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Abstract. We present a new method to study disordered systems in the low-temperature limit.
The method uses the replicated Hamiltonian. It studies the saddle points of this Hamiltonian
and shows how the various saddle-point contributions can be resummed in order to obtain the
scaling behaviour at low temperatures. In a large class of strongly disordered systems, it is
necessary to include saddle points of the Hamiltonian which break the replica symmetry in a
vector sector, as opposed to the usual matrix sector breaking of the spin glass mean-field theory.

1. Introduction

The use of the replica method has turned out to be very efficient in some disordered systems.
It allows a detailed characterization of the low-temperature phase at least at the mean-field
level. In all the mean-field spin-glass-like problems where one can expect the mean-field
theory to be exact, the Parisi scheme of replica symmetry breaking [1] is successful, and
at the moment there is no counterexample showing that it does not work. On the other
hand, the low-temperature phase of these systems is complicated enough, even at the mean-
field level. One might hope that the very low-temperature limit could be easier to analyse,
while its physical content should be basically the same. This very low-temperature limit
is also an extreme case where one might hope to get a better understanding of the finite-
dimensional problem. At first sight the low-temperature limit is indeed simpler since the
partition function could be analysed at the level of a saddle-point approximation. However,
it is easy to see that generically this limit does not commute with the limit of the number
of replicas going to zero. There is a very basic origin to this non-commutation, namely the
fact that there still exist, even at zero temperature, sample-to-sample fluctuations. In this
paper we try to develop a method of summation over all saddle points in replica space, in
order to get the low temperature behaviour of glassy systems. The main aim of this paper
is to propose this new method. We have tested it on some elementary problems which
can be solved directly. As for its application to more difficult problems, we have also
obtained some very good approximations to the zero temperature fluctuations, a particle in
a random medium, as well as some interesting scaling relations in the random field Ising
model. Section 2 presents the method and illustrates it on a variety of zero-dimensional
problems. In section 3 we discuss the case of directed polymers in random media with
long-range interactions, where we rederive the scaling exponents using this new method. In

† Permanent address: Landau Institute for Theoretical Physics, 2 Kosygina str, 117940 Moscow, Russia.
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section 4 we study theD-dimensional random field Ising model. Perspectives are briefly
summarized in section 5.

2. Zero-dimensional systems

2.1. The Ising model

To demonstrate in the simplest terms how the proposed procedure works, we consider first
some trivial zero-dimensional problems. The simplest example is one Ising spinσ = ±1
in a random fieldh. The Hamiltonian is:

H = σh (2.1)

where the distribution for the random field is Gaussian:

P(h) = 1√
2πh2

0

exp

(
− h

2

2h2
0

)
. (2.2)

The free energy is:

− βF(h0;β) = ln

[ ∑
σ=±1

exp(−βσh)
]
=
∫ +∞
−∞

Dx ln[1+ exp(2βh0x)] (2.3)

whereDx is the centred Gaussian measure of width one:Dx = dx√
2π

exp(− 1
2x

2). In
particular, in the zero-temperature limit one finds:

F(h0;β →∞) = 2h0√
2π
. (2.4)

Let us consider now how this ‘problem’ can be solved in terms of the replica approach:

− βF(h0;β) = lim
n→0

1

n
(Zn − 1) = lim

n→0

1

n

[ ∑
{σa}=±1

exp

{
1

2
β2h2

0

( n∑
a=1

σa

)2}
− 1

]

= lim
n→0

1

n

[ n∑
k=0

n!

k!(n− k)! exp

{
1

2
β2h2

0(2k − n)2
}
− 1

]
. (2.5)

In view of the application of the method to more complicated problems we want to compute
the behaviour at low temperatures. This cannot be done naively from a saddle-point
evaluation of the sum at largeβ, because of the non-commutativity of the limitsβ → ∞
and n → 0. Instead we proceed as follows. The termk = 0, which is the contribution
from the ‘replica symmetric (RS) configuration’σa = +1, is singled out; its contribution
is equal to 1+ O(n2), which cancels the(−1) in equation (2.5). (Notice that one could
also single out the termk = n/2, as was done in [2] in another problem; this would lead
to the same result.) The contributions of the rest of the terms (which could be interpreted
as corresponding to the states with ‘replica symmetry breaking’ (RSB) in the replica vector
{σa}) can be represented as follows:

