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Abstract. We compute the correlation functions of the eigenvalues in the Gaussian unitary
ensemble using the fermionic replica method. We show that non-trivial saddle points, which
break replica symmetry, must be included in the calculation in order to correctly reproduce the
exact asymptotic behaviour of the correlation functions at a large distance.

1. Introduction

Random matrix theory (RMT) has found broad applications in physics ranging from nuclear
spectra to electrons in metallic grains, see [1, 2] for reviews. The first mathematically rigorous
results for the level statistics were derived by Gaudin [3] and Dyson [4] using the method
of orthogonal polynomials. The progress in the theory of Anderson localization in the late
1970s established a close relation between the RMT and matnodels initially in their
replicated form [5, 6]. Despite of a lot of efforts [7, 8], however, the initial attempts to
reproduce Dyson’s results from the replicatechodels were not successful: while the density

of eigenvalues could be found easily, it seemed that the eigenvalue correlations could not be
obtained from the replicated-models. The most detailed account of such attempts was
probably given by Zirnbauer and Verbaarschot [8], who computed both bosonic and fermionic
replicatedr-models and obtained different results, both differing from the correct one. Only the
supersymmetric (SUSY) formulation of themodel introduced by Efetov [10] gave a correct
and beautiful way of calculating the correlations of eigenvalues frermzodel formulation.

It has thus become common knowledge over the last 15 years that the SUSY is the only field
theoretic method capable of computing the RMT level statistics, while the internal subtleties
of the replica method seem to make it inapplicable for this task.

Looking at the replicated-model approach, it is clear that there is one underlying
assumption in the existing computations, which is the absence of any spontaneous breaking of
replica symmetry. The study of the statistics of eigenvalues of a lsrgeN random matrix
is mapped exactly onto @-model, where the action is of ordaf. Among various saddle
points of theo-model which coulda priori contribute, only the trivial ‘replica symmetric’
one was discussed. In this paper we revisit the problem, and consider all possible saddle
points. Because of the symmetry of tiemodel the saddle points are actually saddle point
manifolds. We show that the computation of thpoint correlation function involves zaddle
point manifolds. For the one-point function (the level density), the trivial saddle point gives
Wigner’s semicircle law, whereas the second one contributes to oydérdnd is, in fact,
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needed to obtain the oscillatory component of the density of states (DOS). For the two-point
function, the effect is even more dramatic since one of the extra three non-trivial saddle point
manifolds contributes to the leading order at largéthe other two being AN corrections).
Taking it into account gives the correct result for the two-point correlation function. A similar
situation was actually found in the SUSY, where Andreev and Altshuler [11] showed that the
asymptotic behaviour of the two-level correlations at large energy differences (in units of the
mean level spacing) can be obtained by the saddle point evaluation of the Su®del,
including one extra non-trivial saddle point.

Here we restrict ourselves to the Gaussian unitary ensemble (GUE), where we derive
the exact results for the DOS, including oscillatoryNL correction as well as the large
energy difference behaviour of the two-point correlation function using the fermionic replica
formalism. The strategy is simple enough to be easily generalized for the higher correlation
functions for which it also leads to known GUE expressions. Technically, a very useful step is
to integrate exactly over the angular degrees of freedom of thedel, using the Itzykson—
Zuber integral [12], which leaves the eigenvalues of the replicated-model as the only
integration variables. The saddle points are thus discussed on the level of eigenvalues, and the
resulting replica symmetry breaking (RSB) appears to be a particularly simple version of the
vector RSB mechanism encountered in several disordered systems [13].

The paper is organized as follows: in section 2 we present the calculations of the average
DOS, including the AN corrections. This section is also used to introduce notations and
illustrate the technique on this simple, but instructive example. Calculation of the two-point
correlation function is given in section 3. Finally, sections 4 and 5 are devoted to discussions
of the method and remaining open questions. Some technical details are presented in the three
appendices.

2. Density of states

We are interested in the spectral properties of the ranflosnV Hermitian HamiltoniansH,
with the Gaussian probability distribution function

N?/2
P(H) = 2NW-b/2 <%> exp{—% Tr Hz} : @)

We begin with the calculation of the one-point functié(E) defined as
S1(E) = N"YTr(E — H)~1 ()

where the complex energ has an infinitesimal negative imaginary part. The bar stands
for the averaging oveH with the measure given by equation (1). The DOS is given by the
imaginary part of this correlation function

V(E) = 7 Ym S1(E). 3

Introducing 2V anti-commuting variableg,, 1., wherex is a discrete index € {1, ..., N},
the correlation function may be written as

9
_ n-1
SuE) = N7' - In Z(E) (4)

where

N
Z(E) = / [ [ dv. dy. exp{ =Y xy =1V (Esyy — nym}. (5)
x=1
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We use now the replica trick to write the logarithm ala= lim,_.o(Z" — 1)/n. As a result
the correlation function takes the form

i Lo W a1 0 e
S1(E) = lim ~S{"(E)  S{"(E) = N1 Z(EY" (6)

