of J1 and
J2 for Gauss-Bernoulli signals.

The numerical iteration of this dynamical system is fast.
It allows one to obtain the theoretical performance that can
be achieved in an infinite-N system. We have used it, in
particular, to estimate the values of L, �1, J1, J2 that have
good performance. For Gauss-Bernoulli signals, using op-
timal choices of J1, J2, we have found that perfect recon-
struction can be obtained down to the theoretical limit
� ¼ �0 by taking L! 1 (with corrections that scale as
1=L). Recent rigorous work by Donoho, Javanmard, and

Montanari [38] extends our work and proves our claim that
s-BP can reach the optimal threshold asymptotically.
Practical numerical implementation of s-BP matches

this theoretical performance only when the size of every
block is large enough (few hundreds of variables). In
practice, for finite size of the signal, if we want to keep
the block-size reasonable, we are hence limited to values of
L of several dozens. Thus, in practice, we do not quite
saturate the threshold � ¼ �0, but exact reconstruction is
possible very close to it, as illustrated in Fig. 2, for which
the values that we used for the coupling parameters are
listed in Table I.
In Fig. 3, we also presented the result of the s-BP

reconstruction of the Gaussian signal of density � ¼ 0:4
for different values of L. We have observed empirically
that the result is rather robust for choices of J1, J2 and �1.
In this case, in order to demonstrate that very different
choices give seeding matrices which are efficient, we used
�1 ¼ 0:7; and then J1 ¼ 1043 and J2 ¼ 10�4 for
L ¼ 2;J1 ¼ 631 and J2 ¼ 0:1 for L ¼ 5; J1 ¼ 158 and
J2 ¼ 4 for L ¼ 10; and J1 ¼ 1000 and J2 ¼ 1 for L ¼
20. One sees that a common aspect to all these choices is a
large ratio J1=J2. Empirically, this seems to be important in
order to ensure a short convergence time. A more detailed
study of convergence time of the dynamical system will be
necessary in order to give some more systematic rules for
choosing the couplings. This study is left for future work.
Even though our theoretical study of the seeded BP was

performed on an example of a specific signal distribution,
the examples presented in Figs. 1 and 2 show that the
performance of the algorithm is robust and also applies
to images which are not drawn from that signal
distribution.

FIG. 6. Convergence time of the s-BP algorithm with L ¼ 2 as
a function of J1 and J2 (in log scale) for Gauss-Bernoulli signal
with �0 ¼ 0:1. The color represents the number of iterations
such that the MSE is smaller than 10�8. The white region gives
the fastest convergence. The measurement density is fixed to
� ¼ 0:25. The parameters in s-BP are chosen as L ¼ 2 and
�1 ¼ 0:3. The axes are in log10 scale.

TABLE I. Parameters used for the s-BP reconstruction of the
Gaussian signal and the binary signal in Fig. 2.

� � �1 �0 J1 J2 L

Gaussian signal

0.1 0.130 0.3 0.121 1600 1.44 20

0.2 0.227 0.4 0.218 100 0.64 20

0.3 0.328 0.6 0.314 64 0.16 20

0.4 0.426 0.7 0.412 16 0.16 20

0.6 0.624 0.9 0.609 4 0.04 20

0.8 0.816 0.95 0.809 4 0.04 20

Binary signal

0.1 0.150 0.4 0.137 64 0.16 20

0.2 0.250 0.6 0.232 64 0.16 20

0.3 0.349 0.7 0.331 16 0.16 20

0.4 0.441 0.8 0.422 16 0.16 20

0.6 0.630 0.95 0.613 16 0.16 20

0.8 0.820 1 0.811 4 0.04 20
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APPENDIX F: PHASE DIAGRAM IN THE
VARIABLES USED BY DONOHO AND TANNER

We show in Fig. 7 the phase diagram in the convention
used by Donoho and Tanner [5], which might be more
convenient for some readers.

