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Abstract. We develop an elementary mean-field approach for fully asymmetric
kinetic Ising models, which can be applied to a single instance of the problem.
In the case of the asymmetric SK model this method gives the exact values of
the local magnetisations and the exact relation between equal-time and time-
delayed correlations. It can also be used to solve efficiently the inverse problem,
i.e. determine the couplings and local fields from a set of patterns, also in cases
where the fields and couplings are time-dependent. This approach generalises
some recent attempts to solve this dynamical inference problem, which were valid
in the limit of weak coupling. It provides the exact solution to the problem also
in strongly coupled problems. This mean-field inference can also be used as an
efficient approximate method to infer the couplings and fields in problems which
are not infinite range, for instance in diluted asymmetric spin glasses.
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Inference problems are as old as scientific modelling: given data, how can we reconstruct
a model which accounts for it, and find the parameters of the model? This is particularly
difficult when data is obtained from networks of many interacting components. The fast
development of high-throughput technologies in various fields of biology, ranging from
gene regulation to protein interaction and neural activity, is generating a lot of data,
which is challenging our ability to infer the structure and parameters of the underlying
networks.

This ‘network reconstruction’ problem is typically an inverse problem which has
motivated a lot of activity in machine learning and in statistical physics [1]–[4], [9]–
[16], [18]–[21], [23, 26, 28, 29]. Until recently the main efforts have been dedicated to
reconstructing equilibrium Boltzmann–Gibbs distributions. In the so-called inverse Ising
model, one typically assumes to have data in the form of some configurations, which
we shall call ‘patterns’, of a N -spin Ising system drawn from the Boltzmann–Gibbs
distribution with an energy function including one-body (local magnetic fields) and
two-body (exchange coupling) terms. The problem is to reconstruct the local fields
and the exchange couplings (collectively denoted below as ‘couplings’) from the data.
This problem has been actively studied in recent years, in particular in the context of
neural network inference based on multielectrode recordings in retinas [4, 22, 25]. The
standard solution of this problem, known as the Boltzmann machine, computes, for some
given couplings, the local magnetisations and the two-spin correlations, and compares
them to the empirical estimates of magnetisations and correlations found from the
patterns [1, 10]. The couplings are then iteratively adjusted in order to decrease the
distance between the empirical magnetisations/correlations and the ones computed from
the model. A Bayesian formulation shows that the problem of finding the couplings is
actually convex, so that this iterative procedure is guaranteed to converge to the correct
couplings, provided that the number of patterns is large enough to allow for a good
estimate of correlations. The drawback of this method is that the reliable computation
of the magnetisations/correlations, given the couplings, which is done using a Monte
Carlo procedure, is extremely time-consuming. Therefore this exact approach is limited
to systems with a small number of spins. Most of the recent works on this issue
have developed approximate methods to infer the couplings. Among the most studied
approaches are the naive mean-field method [9, 13, 26], the TAP approach [14, 21, 29], a
method based on a small magnetisation expansion [23], and a message-passing method
called susceptibility propagation [11, 15, 16]. Another approach which has been developed
is that of linear relaxation of the inference problem [18]. The inverse-Potts problem is a
version of this same problem, with variables taking q possible states. The case q = 20
is relevant for inferring interaction in protein pairs from data on co-evolution of these
pairs, and its solution by susceptibility propagation has given an accurate prediction of
inter-protein residue contacts [28]. Another case which has received some attention is the
problem of reconstruction in Boolean networks (see, e.g., [3] and references therein).

However, in many applications to biological systems, in particular the ones concerning
neural activity and gene expression network, the assumption that the patterns are
generated by an underlying equilibrium Boltzmann–Gibbs measure is not well founded.
Couplings are typically asymmetric, and they may vary in time, so there is no equilibrium
measure. This has prompted the recent study of inference in purely kinetic models without
an equilibrium measure [4, 9, 21, 29]. A benchmark on this dynamic inference problem is
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the inverse asymmetric kinetic Ising model. The framework is the same as the equilibrium
one: one tries to infer the parameters of the dynamical evolution equation of an Ising spin
system, given a set of patterns generated by this evolution. Recent works [9, 20, 21, 29]
have studied the performance of two mean-field methods on this problem, the naive mean-
field (nMF) and a weak-coupling expansion which they denote as the TAP method. They
have shown that, in the case of the fully asymmetric infinite-range spin glass problem, the
inference problem can be solved by these methods in the case where the spins are weakly
coupled. In the present work we present a (non-naive!) mean-field approach which solves
the problem at all values of the couplings (and reduces to their TAP approach at weak
coupling).