Itis convenient to introduce the generating functid® (E) = Z(E1) ... Z(E,), whereE is a
diagonak x n matrix which has the formt = diaglE1, ..., E,}. InthelimitEq, ..., E, > E
the generating functiod ™ (£) approacheg (E)" and gives the one-point function according
to equation (6). The generating functi@® (E) may be written as the fermionic integral
analogous to that of equation (5). The integration runs now ox@f #rmionic variables
Vi, ¥l , wherex € {1,..., N}andj € {1, ..., n}. Performing the averaging over the random
matrix H one finds

_ N n . X — . : 1 -
Z0(E) anndxp){ dy/ eXp{ —Xz]:l/f,{Eﬂ/f){ T oN > Tjkaj} )

x=1=1 k=1

whereTj, = ), &,{wf. Introducing the Hubbard—Stratonovich decoupling of the last term

with the x-independent, Hermitian x » matrix O and integrating out the anti-commuting
variables, one obtains tkemodel in the form [5, 6]:

Zm(E) = cn[d[Q] exp{—%Tr 0%+ NTrin(E — iQ)} (8)

N n2/2
Cp = (E) 21=1/2, (9)

The standard route to study the laryeimit of the DOS prescribes to take all energies
equal toE, look for the saddle points of the functional integral, equation (8), and then consider
fluctuations around the saddle points (see e.g. [8]). The saddle point eq@ationQ+iE) 2,
may be solved by going to the basis whérés diagonal. One finds two possible solutions for
each of the eigenvalugs, ..., A, of O +iE:

E2 iE
xi(E)zi‘/1—7+7. (10)

This results in 2 distinct diagonal matrices. A@ is obtained from the diagonal matrix through

a unitary transformation, one finds+ 1 saddle point manifolds, generated by rotations of
Um)/[U(p)U@n — p)], applied to a diagonal matrix with; = A_ fori = 1...p and

Aj = Asfor j = p+1...n, where 0< p < n. Which of these manifolds dominates is not
obviousa priori T. Itis known that the leading, largé, contribution to the DOS is given by

the simple ‘replica symmetric’ saddle point (this one is just a point not a manifold, gince

is proportional to 1) withp = 0 [8]. We show below that other saddle point manifolds are
crucial for computations of the/IV corrections to the DOS, as well as the level correlations. In
order to take into account all possible saddle points, one must be careful to integrate properly
over the manifolds. To achieve this we found it convenient to employ the method introduced
by Guhr [14] in the SUSY context. This method takes advantage of the Itzykson—Zuber
integral [12] forthe GUE to integrate all rotational degrees of freedom exactly, and discusses the

T In the limit where the imaginary part @ vanishes, the actions of the various saddle points differ only by phases.

If one is interested only in the DOS to leading order at lakgeone may choose the imaginary part of the energy,

n, to be such thayN > 1. This makes the trivial saddle point with = 0 dominant over all others. However,

this procedure, which smoothes the positions of individual levels, is not allowed if one computes oscillatory parts of
correlation functions.
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saddle points in terms of the eigenvaluegbfA similar method has been employed byeBin
and Hikami in order to derive and extend the universality of level spacing distributions [15].
By first shifting theQ matrix 0 — Q —iE T one obtains:

Z0(E) = ¢, (—)V" / d[0] exp{—E Tr(Q — iE)Z} (detQ)". (11)
The Hermitian matrixQ is then diagonalized by a unitary transformatigh= U 1A U with
U € U(n) and the diagonal matria = diag{Ay, ..., A,}. The volume element transforms
like

d[0] = AZ(A) d[A]dp(U)
d[A] = [ ]2, (12)
j=1

where du(U) is the measure of the grodp(n) and the Jacobian is given by the square of the
Vandermonde determinant

Ad = T &= (13)
1<i<j<n
The non-trivial integration over the grodp(n) in equation (11) may be performed using the
ltzykson—Zuber integral [12] (see also appendix 5 of [1]):

Zm(E) :cn(—i)N”/d[[\] Aﬁ(A)(deti\)N/dM(U) exp{—ﬂ Tr(A — iUEU—1)2}

. Nn 77 \n(n—=1)/2
= =)V (%)

—iE,)Z}. (14)
It may seem that the last expression has poleB;at E;, which is not the case. Indeed,

the integral over the eigenvalugs results in a totally antisymmetric function &;, which

vanishes ifE; = E;. The reason we introduced the diagonal maftixvith all elements
different was to regularize properly this fictitious singularity. The next step is to take the limit

dAAnAth - — A
A(IE/[] (A)(de )exp{ Z(

Ei, ..., E, — E. This procedure is described in appendix A. The result is given by
Z"(E) =c;fd[[\] A2(A) exp[—NZA()\j, E)} (15)
j=1
where
n?/2 1

A(j, E) =10 —IiE)® —In), ¢, = (=M (16)

(2m)nr2 H?:l J!
Equation (15) may be easily derived already from the first line of equation (18) ii
proportional to the unit matrix. The reason the longer procedure was presented is to generalize
it later for the case of multi-point correlation functions. Employing equation (6), one finally
obtains for the replicated single-point correlation function