APPENDIX G: DETAILS ON THE PHANTOM
AND LENA EXAMPLES

In this section, we give a detailed description of the way
we have produced the two examples of reconstruction in
Fig. 1. It is important to stress that this figure is intended to
be an illustration of the s-BP reconstruction algorithm. As
such, we have used elementary protocols to produce true
K-sparse signals and have not tried to optimize the sparsity
nor to use the best possible compression algorithm.
Instead, we have limited ourselves to the simplest Haar
wavelet transform, to make the exact reconstruction and
the comparison between the different approaches more
transparent.

The Shepp-Logan example (top panels of Fig. 1) is a
1282 picture that has been generated using the MATLAB

implementation. The Lena picture (lower panels of Fig. 1 is
a 1282 crop of the 5122 gray version of the standard test
image. In the first case, we have worked with the sparse
one-step Haar transform of the picture, while in the second
case, we have worked with a modified picture where we
have kept the 24% of largest (in absolute value) coeffi-
cients of the two-step Haar transform, while putting all
others to zero. The data sets of the two images are available
online [6]. Compressed sensing here is done as follows:
The original of each image is a vector o of N ¼ L2 pixels.
The unknown vector x ¼Wo are the projections of the
original image on a basis of one- or two-step Haar wave-
lets. It is sparse by construction. We generate a matrix F as
described above, and construct G ¼ FW. The measure-
ments are obtained by y ¼ Go, and the linear system for
which one does reconstruction is y ¼ Fx. Once x has been

found, the original image is obtained from o ¼W�1x. We
used EM-BP and s-BP with a Gauss-Bernoulli PðxÞ.
On the algorithmic side, the EM-BP and ‘1 experi-

ments were run with the same full Gaussian random-
measurement matrices. The minimization of the ‘1
norm was done using the ‘1-MAGIC tool for MATLAB

[41]. The minimization uses the lowest possible tolerance
such that the algorithm outputs a solution. The coupling
parameters of s-BP are given in Table II. A small damp-
ing was used in each iteration: We mixed the old and new
messages, keeping 20% of the messages from the pre-
vious iteration. Moreover, because, for both Lena and the
phantom, the components of the signal are correlated, we
have permuted randomly the columns of the sensing
matrix F. This allows us to avoid the (dangerous) situ-
ation where a given block contains only zero signal
components.
Note that the number of iterations needed by the s-BP

procedure to find the solution is moderate. The s-BP algo-
rithm coded in MATLAB finds the image in a few seconds.

FIG. 7. Same data as in Fig. 2, but using the convention of [5]. The phase diagrams are now plotted as a function of the
undersampling ratio �DT ¼ K=M ¼ �=� and of the oversampling ratio �DT ¼ M=N ¼ �.

TABLE II. Parameters used for the s-BP reconstruction of the
Shepp-Logan phantom image and the Lena image of Fig. 1.

� �1 �0 J1 J2 L

Shepp-Logan phantom image

0.5 0.6 0.495 20 0.2 45

0.4 0.6 0.395 20 0.2 45

0.3 0.6 0.295 20 0.2 45

0.2 0.6 0.195 20 0.2 45

0.1 0.3 0.095 1 1 30

Lena image

0.6 0.8 0.585 20 0.1 30

0.5 0.8 0.485 20 0.1 30

0.4 0.8 0.385 20 0.1 30

0.3 0.8 0.285 20 0.1 30

0.2 0.5 0.195 1 1 30
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For instance, the Lena picture at � ¼ 0:5 requires about
500 iterations and about 30 seconds on a standard laptop.
Even for the most difficult case of Lena at � ¼ 0:3, we
need around 2000 iterations, which took only about 2
minutes. In fact, s-BP (coded in MATLAB) is much faster
than the MATLAB implementation of the ‘1-MAGIC tool on
the same machine. We report the MSE for all these recon-
struction protocols in Table III.