The kinetic Ising model which we shall study is the same as the one of [21]. N
Ising spins si evolve in discrete time, with a synchronous parallel dynamics. Given the
configuration of spins at time t − 1, s(t − 1) = {s1(t − 1), . . . , sN(t − 1)}, the spins si(t)
are independent random variables drawn from the distribution:

P (s(t)|s(t− 1)) =
N∏

i=1

1

2 cosh(βhi(t))
eβsi(t)hi(t) (1)

where

hi(t) = Hi(t − 1) +
∑

j

Jij(t − 1)sj(t − 1). (2)

Note that both the local external fields Hi(t) and the exchange couplings Jij(t) may
depend on time. Here we are interested in a fully asymmetric model. We generate the
Jij by an asymmetric version [5, 8, 17] of the infinite-range Sherrington–Kirkpatrick spin
glass model [24], in which for each directed edge (ij) the coupling is a Gaussian random
variable with variance 1/N . Notice that Jij and Jji are independent random variables.
We do not include self-interactions (we take Jii = 0), although this could be done without
changing the results. As initial conditions we take si(t = 0) = ±1 with probability 1/2.
Our method also applies to the case of asynchronous dynamics, studied in [29] with the
TAP approach, but to keep the presentation simple we shall study only the case of the
synchronous parallel dynamics in this letter.

We first derive the mean-field equations for the magnetisations mi(t) = 〈si(t)〉.
Because the couplings are asymmetric,

∑
j JijJji = O(1/

√
N), therefore the Onsager

reaction term is not present in this problem. This makes the derivation of our equations,
which we shall denote as just ‘mean-field’ equations, particularly easy. The approximate
equations used in [21, 29], originally derived in [13], have been obtained by a second-
order expansion in the couplings. When this expansion is applied to the symmetric
problem it gives back the TAP equations [27] with their Onsager reaction term. In
the present case of asymmetric coupling, it keeps the correction of order

∑
j JijJij . We

shall keep for these second-order-expanded equations the name ‘TAP’ equations, as used
by [13, 21, 29].

The local field on spin i due to the other spins,
∑

j Jij(t − 1)sj(t − 1), is the sum of
a large number of terms. Therefore it has a Gaussian distribution with mean

gi(t − 1) =
∑

j

Jijmj(t − 1) (3)
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and variance

Δi(t − 1) =
∑

j

J2
ij(1 − mj(t − 1)2) (4)

(in order to derive this last formula, one must use the fact that the typical connected

correlation 〈sjsk〉−mjmk is typically of order 1/
√

N ; this will be checked self-consistently
below). Using this property and the definition of the dynamics (1), one obtains the
magnetisation of spin i at time t:

mi(t) =

∫
Dx tanh[β(Hi(t − 1) + gi(t − 1) + x

√
Δi(t − 1))] (5)

where Dx = (dx/
√

2π)e−x2/2 is the probability density for a Gaussian variable x with zero
mean and variance unity.

Equations (3)–(5) are our mean-field (MF) equations for this problem, valid on a given
instance. Similar dynamical equations have been obtained in the study of the sample-
averaged order parameter in asymmetric neural networks [6, 7] and spin glasses [5]. They
can be iterated starting from some initial condition (in our case mi(0) = 0) in order to
get all the magnetisations mi(t) at any time. They rely only on the central limit theorem
and they are exact in the large N limit, for any set of couplings and external fields, even
if they are time-dependent. These differ from the ‘TAP’ equations of [13, 14, 21, 29] which
can be written in our notation

mi(t) = tanh
[
βHi(t − 1) + βgi(t − 1) − mi(t)β

2Δi(t − 1)
]
, (6)

and from the naive mean-field (nMF) equations

mi(t) = tanh [β (Hi(t − 1) + gi(t − 1))] . (7)

The nMF equations and the ‘TAP’ equations actually give the same result as our exact
MF equations, when expanded in powers of Δi, respectively to order Δ0

i and Δ1
i , but they

differ at order Δ2
i . The fact that ‘TAP’ equations agree with the exact MF to second

order in a weak-coupling expansion is consistent with their derivation through second-
order Plefka-type expansion [14]. The correctness of the MF equations (5), (3), (4) can
be easily checked numerically as shown in the left panels of figure 1.