SM(E) =ic,/1/d[/A\] Aﬁ([\)exp{ —NZA()\,»,E)”Z(}\,» —iE):|. (17)
j=1 j=1

t To preserve the Hermiticity one may choose the elements of:theatrix on the negative imaginary axis and
perform the analytical continuation to the real axis after the group integration. Since the resulting expression is an
analytic function of allE; in the lower half plane, this procedure is legitimate.
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So far all the calculations have been exact. One may now take advantage of the large
parametetN > 1 to perform the integrations in equation (17) by the saddle point method.
DifferentiatingA(x ;, E) overa;, one finds two saddle point solutions for edghwhich are
given by (E) defined by equation (10). This leads todistinct saddle points of the integral
in equation (17), each of them may be brought to the form

A=diagi_, ..., -, Ae, ..., Asl. (18)
—_— ) —— ——
p n—p

There areC) = n!/[p!(n — p)!] such saddle points for every, 0 < p < n. Finding
dominant saddle points is not totally trivial. On the one hand, the saddle point action,
AL = A(A+(E), E), is such thaiA:| = |A_| when the energy is real (see footnote on
page 3). Furthermore, one must be careful with the saddle point calculation of the integral in
equation (17) because the pre-exponential fatmﬁ(,f\), vanishes identically at any saddle
point (forn > 2). Therefore, it should be expanded to a sufficiently high power;of A,

to produce a non-zero result. To this end we introduce varighle®scribing fluctuations
around the saddle point, equation (18), defined as:

A=A_+E&/VN i=1...p

Aj=he+E/VN j=p+1l...n (19)

and the diagonal matrices_ = diag{é; ... £,) and 2, = diag{é,+1...&,). For anyp one
may identically rewriteﬁf([\) as

. 1 \PP~-Dre=—p—p=D) r p_ n £ —& 2
sin= () AL G 5]
v 111 N

X AZ(B_)AZ_ (EL). (20)

The factor in square brackets on the rhs of this expression is hon-vanishing at the saddle point
and therefore may be substituted by its saddle point value. Expanding the exponent to second
order in the deviations from the saddle point, one obtains for the replicated correlation function

n
SU(E) = ic) 3 CPln = A_J2P0 P NPANE=DA 3 — p)iy — inE]
p=0

( 1 >p2+(n—p)2/11_1[ )2 1 i )
x| —= dé; A (E)exp{——A“ S,-}
VN A 2

xf [] o Ag_,,(égexp{ — 340y gj?} (21)

j=p+1 j=p+1
whereA’, = 392A(x, E)|;.. The two remaining integrals are known as a version of Selberg’s
integral [1], given by
P R P ) P
/ [Tds a2 exp{ ! Zsf} = @) PR, with ,=@0"2]]i.
i=1 i=1

i=1

(22)

As a result the correlation function takes the form

() 1 Y 2 NP
Sln (E) — (l) —nNe—nNA+ Z an[)L+ _ )L,] p(n—p) PN (A+—A_)

p=0 (\/A;Z)(nfp)z(m)pz

x[pri_+(n — p)i+ —inkE] (23)
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where we have introduced th?;f symbol as

il )4 .

Hj ljl F(}’l—]+1)

and /=% = 1. Since tha -function diverges at any negative integgf,”" = 0. Therefore
one may extend the summation oyein equation (23) up to infinity. The resulting expression
is suitable for the analytical continuation,— 0. To continue the"” function one may use
the identityl'(—z) = —x/(I'(z + 1) sinwz) with z = j — 1 — n, which leads to

FP = (—1)PP=D/2 [Slr;nn} l_[ C(HC( —n) p #0. (25)

>n

Expanding the simn for smalln, one obtamanp =1, Fn”_j) =n, Whereast/ = O(n?).
As a result only two terms witlp = 0 andp = 1 survive in the sum in equatlon (23). This
is an important conclusion: out of thé possible saddle points only one with= 0 and
n with p = 1 contribute in the replica limit. Of course, the argument we have given here
is somewhat heuristic since the series in equation (23) is divergent for non-inteddris
should be justified more rigorously. Although we have not completed the rigorous proof of
this statement, we present some elements of the proof in appendix B.

One may easily check that the= 1 contribution is smaller by a factoy ¥ with respect
to thep = 0 one. We are therefore back to the familiar statement that the Mrjait of
the DOS may be calculated by the replica method using a single trivial saddle point for the
matrix which is proportional to the unit matrix. In particular one obtains

S1(E) (p=gy = I1(A+ —iE). (26)

Employing equations (3) and (10) one finds the famous ‘law of semicircle’ for the DOS,
vo(E) = /4 — E2/(27).