F(h0;β) = − lim
n→0

1

βn

∞∑
k=1

0(n+ 1)

0(k + 1)0(n− k + 1)
exp

{
1

2
β2h2

0(2k − n)2
}
. (2.6)

Here the summation overk can be extended beyondk = n to∞ since the gamma function
is equal to infinity at negative integers.
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Now we perform the analytic continuationn→ 0, using the relation:

0(n+ 1)

0(k + 1)0(n− k + 1)

∣∣∣∣
n→0

' n(−1)k−1

k
. (2.7)

Thus, for the free energy (2.6) one obtains:

− βF(h0;β) =
∞∑
k=1

(−1)k−1

k
exp(2β2h2

0k
2) =

∫ +∞
−∞

Dx ln[1+ exp(2βh0x)]. (2.8)

We see that this result coincides with the one (2.3) obtained by the direct calculation. This
is of course no surprise since we have just done an exact replica computation. But it
exemplifies some of the steps that we shall need below, in particular the proper definition
and computation of the divergent series appearing in (2.8) through an integral representation.

2.2. The ‘soft’ Ising model

Consider now the ‘soft’ version of the Ising model described by the double-well
Hamiltonian:

H = − 1
2τφ

2+ 1
4φ

4− hφ (2.9)

where the random field is described by the Gaussian distribution (2.2). We concentrate
again on the zero-temperature limit. Besides, we assume that the typical value of the field
h0 is small (h0 � τ 3/2). In this case the field will not destroy the double-well structure of
the Hamiltonian (2.9), and (atT → 0) the system must be equivalent to the discrete Ising
model considered before. (The ‘opposite limit’ of the random field Hamiltonian with only
one ground state will be considered in section 2.3.)

The direct calculation of the zero-temperature free energy is trivial. For a given value
of the fieldh � τ 3/2 the ground states of the Hamiltonian (2.9) are:φ1 ' +√τ + h/2τ ,
for h > 0; andφ1 ' −√τ + h/2τ , for h < 0. In both cases the corresponding energy is
Eg(h) ' − 1

4τ
2− |h|√τ . Thus, the zero-temperature averaged free energy is:

F(h0) ' −1

4
τ 2− 2

√
τ

∫ +∞
0

dh√
2πh2

0

h exp

(
− h

2

2h0

)
= −1

4
τ 2− 2h0

√
τ√

2π
. (2.10)

Consider now how this result can be obtained in terms of replicas. The replica
Hamiltonian and the corresponding saddle-point equations are:

Hn = − 1
2τ

n∑
a=1

φ2
a + 1

4

n∑
a=1

φ4
a − 1

2βh
2
0

( n∑
a=1

φa

)2

(2.11)

− τφa + φ3
a = βh2

0

( n∑
a=1

φa

)
. (2.12)

The RS solution of these equations (in the limitn → 0) is: φa = φRS = √τ . The
corresponding energy isERS= − 1

4nτ
2. This solution (in the limitn→ 0) does not involve

the contribution from the random field.
Proceeding along the lines of the section 2.1, we have to look also for the solution of

equation (2.12) which would involve the RSB in the replica vector{φa}:

φa =
{
φ1 for a = 1, . . . , k

φ2 for a = k + 1, . . . , n.
(2.13)
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In terms of this ansatz in the limitn→ 0 the replica summations can be performed according
to the following simple rule:

∑n
a=1 φa = kφ1+ (n− k)φ2→ k(φ1− φ2). The saddle-point

equation (2.12) then turns into two equations forφ1 andφ2:

− τφ1,2+ φ3
1,2 = βkh2

0(φ1− φ2). (2.14)

Assuming thatβkh2
0� τ (the explanation of this strange assumption—considering that we

are interested in theβ →∞ limit!—will be given below), in the leading order one gets:

φ1 ' +
√
τ φ2 ' −

√
τ . (2.15)

From equation (2.11) one obtains the corresponding energy of the above RSB saddle-point
solution:

Ek = − 1
2kτ(φ

2
1 − φ2

2)+ 1
4k(φ

4
1 − φ4

2)− 1
2βh

2
0k

2(φ1− φ2)
2 ' −2βk2h2

0τ +O(h4
0). (2.16)

Now, similarly to the calculations of section 2.1 for the zero-temperature free energy
one obtains, summing the contributions from all these saddle points:

F(h0) = − lim
n→0

1

βn
(Zn − 1) ' − lim

n→0

1

βn
(ZRS− 1)− lim

n→0

1

βn
ZRSB

= − lim
n→0

1

βn

[
exp

(
1

4
βnτ 2

)
− 1

]
− 1

β

∞∑
k=1

(−1)k−1

k
exp(2β2k2h2

0τ)

= − 1

4
τ 2− 1

β

∫ +∞
−∞

dx√
2π

exp

(
−1

2
x2

)
ln
[
1+ exp

(
2βh0x

√
τ
)]
. (2.17)

Taking the limitβ →∞ one finally gets the result:

F(h0) ' −1

4
τ 2− 1

β
2βh0
√
τ

∫ +∞
0

dx√
2π
x exp

(
−1

2
x2

)
= −1

4
τ 2− 2h0

√
τ√

2π
(2.18)

which coincides with equation (2.10).
It is worth noting that the summation of the series in equation (2.17) can also be

performed in the other way (a similar technique has been used by Campellone, who was
able to compute in this way the finite N corrections to the free energy of the Random Energy
Model in the high temperature phase [3]):

FRSB= − 1

β

∞∑
k=1

(−1)k−1

k
exp(2β2k2h2

0τ) =
1

2iβ

∫
C

dz

z sin(πz)
exp(2β2z2h2

0τ) (2.19)

where the integration goes over the contour in the complex plane shown in figure 1(a).
Then we can move the contour to the position shown in figure 1(b), and after the change
of integration variable:

z→ [2β2h2
0τ ]−1/2ix (2.20)

in the limit β →∞ we have:

sin(πz) ' 1

β
iπ [2h2

0τ ]−1/2x. (2.21)

Then, taking into account also the contribution from the pole atx = 0 for the integral in
equation (2.19) we get:

FRSB= h0

√
2τ

2π

∫ +∞
−∞

dx

x2
[exp(−x2)− 1] = −2h0

√
τ√

2π
(2.22)

which again coincides with results (2.10) and (2.18).
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0 1 2 0

(a) (b)

Figure 1. The contours of integration in the complex plane used for summing the series. (a) The
original contour. (b) The deformed contour.

This little exercise with the integral representation of the divergent series in
equation (2.19) shows in particular that the ‘effective’ value of the parameterβk → βz

which enters into the saddle-point equation (2.14) and scales (according to (2.20)) as
(h0
√
τ)−1. That is why in the zero-temperature limit the ‘effective’ value of the factor

βkh2
0 ∼ h0/

√
τ in equation (2.14) can be assumed to be small compared withτ (for small

fieldsh0� τ 3/2).

2.2.1. Replica fluctuations.Because of the non-commutativity of the limitsn → 0 and
β → ∞, one cannot get the exact result by keeping only the saddle-point states of the
replica Hamiltonian. Actually, averaging over the quenched disorder involves the effects of
sample-to-sample fluctuations which in terms of the replica formalism manifest themselves
as the contribution from the replica fluctuations. In other words, to get exact results in terms
of replicas the contribution from the saddle points is not enough, and one has to integrate
over replica fluctuations even in the zero-temperature limit.