We now turn to the computation of correlations. We shall establish the mean-field
relation between the time-delayed and the equal-time correlation matrices:

Dij(t) ≡ 〈δsi(t + 1)δsj(t)〉 (8)

Cij(t) ≡ 〈δsi(t)δsj(t)〉 (9)

where we define δsi(t) as the fluctuation of the magnetisation: δsi(t) = si(t) − 〈si(t)〉.
We start by writing

∑
j Jij(t)sj(t) = gi(t)+δgi(t), where δgi(t) is Gaussian distributed

with mean 0 and variance Δi(t). Now, by definition of Dij we have

Dij(t) = 〈sj(t) tanh[β(Hi(t) + gi(t) + δgi(t))]〉 − 〈sj(t)〉〈tanh[β(Hi(t) + gi(t) + δgi(t))]〉.
(10)

Hereafter in order to keep notation simple in the derivation of the relation between D(t)
and C(t) we work at a fixed time t and we thus drop the explicit time indices: all time

doi:10.1088/1742-5468/2011/07/L07001 4
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Figure 1. Magnetisations (left column) and correlations (right column) obtained
by MF (blue), ‘TAP’ (green) and nMF (red). One N = 200 spin model is
simulated 500 000 times for 31 time steps. The three plots in each column
correspond to inverse temperature β = 0.3, 0.8 and 1.4 (from top to bottom).
In the left column, the magnetisations predicted by each method for all time
steps are plotted versus the experimental ones found by Monte Carlo simulation.
For the plots of the right column, the correlation matrices C and D are obtained
at t = 30. The scatter plot shows for each pair ij, the value of Dij in the
ordinate, and the value of (AJC)ij in the abscissa. The three methods differ
in their predictions for A. At high temperature, β = 0.3, all methods are good
for both the magnetisations and correlations; the MF and ‘TAP’ methods nearly
coincide and are slightly better than nMF. At larger and larger β, the ‘TAP’
correction to naive mean-field overshoots, and only the MF results is correct.
The data supports the statement that MF is exact at all temperatures, while
nMF and ‘TAP’ are only high temperature approximations.
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indices in this derivation are equal to t (e.g. Jij = Jij(t), δsi = δsi(t), gi = gi(t) etc).
We get
∑

k

JjkDik = 〈(gj + δgj) tanh[β(Hi + gi + δgi)]〉 − gj〈tanh[β(Hi + gi + δgi)]〉

= 〈δgj tanh[β(Hi + gi + δgi)]〉. (11)

In order to evaluate the average we need the joint distribution of δgi and δgj. The

crucial point to keep in mind is that, as the couplings are of order 1/
√

N , each matrix

element of C and D is also small, of order 1/
√

N . Their covariance is therefore small:

〈δgiδgj〉 =

〈
∑

k

Jik(sk − 〈sk〉)
∑

l

Jjl(sl − 〈sl〉)
〉

(12)

=
∑

k,l

JikJjlCkl = (JCJT )ij ≡ ε, (13)

where ε is typically of order 1/
√

N . So the joint distribution of x = δgi and y = δgj takes
the form, in the large N limit (omitting terms of order ε2):

P (x, y) =
1

2π
√

ΔiΔj

exp

(
− x2

2Δi
− y2

2Δj
+ ε

xy

ΔiΔj

)
. (14)

Using the small ε expansion of equation (14) we can rewrite equation (11) as

∑

k

JjkDik =
ε

ΔiΔj

∫
dx√
2πΔi

dy√
2πΔj

e−(x2/2Δi)−(y2/2Δj)xy2 tanh[β(Hi + gi + x)] (15)

= εβ

∫
dx√
2πΔi

exp−x2/2Δi(1 − tanh2[β(Hi + gi + x)]). (16)

Combining equations (12) and (15) we get

(DJT )ij = (JCJT )ijβ

∫
dx√
2πΔi

e−x2/2Δi(1 − tanh2 β(Hi + gi + x)) (17)

which gives the explicit mean-field relation between C and D. Putting back the time
indices, we obtain the final result in matrix form:

D(t) = A(t)J(t)C(t), (18)

where A(t) is a diagonal matrix: Aij(t) = ai(t)δij , with

ai(t) = β

∫
Dx

[
1 − tanh2 β

(
Hi(t) + gi(t) + x

√
Δi(t)

)]
. (19)

The final result (18) takes exactly the same form as the one found with the naive
mean-field equation and with the ‘TAP’ approach. The predictions of all three methods,
nMF, ‘TAP’ and our MF method, is always D(t) = A(t)J(t)C(t), with a diagonal matrix
A(t) which differs in each case. As shown in [21], the nMF approximation gives

anMF
i (t) = β[1 − mi(t + 1)2], (20)

doi:10.1088/1742-5468/2011/07/L07001 6
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the ‘TAP’ approximation gives

aTAP
i (t + 1) = β[1 − mi(t + 1)2]

[
1 − (1 − mi(t + 1)2)β2

∑

k

J2
ik(1 − mk(t)

2)

]
(21)

and our mean-field prediction is the one given in (19).
We claim that, as in the case of the magnetisations, our mean-field equations

connecting D to C are exact in the asymmetric SK model, in the large N limit. This
statement can be checked numerically by comparing (AJC)ij with the experimental values
of Dij found by Monte Carlo simulations, as shown in figure 1.