It is instructive to look at the AN contribution originating from thep = 1 saddle point

manifold:
1 1 eN(As—AL)

SUE)(py) = —i— . 27
1(E) (p=1) N —r_ JALA” (27)

This leads to an oscillatory correction to the mean DOS of the following form:
1 ( )N+1
N7 4—E7
1 cos| 2 N/ (E)dE + (28)

T Y b4
T N4 2(E) 0

where sirp = E/2. This is indeed the correc/ &V oscillating correction, as can be checked
directly using the exact, finit&/, expression for the DOS [1]:

[ E/Y) by (6%

VB = vty | VBV 2 ) v BV
Hy 1 (EJY by (£
—IIN-] E N+1 E

and employing the following integral representation of the Hermite polynomials:

N (2N N N+k+l
Hyu (B 5 ) = —A— (/% / dr e NAGE) & (30)

dVosc(E) = COS[IV(ZG +sin %)]

(29)

2 JT 2
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Evaluating this integral in the saddle point approximation, one obtains the ‘semicircle’ as
the leading term and equation (28) as th@&v/lcorrection. Here we do not discuss thevl
correction to the smooth part of the DOS, which may be easily evaluated by expanding near
the trivial p = 0 saddle point [9, 16].

Notice that in deriving this result all + 1 saddle point manifolds in the space were
taken into account. However, only two of them appear to contribute in the O limit. In
the leading order iV — oo only the trivial oneQ ~ 1 remains, whereas the = 1 is
responsible for the oscillatory/N contribution to the DOS. We shall see below that in the
case of the two-point correlation function non-trivial saddle point manifolds contribute already
to the leading order.

These corrections due to the replica symmetry braking saddle point, which lead to an
oscillatory behaviour of the density of states in the range [—2, 2], also lead to an
exponentially small (inV) tail of the density of states outside of the interval?] 2]. This
fact was first noticed by Cavagr al [17], who also showed that the = 1 saddle point
reproduces the correct exponentially small tail.

3. Two-point correlation function

The two-point correlation function is defined as

_,0INZ(E)dInZ(E))
IE IE'

where complex energigsandE’ have negative and positive imaginary parts correspondingly.
Introducing two sets of replicas with sizesand n’, respectively, to handle each of the
logarithms in this expression, one obtains

SoE,E') = N2Tr(E — H) *Tr(E' — H) 1=N

(1)

1 92
T N2JEQE

We introduce again, for the sake of regularization, the func#éti*)(E), where £ now,

and in the rest of this section, is a diagoral + n") x (n + n’) matrix of the form

E =diagEr,..., Ey, Eps1, ..., Epsy}; the limit Ex, ..., E, = E; Epsa, ..., Ensw — E'

will be taken at the appropriate stage. The next steps are exactly identical to those of the
previous section, up to the changeminto n + n’: averaging oveid, decoupling with the
(n+n') x (n+n') matrix field O and integrating over the group(n +nr’) using the Itzykson—
Zuber integral. This leads to the following result for the functigfi™ (E) (equivalent to that

of equation (14)):

(ntn)(ntn'—1)/2 Apiw A
20 (B = e (—) N0 (N) / [A] Lo ) ()
n+n (IE)

Z(E)y'Z(E")". (32)

. 1 n+n’ n+n
So(E, E' :nu.;iw_ws;* (E, E') sy —

n+n’

x (detA)N exp{ — % Z(Aj - iEj)z} (33)
j=1

whereA is a diagonaln +n’) x (n +n’) matrix containing the eigenvalues of t@ematrix.
Once again, since the integral is a totally antisymmetric functiofi;pthere are no poles at
E; = E;. The next step is to take the limi; — Efor j = 1,...,nandE; — E'for
j'=n+1,...,n+n'. The corresponding limit is calculated in appendix A, the result is:

l_['}=1 H?Tgrﬁl()‘f —Aj)
[i(E — E)™

Z"(E)Z" (E') = ¢\, / d[A]AZ(A™M)AZ (A™M)
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n+n

xexp{ NZA(AJ,E) N Z A(x,,E)} (34)
j'=n+l

whereA™ = diag{As, ..., A,,}andA(") = diagA,+1, - . ., Anen ). Differentiation with respect

to E andE’ gives the replicated two-point correlation function. Non-trivial correlations exist

only in the range wher& — E’ is of the order of the level spacing, namel{\L We introduce

thus scaling variables= N E ande’ = N E’ and restrict ourselves to the vicinity of the center

of the bande|, |¢/| < N. The largeN limit of the correlation function at fixed, ¢ is given

by:

1_[ 1_["+fn+l( J' )"/)

SS (e, €) = el N™ f d[A] AZ(A™)AZ(A™)

li(e —e)]™
n € n+n’ €
x exp{ ~N ZA (x,, N> N ;;1/4 (x,, ﬁ) }
j'=n+1 j'=n+1

In the large N I|m|t the correlation funct|on may be evaluated using the saddle point
approximation. The saddle points of the integral in equation (35) are given} by +1,

forj = 1,...n+n’, which is the zero energy limit of. (E) discussed in the previous section.
Altogether there are”2” distinct saddle points. Each one of them may be parametrized in the
following manner:

A=diag—1,..., -1, +1, ..., +1+1, ..., +1,—1,..., -1} (36)

p n—p P n'—p’

where 0< p < nand 0< p’ < n'. Givenp andp’, there areC,’fC,’l’,’ such saddle points.