APPENDIX H: PERFORMANCE OF THE
ALGORITHM IN THE PRESENCE OF

MEASUREMENT NOISE

A systematic study of our algorithm for the case of noisy
measurements can be performed using the replica analysis,
but that study goes beyond the scope of the present work.
In this section, we do, however, want to point out two
important facts: (1) The modification of our algorithm to
take the noise into account is straightforward, and (2) The
results that we have obtained are robust to the presence of a

small amount of noise. As shown in Appendix B, the
probability of x after the measurement of y is given by

P̂ðxÞ ¼ 1

Z

YN
i¼1
½ð1� �Þ�ðxiÞ þ ��ðxiÞ�

� YM
�¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2���

q e�ð1=2��Þðy��
P

N
i¼1 F�ixiÞ2 : (H1)

�� is the variance of the Gaussian noise in measurement

�. For simplicity, we consider that the noise is homoge-
neous, i.e., �� ¼ �, for all �, and discuss the result in the

unit of standard deviation
ffiffiffiffi
�
p

. The AMP-form of the
message passing including noise has already been given
in Appendix C. The variance of the noise, �, can also be
learned via the expectation-maximization approach, which
reads:

� ¼
P

�
ðy��!�Þ2
ð1þ1

�
�Þ2P
�

1
1þ1

�
�

: (H2)

The dynamical system describing the density evolution has
been written in Appendix E. It just needs to be comple-
mented by the iteration on � according to Eq. (H2). We
have used this dynamical system to study the evolution of
MSE in the case where both PðxÞ and signal distribution
are Gauss-Bernoulli with density �, zero mean, and unit
variance for the full measurement matrix and for the seed-
ing one. Figure 8 shows the MSE as a function of � for a
given �, using our algorithm, and the ‘1 minimization for
comparison. The analytical results obtained by the study of
the dynamical system are compared to numerical simula-
tions, and they agree very well.

FIG. 8. Mean-squared error as a function of � for different values of the measurement noise. Left: Gauss-Bernoulli signal with
�0 ¼ 0:2, and measurement noise with standard deviation

ffiffiffiffi
�
p ¼ 10�4. The EM-BP (L ¼ 1) and s-BP strategy (L ¼ 4, J1 ¼ 20,

J ¼ 0:1, �1 ¼ 0:4) are able to perform a very good reconstruction up to much lower value of � than the ‘1 procedure. Below a critical
value of �, these algorithms show a first-order phase transition to a regime with much larger MSE. Right: Gauss-Bernoulli signal with
�0 ¼ 0:4, with a noise with standard deviation

ffiffiffiffi
�
p ¼ 10�3, 10�4, 10�5. s-BP, with L ¼ 9, J1 ¼ 30, J2 ¼ 8, �1 ¼ 0:8 decodes very

well for all of these values of noises. In this case, ‘1 is unable to reconstruct for all �< 0:75, well outside the range of this plot.

TABLE III. Mean-squared error obtained after reconstruction
for the Shepp-Logan phantom image (top) and for the Lena
image (bottom), with ‘1 minimization, BP, and s-BP.

� ¼ 0:5 � ¼ 0:4 � ¼ 0:3 � ¼ 0:2 � ¼ 0:1

‘1 0 0.0055 0.0189 0.0315 0.0537

BP 0 0 0.0213 0.025 0.0489

s-BP 0 0 0 0 0.0412

� ¼ 0:6 � ¼ 0:5 � ¼ 0:4 � ¼ 0:3 � ¼ 0:2

‘1 0 4:48� 10�4 0.0015 0.0059 0.0928

BP 0 4:94� 10�4 0.0014 0.0024 0.0038

s-BP 0 0 0 0 0.0038
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[37] D. Guo and S. Verdú, Randomly Spread CDMA:
Asymptotics via Statistical Physics, IEEE Trans. Inf.
Theory 51, 1983 (2005).

[38] D. L. Donoho, A. Javanmard, and A. Montanari,
Information-Theoretically Optimal Compressed Sensing
via Spatial Coupling and Approximate Message Passing,
arXiv:1112.0708v1.
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