These results on the mean-field relation between C and D can be used for the inverse
problem. Given P ‘patterns’, which are time sequences of length t generated from the
distribution (1), one can estimate for each τ = 1, . . . , t, the magnetisations mi(τ), the
equal-time correlations Cij(τ) and the time-delayed correlations Dij(τ). The problem
is to infer from these data the values of the couplings Jij(τ) and of the local fields
Hi(τ). Without loss of generality, we can use β = 1 as it is absorbed in the strength
of couplings and fields that we want to infer. We shall solve this problem using the
mean-field equations.

The problems corresponding to different times and sites decouple. So let us consider
a fixed value of i and τ , and infer the Jij(τ) for j = 1, . . . , N and Hi(τ). To lighten
notation we drop the explicit indices τ and i, and we denote H = Hi(τ), mj = mj(τ),
m = mi(τ + 1), g = gi(τ), Δ = Δi(τ) and a = ai(τ). Following [21], one can obtain J by
inverting the relation (18). The first step is to invert the empirical C matrix and compute

bj =
∑

k

Dik(τ)C−1
kj (τ). (22)

If one knows the number a = ai(τ) one can then infer the couplings from (18):

Jij(τ) = bj/a. (23)

Let us now see how a can be computed. The mean-field equation (5) for the magnetisation
is

m =

∫
Dx tanh[H + g + x

√
Δ]. (24)

The equation (19) for a is

a =

∫
Dx(1 − tanh2[H + g + x

√
Δ]). (25)

The link between a and Δ is obtained from (4), which is

Δ =
1

a2

∑

j

b2
j (1 − m2

j) =
γ

a2
. (26)

To solve this system of equations, we propose the following iterative procedure. Using the
empirical correlations and magnetisations estimated from the patterns, we first compute
from (22) the {bj}, j ∈ {1, . . . , N} and γ =

∑
j b2

j (1 − m2
j ).

Then we use the following mapping to find Δ.

• Start from a given value of Δ.

doi:10.1088/1742-5468/2011/07/L07001 7
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Figure 2. Left: the inferred couplings found by MF (blue), ‘TAP’ (green) and
nMF (red) plotted versus the real ones for an N = 100 model, given P = 1000 000
patterns generated at inverse temperature β = 0.4. Right: the same for β = 1.4
(MF (blue) and nMF (red), ‘TAP’ is not shown as it fails at this high β).

• Using the empirical value of m and the value of Δ, compute H + g by inverting (24).
The right-hand side of this equation is an increasing function of H+g so this inversion
is easy.

• Using H + g and Δ, compute a using (25)

• Compute the new value of Δ, called Δ̂, using (26).

It is worth pointing out that, in the thermodynamic limit, N → ∞, the value of
Δ becomes independent of i. So, if the system under consideration is large enough, the
above iteration could be performed only once in order to reduce computation time.

This procedure defines a mapping from Δ to Δ̂ = f(Δ), and we want to find a fixed
point of this mapping. It turns out that a simple iterative procedure, starting from an
arbitrary Δ0 (for instance, Δ0 = 1) and using Δn+1 = f(Δn), usually converges. More
precisely, it can be shown that f(0) = γ/(1 − m2)2 and that the asymptotic form for the
slope of f for Δ 	 1 is f ′ ∼ (π/2)γ exp(û2)Δn, where û is such that m = erf(û/

√
2). We

have found numerically that when the number of patterns is large enough the slope verifies:
df/dΔ ∈ ]0, 1[. Therefore the mapping converges exponentially fast to the unique fixed
point. This method therefore works when the number of patterns per spin P/N is large
enough. In the double limit P, N → ∞ and P/N large enough the above procedure thus
allows us to get the exact result for Δ and therefore to find the couplings Jij(τ) = bj/a.
Once the couplings have been found, one can easily compute g =

∑
j Jij(τ)mj(τ) and

therefore get the local field H(τ). The number of operations needed for the full inference
of the couplings and fields is dominated by the inversion of the correlation matrix C, a
time which is typically at most of the order of N3. If the number of patterns is too small,
it may happen that there is no solution to the fixed point equation f(Δ) = Δ. Then one
can decide to use Δ = f(0), which is nothing but the nMF estimate for ai(τ).