As before, one must be careful with the saddle point calculation because of the vanishing
prefactors. The method we shall follow is the same as in the previous section. One introduces
variables;, 5,/ describing fluctuations around the saddle point:

Aj=+1+&/VN  j=p+l..n

37
Ay =+1+E, /YN i"=n+1l...n+p 37)
rjp=—1+&,/VN j=n+p 1. n+n
and groups them into diagonal matricBs = diag(éy, ..., &,}, &+ = diagépe, ..., &),
= = diaglé, .1, - -, &by g = diagfé,, 41: - - -+ §,e ). FOr largenN the determinants are
decomposed as:
. 1 p(p=1)/2+(n—p)(n—p-1)/2 . .
Ay (A™) ~ (ﬁ) 200D A L(E ) Ay p(Er)
(38)

p'(p'=1)/2+(n'=p(n'—p'-1)/2 L R R
) (=27 A (EL) Ay (EL).

An,([\(n')) ~ <ﬁ

Finally, the remaining factor in equation (35) takes the form

n_ o ontn 2pp( 2)(n=p)(n'=p') n+n! n_ o on+p/ )
[T TT 6 -ap= 222000 I T e-o][ 1T Me-s]

Jj=1j'=n+1 i=1 j'=n+p’ +1 Jj=ptli'=n+1

(39)
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Expanding the exponent in equation (35) around the saddle point, equation (36),

€ N 62 ie \? 1
NA (xj, N) 5 — NIn@D) Fie - <g, 2\/_) +0 (W) (40)
one finds that the integrals ovey andsj/. may be expressed dS,,_, (i(e — €)/2¢/N) x

Li_p p(i(e — €')/2/N), where the functiort, (@) is a generalization of Selberg’s integral,
defined as:

Is(a) = / d[X]d[¥] A, (X) A (V) A4 (X © T) exp{ - @i—a =) y,f}. (41)
j=1 k=1

HereX, Y andX & ¥ are diagonal matricesX = diag{xs. ....x}, ¥ = diag{y1, ..., v},
andX @ Y = diag{x1, ..., xy1,..., ys}. We show in appendix C that this integral is given
by

Ls(@) = 27792Q,Q (—ay" (42)

where€, is the usual Selberg integral, equation (22). Up to an overall constant factor which
goes to one in the limit, n’ — 0, one thus has:

/ i(e —¢€) i(e —¢€)
CrChL, vy <—> Liep. <—>
WY PP\ 2N

(i€ — e\ "2
= FIFh ( 2-p=r)7, (43)
N
Grouping all the terms, one finally obtains
) o P p( 1)pp’ 2=3p*=3p%+app’ Ny (n—p+p)(n'=p"+p) 2/ —persiTN (p—p)
Sz )_X;X%F [i (e’ _6)]nn —p'=p)=(n—p)p’
p=0p'=

(n—2p+n —2py — ML HAN)
( = 6) (¢ —€)?
where we have omitted an inessential factor cBirist

Employing the fact thaf,y”™" = F/,~" = 0, one may extend summations oyeand p’

to infinity and then perform the analytical continuatianp’ — 0. Due to the properties of
the F-symbol (cf equation (25)) only the terms with= 0, 1 andp’ = 0, 1 contribute in the
replica limit. We need to evaluate the contributions of these four saddle points. Recalling that
FO = F,?, = 1, one finds for theg = p’ = 0 contribution to the two-point correlation function,

So(e, €') = lim,, . o(nn’) L8y

[(n —2p)(n’ —2p) — } (44)

1
SZ(a))(p:p’:O) = (l - E) (45)
wherew = € —¢’. Thisis the result obtained in the perturbation theory around the usual saddle
point [18]. There is, however, an other contributionStooriginating from the saddle points
with p = p’ = 1. Itis easily computed, using the fact tigt = n andF} = »’, and is equal
to:
e—2iu)
$2(0) (p=pr=1) = v (46)

It is easy to check that the saddle points with= 0, p’ = 1 andp = 1, p’ = O lead to
1/N oscillatory correction to the disconnected part of the two-point correlation function, cf
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equation (28). Adding together the two leading terms, equations (45) and (46), one obtains
the final result for the two-point correlation function:
1— 672iw

So(w) =1— — =1-2iw %e " sino. (47)
w

Although this is the exact result[1,4,8,10] for the GUE for anyx N , the way it was derived

here only justifies it for 1« @ « N. This is because of the terms which were omitted in
the expansions (38) and (39). Although they look superficially as being of ofdéN1they

can, in fact, contribute. A careful examination shows that the generalized Selberg’s integral
is just the leading large (w > 1) contribution. We have thus computed only the leading
term at largew for each saddle point, but corrections could be incorporated systematically.
Accidentally, the obtained expression appears to be exact down tazéygimilar situation

was already encountered in a SUSY approach, when the soft modes integrals were calculated
with the saddle point method including an additional non-trivial saddle point [11]. In this
sense our new saddle point with= p’ = 1 is a close analogue of the SUSY saddle point of
Andreev and Altshuler [11].

4. Discussion of the method

Let us add some comments on the relation between our calculations and the saddle point
evaluation of ther-model, equation (8) wittk = diag{E1,, E’1,}. Looking for the saddle
point solution in the formQ = U~1AU, one finds the solution in the form

A vi 0\./V O
with A being a diagonal matrix, obeying? + iEA — 1 = 0, and arbitraryV € U(n);

V' € U(n'). For a diagonal matrix\ of the structure given by equation (36), there is a set of
rotations belonging to the coset space

U(n) y U(n')
Up)Umn—p) UPHUW —p)

which leave the action invariant, while changing the saddle point maltixs a result, there is
a continuous saddle point manifold, which contains true zero modes of the functional integral,
equation (8). In addition there are usual ‘soft modes’ with masses of lerdef| <« N. Notice
that there are no zero modes around the trivial saddle poiat p’ = 0. The saddle point,
equation (36), contains— p+p’ components which are +1 ant- p’+p components which are
—1. Therefore, out of the toték +n’)? fluctuation directiongn+n')2—2(n— p+p')(n' — p'+p)
are massive with the maas whereas the remaining2— p+p’)(n'— p’+p) degrees of freedom
are splitbetweenf — p?— (n— p)?1+[n?— p*— (' — p')?] = 2(p(n—p)+p' ('~ p')) zero
modes (cf (49)) andih' — 2p(n’ — p’) — 2(n — p) p’ soft modes with the mass —¢’| < N.
The integrals over the zero modes must be calculated exactly giving rise to the volume of the
coset space (49). In the regimed |e — €'|, the integrals over both massive and soft modes
may be evaluated in the Gaussian approximation giving rise to fa¥tor€ and|e —e’|~Y/2in
the number of modes power. This is precisely the structure of equation (44), where the factor
E{’Fn‘f/ is proportional to the volume of the coset space (49). The advantage of our method
is an easy control over combinatorial factors, coefficients etc, otherwise it is equivalent to the
Gaussian evaluation of the functional integral, equation (8), similar to that of [11] for the SUSY
case.

Our method can be easily generalized for the higher-order correlation functions. For
example, calculations of the three-point functi$ytE, E’, E”) with, say, E having negative

(49)



Wigner—Dyson statistics from the replica method 4383

andE’, E” positive imaginary parts, lead to the triple sum opep’, p” analogous to that of
equation (44). Again only the terms with p’, p” = 0, 1 contribute in the replica limit. One
may easily check that the correct result for to@nectedGUE three-point correlation function
follows fromthep = p’ = 1, p” = 0andp = p” = 1; p’ = 0 terms, whereas all other
possible combinations, including= p’ = p” = 1, appears to be small in powers ¢f\L

5. Conclusion and perspectives

There are several questions raised by our computation. An obvious one is to have a more
rigorous derivation of the analytic continuation of tlgéx, n) function at smalln (see
appendix B). Also, we have derived here only the asymptotic form of the correlation function

at large energy differences; > 1. We are convinced that the replica method allows to
compute the correlation at all, but an explicit construction would be interesting. Extending

our approach to bosonic replicas and to other random matrix ensembles are among other open
problems.

Here we have presented what we believe to be the first consistent application of the replica
method to the RMT. Our computation reconciles the fermionic replica result with the previous
approaches. The point of this paper is not to challenge these previous approaches. The results
which we have derived here have been well known for years, and in fact there exist in the
literature much stronger results on level spacing universality (see e.g. [15] and references
therein). Thes-model representation itself has proven very successful when used with the
SUSY method: in problems of random energy levels, the SUSY technique has been very
well developed and has allowed one to derive many results in various problems of solid state
and nuclear physics (see [2,19]). We think that our result has two interesting aspects: the
mathematical consistency on the one hand, and the possibility to use these ideas for a study of
disorderednteractingelectrons.

The previous situation in which the replica approach was considered as ill was not
satisfactory from the mathematical point of view. Furthermore, the replica method is known to
be highly successful in other problems such as the statistical mechanics of classical disordered
systems (see [20] for areview) and localization theory [21], and its failure in the simple problem
of eigenvalue correlations seemed strange. In this respect we would like to comment about
the RSB which we have found. While tlremodel formulation seems to involverax n
matrix order parameter, similar to the one which has been discussed for instance in spin glass
problems, the symmetry groups are very different. In spin glasses the symmetry group of the
replicated system is just the permutation group, while intieodel there is a larger symmetry
group: in our case some version of the unitary group (depending on the type of correlation one
computes, and whether one would use commuting or anti-commuting replicas). Integrating
over the angular variables has left us with an order parameter (the seigénvalues of the
0 matrix) which is a vector in the replica space. Therefore the pattern of the RSB which we
have found is much more reminiscent of the ‘vector RSB’, discussed in the study of random-
field-like problems at low temperature [13], rather than the hierarchical RSB scheme, which
describes the spin glass mean-field theory. The vector RSB may be traced back to the existence
of several distinct ground state configurations in a problem. In all cases studied so far, there
is an infinity of RSB saddle points, which contribute to the partition function. At the same
time the SUSY approach cannot address these problems, because it is unable to estimate a
sum over ground states, but rather computes a topological invariant, given by the sum over all
saddle points, weighted by the parity of the number of unstable directions [22]. In the RMT
the situation is much simpler: SUSY is exact, and there is only a finite number of saddle points
contributing in the vector RSB (two saddle points in the DOS computation). These facts are
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certainly related, and it would be highly desirable to better understand their connection.