We have tested our mean-field inference method on the asymmetric SK problem,
where the couplings Jij are time-independent, Gaussian distributed with variance β2 and
the fields are time-independent, uniformly distributed on [−β, β]. Figure (2) shows a
scatter plot of the result on one given instance at β = 0.4 and 1.4, and compares it to

doi:10.1088/1742-5468/2011/07/L07001 8
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Figure 3. Mean square error of the inferred couplings (J inferred
ij − J real

ij )2 obtained
by MF inference (blue), ‘TAP’ (green) and nMF (red) versus the number of
patterns used to estimate the correlations, for a system of size N = 40, where the
patterns were generated from a Gaussian distribution with a root mean square
β = 0.2 (left) and β = 0.6 (right). The curves are averages performed over 20
realisations of the couplings and fields. Notice that the ‘TAP’ method is absent
in the right figure because it fails to provide results at strong coupling.

Figure 4. Mean square error of the reconstructed couplings versus β, averaged
over ten systems with 100 spins, using the three inference methods nMF, ‘TAP’
and MF, with a number of patterns P = 10000, 100 000 and 1000 000. All three
methods agree at small β. The nMF error can increase by several orders of
magnitude at large β. The ‘TAP’ method fails to provide results above β ≈ 0.4.
The MF inference method gives good results in the whole range of β.

the inference method of [21] using nMF and ‘TAP’ (the ‘TAP’ inference is limited to
small values of β: at large β it fails). Figures 3 and 4 show a statistical analysis of the
performance of MF inference. It accurately infers the couplings and fields even in the
strong-coupling regime.

doi:10.1088/1742-5468/2011/07/L07001 9
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Figure 5. Mean-field inference of a finite connectivity model. The couplings
found by MF (blue) and nMF (red) are plotted versus the real couplings used to
generate the data for an N = 200 model on an asymmetric random regular graph
with connectivity c = 6 (average in degree = 3), given P = 100 000 patterns
generated at inverse temperature β = 0.6.

The method that we propose is exact and allows for a very precise inference of the
couplings when applied to the fully asymmetric SK spin glass, at any temperature, if
the number of patterns is large enough. At the same time, it is an easy and versatile
method which can be used as an approximate inference method when the number of
patterns is not very large (although one should at least have P > N in order for C to be
invertible), or when the underlying model is not of the SK type. As an example showing
the possible use of the method, we have applied it to a sample where the Jij matrix is
sparse, generated as follows. We first generate a regular graph with 200 vertices and degree
6 on each vertex. For each edge ij of this graph we choose randomly with probability
1/2 an orientation, say i → j. Then we take Jji = 0 and Jij is drawn randomly from the

probability density (|x|/2)e−x2/2. All the other couplings corresponding to pairs of sites
kl which are not in the graph are set to 0. One then iterates the dynamics (1) 100 000
times at β = 0.6, and uses this data to reconstruct the couplings. Figure 5 shows the
resulting couplings as a scatter plot. The topology of the underlying interaction graph can
be reconstructed basically exactly, both by nMF and MF by using a threshold, deciding
that all reconstructed couplings with |Jij| < 0.04 vanish. The non-zero couplings are
found accurately by the MF inference method.

To summarise, we have introduced a simple mean-field method which can be applied
on a single instance of a dynamical fully asymmetric Ising model. In the case of the
asymmetric SK model this MF method gives the exact values of the local magnetisations
and the exact relation between equal-time and time-delayed correlations. This method
can be used to solve efficiently the inverse problem, i.e. determine the couplings and local
fields from a set of patterns. Again this inference method is exact in the limit of large
sizes and large number of patterns, in the asymmetric SK case. It can also be used in

doi:10.1088/1742-5468/2011/07/L07001 10

http://dx.doi.org/10.1088/1742-5468/2011/07/L07001


J.S
tat.M

ech.(2011)
L07001

Exact mean-field inference in asymmetric kinetic Ising systems

cases where the underlying model is different, for instance for diluted models. This could
be quite useful for many applications.

We thank Lenka Zdeborová for useful discussions. This work has been supported in part
by the EC grant ‘STAMINA’, no. 265496.
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