The SUSY method relies crucially on the fact that the original action (as in equation (5))
is quadratic in the field variables. In the application to electronic system, it is thus restricted to
non-interacting electrons. The replica method does not have such alimitation, and itis therefore
capable to address problems of interacting electrons [23]. It would be very interesting to see
whether the new saddle points which we have found have some implications in the theory of
interacting electrons in disordered media.
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Appendix A.

We first evaluate the integral given in equation (14), in the liljt — E, j € {1...n}.
DenotingE; = E +n;, one rewrites the integral in the following form:

n n n n ] N n
C(Er, ..., Ey) = /d[A] An(A) exp{ ~NY AGy E)+N Y i) — an}
j=1 j=1 j=1
(A.1)

whereA (%, E) is defined by equation (16). Expanding the term{ekEj Aj(in;)}in series,
one obtains:

N = ky+...ky . '
é‘(El, ey En) = eXp{ B E Z nf} Z ﬁ(”}l)kl’ o (”}n)k" Tkl ,,,, N (AZ)
i k,....k,=1 iy e eey Kyt

where the tensdr is a function ofE defined as:
T /d[]\] An(A)AS .k exp{ — N> AQ,, E)}. (A.3)
j=1

Since the Vandermonde determinant is antisymmetvig jithe tensof” is fully antisymmetric:
for any permutationr of then indices, one has

Ty, = Tk Sx (A.4)

(L) -k (n)

vanishes whenever two exponehktsandk; (with i # j) are equal. We are interested in the
leading behaviour of when ally; go to zero simultaneously. From the expression (A.2) and
the antisymmetry of’, it is clear that the leading term is of ordgt”—1/2 and is obtained
wheneverk; = 0,k, = 1,...,k, = n — 1, or any permutation of the integers®)...n — 1,

and the exponential prefactor may be neglected. The leading orgemay be written as a
sum over all permutations of the ensembl¢0, ..., n — 1}:

1 . . _
C(Ey, ... Ey) Tm___n_lN"‘"*l)/ZW D S (i)™ @, (i)™, (A.5)
j=0J" =
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In the sum over permutations one recognizes the Vandermonde determinanigf thigich is

equal toA,, (i £) and thus cancels the corresponding factor in the denominator of equation (14).
As for the value offy; 1, it may be rewritten, again using the antisymmetry\gf(A), as:

1 ~ ~yq (0 7(n— -
Tor no1 = E;Sn/d[A] Ap(AF@ . are=D exp{ —NZA(AJ-,E)}

j=1
= i/d[[\] A,E([\)exp{ —NZA(xj,E)}. (A.6)
n! —
=
Therefore, in the limiy; — 0, ¢ behaves as:

C(Eq,...,E)) ~ N'O=D2_—__ 1 A,GE) / d[A] A2(A) exp{ N ZA(AJ, E)} (A7)
[Tj—o J! =
This establishes expression (15).

We now evaluate the + »n’ dimensional integral appearing in equation (33), in the limit
whereE; — Efor j=1...nandE; — E’'for j'=n+1,...,n+n'. The procedure is
exactly the same as was explained above for the one-point function. We shall sketch it briefly.
One writest; = E +n; andE; = E’ +1,_, in terms of which the integral reads:

—n

c(El,...,Emf):/d[f\] Aan(A)exp{ —NZA(Aj,E>—N > A@,,E/)}

Jj'=n+1

xexp{NZk (|nj)+NZA,1+] (in) — an an} (A.8)
243

We expand the terms ek Z; Aj(in;)} and expN Zj, )L,ﬁjf(lnj/)} in series, and notice that

in the limit where all they; andn’, go to zero simultaneously and independently, the leading
contribution, of ordexy)""~b/2(y')" ' ~1/2 is obtained when powers of j (resp. i) span

the ensembl¢0, ..., n — 1} (resp.{0, ..., n’ — 1}). The result can be written as a sum over
all permutationsr of the ensembl¢0, ..., n — 1}, and all permutations’ of the ensemble

{0, ..., n’ — 1}, in the following form:

n—-1 n'-1 -1

nn=1) 4 n'(n'=1) . . H i -
C(En ... Eyuy) = uN """ (H]!Hl“) 3 Sa S i)™ . (i)"Y
j=0 j’=0 b4
x(inp)™ @ .. (i (A.9)

whereu is equal to:

n+n’

u= / A[A] A (MARE A= 120 aL, art

xexp{ NZA(A,,E) N Z A(A,,E)} (A.10)

j'=n+l

Exactly as above, this |ntegral may be rewritten by permuting separately the dummy integration
variablesky, ..., &, andi,+1, ..., A,+y. One thus obtains in the limit where alJ, n}, — 0,
in the notations of equation (34):

-1
é‘(El, voey n+n) = ”(” 1)+”(” = (H]' 1_[ /I) l_[ (E] — Ez)

=0 1<i<j<n
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X 1_[ (EJ’ — Ei) x /d[[\] An_'_n/([A\)An(A("))An,([\(n'))

n+l1<i'<j ' <n+n’

xeXp{ —NX;A(M,E)—N -ZlA(Aj/’E,)}' (A.11)
J= J'=n+

This establishes expression (34).

Appendix B.

To prove the statement that only the terms with= 0 andp = 1 contribute to the analytic
continuation of equation (23) at smail| let us study the functiog(x, n) = Z’;:o FlxP.
Using the Gaussian decomposition of the factors containing exponepi® of p) and p?,

one may show that the correlation functiﬁﬁ‘) is deduced from the knowledge gfx, n),
wherex is a complex number, with a modulus slightly smaller than one t. Using the fact that
F'™ = F'T(p + 1)/ T(n — p), one finds that for integer the functiong (x, n) satisfies the
following integral equation:

o0

glx,n) = 1+x/

A dre™ /c gﬂ—usu—ng(xru, n) (B.1)
where( is the contour in the complex-plane used for definition of the functiory I'(z):

it goes around the negative real half axis, starting fremo to zero with a small positive
imaginary part, turning around zero and getting back te with a small negative imaginary
part, it thus passes around the cut of the"Ifunction forn non-integer. This integral may be
probably used to define the functigix, n) for an arbitrarys, although some further study of
this statement is needed. Here we are interested in the behavipur, af) at smallz. Writing
the first two terms in the small expansion ag(x, n) = go(x) + ng1(x) + - - -, one finds that
go andg; satisfy the following equations:

0]

golx) = 1+x/ dr e"/d—ue"go(xtu)
0 C 2

o A (B.2)

g1(x) = x/ dre™® / —é&'[g1(xtu) — go(xtu) Inul.
0 c 2m

Assuming thago andg; are analytic in a certain domail near the origin, one can compute

them inside this domain by series expansion in powers dhis leads immediately tgy = 1

andgi = x, which gives exactly the same answer as our heuristic arguments given in the text.

To complete the proof one has to find out a shap®.0fe believe thaD is the part of the

complex plane restricted by the unit circle, but we have not been able to prove it t.

Appendix C.

In this appendix we prove that the generalized Selberg integral, equation (41), is given by the
expression (42). The proof consists of two steps:

T If one neglects an imaginary part Bf |x| = 1. A small negative imaginary part & implies|x| < 1. This is the
reason for our choice of the parameterization of the saddle point, where thgreemyenvalues._, rather than the
opposite choice where there would peigenvalues. ..

¥ Oneargumentin favour of this is the fact tat, n), for integem, possesses the symmetrix, n) = x" g(1/x, n);
another indication comes from the fact thatx, )| is bounded at large for a fixed complexx wheneverx| < 1,
while it diverges forjx| > 1.
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(i) We shall prove that the series expansion of the integral in powerstafrts ag™ with
m > rs. To this end we rewrite the integral as

I (a) = /d[f(]d[?] A (X)A(V)A (X @ Y) exp{ - xi- Zy,f
=1 k=1

j=
+2a Zx_,- - raz} (C.1)
j=1

and notice that the integrand is equalte( X ) times a totally antisymmetric function of the.
This allows one to substitute in the integrangd X) by r! xx ... x’~1. A similar observation
for the y variables allows one to substitute in the integram(dl?) bys!yfy% .. y$7L, giving:

Is(a) = rlsle™ / dIX1d[F] Ay (X @ V)[x0x3 ... x " ydyE L ys Y

xexp{—ixf—iyf+2ai:xj}. (C.2)
j=1 k=1 j=1

The integrand is the product of a term which is totally antisymmetric in alt theintegration
variables times the factorfx; ... x/~*yPy ... yi"lexp(2a 3", x;}. In this factor one can
expand the exponential in a power serieg inWhenever there are two of thet s variables
appearing with the same power, the integral is zero as can be seen by permuting these two
variables. The first non-zero contribution appears, thus, when the power series generates a
power likey0yl ... ys=IxfWxZCD  xmG+-D ‘wherer is any permutation of the integers
s,s+1, ...,s+r — 1. Such terms appear when the exponential is expanded to thexttder
This shows that the series expansion of the integral in powerstalrts at least with the order
a’.

(i) We demonstrate now thd ; is a polynomial ira of degredessor equal ta-s. Shifting
eachy; to x; +a and splitting the facton,., (X @ Y), one may rewrite the integral as

Ls(a@) = / d[X1d[¥] AZX) AX(T) exp{ - - Zy,f} [TT]ox—x-a). (€3
j=1

=1 j=lk=1

This shows that the integral is a polynomiakirof a degree less or equal te.
As a result of (i) and (ii)/, (@) must be proportional ta”*. Using equation (C.3), one
finds that it may be expressed as a product of two usual Selberg integrals, equation (22), as:

r

Is(a) = (—a)" / d[X]d[¥] AZ(X)AZ(Y) exp{ - x5 Z yf}

j=1 k=1

= (—a) 272G Q. (C.4)
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