This phenomenon can be easily demonstrated for the above example of the ‘soft’ Ising
model. Let us take into account the contribution from the Gaussian replica fluctuations near
the RS saddle pointφa = φRS= √τ :

φa = φRS+ ϕa. (2.23)

From equation (2.11) for the RS part of the partition function we get:

ZRS= exp( 1
4βnτ

2)

∫
dϕa exp

{
− β

n∑
a,b

(τδab − 1
2βh

2
0)ϕaϕb

}

' exp

{
1

4
βnτ 2+ βnh

2
0

4τ
− 1

2
n ln(βτ)

}
. (2.24)

Therefore, in the zero-temperature limit one obtains the following contribution to the free
energy:

FRS= −1

4
τ 2− h2

0

4τ
. (2.25)
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We see that atT = 0 there exists a finite contribution∼h2
0/τ due to the replica

fluctuations. In the particular example considered the value ofh0 was assumed to be
small, and this contribution can be treated as a small correction. However, we should keep
in mind that the contribution from the replica fluctuations in general could appear to be of
the same order as that from the saddle points. Therefore, the calculations we are going to
perform in the next section for less trivial examples taking into account only saddle-point
states cannot pretend to give exact results, giving only the scaling dependence from the
parameters of a model.

2.2.2. Saddle points. In the above calculations of the free energy for the ‘soft’ Ising system
we have taken into account only the contribution from the twominima of the double-well
potential. The existence of the third saddle point, which is the maximum atφ = 0, has
been ignored. In this particular example such an algorithm looks natural. However, in less
trivial systems very often it is not easy to distinguish the types of the saddle points involved.
Moreover, it could be very hard to impose a simple and robust ‘discrimination’ rule with
respect to different types of saddle points, which would not block the calculations at the
very start.

Because of this, we would like to propose a somewhat modified scheme of calculations
which takes into accountall saddle points. In the above example of the ‘soft’ Ising model
the third saddle point (the maximum) is atφ = 0. Then, instead of ansatz (2.13) let us
represent the replica vectorφa as follows:

φa =


+√τ for a = 1, . . . , k

−√τ for a = k + 1, . . . , k + l
0 for a = k + l + 1, . . . , n.

(2.26)

For the corresponding ‘energy’ (in the limitn → 0) from the replica Hamiltonian (2.11)
one easily finds:

Hkl = − 1
4τ

2(k + l)− 1
2βh

2
0τ(k − l)2+O(h4

0). (2.27)

Note that in terms of ansatz (2.26) the RS state (k = l = 0), φa = φ0 = 0 has zero energy,
so that it gives no contribution to the free energy.

The combinatoric factor in then→ 0 limit is now:

n!

k!l!(n− k − l)! → n
(−1)k+l−1

k + l
(k + l)!
k!l!

. (2.28)

Thus, for the free energy (forβ →∞) we obtain:

F(h0) = − 1

β

∞∑
k+l=1

(−1)k+l−1

k + l
(k + l)!
k!l!

exp

{
1

4
βτ 2(k + l)+ 1

2
β2h2

0τ(k − l)2
}
. (2.29)

This series can be summed up in a similar way as the ones in equations (2.8) and (2.17):

F(h0) = − 1

β

∫ +∞
−∞

Dx ln

[
1+ exp

{
β

4
τ 2+ βh0

√
τx

}
+ exp

{
β

4
τ 2− βh0

√
τx

}]
. (2.30)

In the limit β →∞ one finds:

F(h0) = − 1

β

∫ +∞
−∞

Dx

[
β

4
τ 2+ βh0

√
τ |x|

]
= −1

4
τ 2− 2h0

√
τ√

2π
. (2.31)

Again, we get the correct result. While it might seem at first sight somewhat ‘magic’, at
least some aspects of this computation can be understood. In the example considered (as
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well as in the further examples to be studied below) the relevant states, which contribute
to the free energy, have negative energy−E(h). Then, in the low-temperature limit the
partition function of a given sample isZ ' exp(+βE(h)). Therefore, in the limitβ →∞
the free energy can be represented with exponential accuracy as follows:

F(h0) = − 1

β
lnZ ' − 1

β
ln(1+ Z) = − 1

β

∞∑
m=1

(−1)m−1

m
Zm. (2.32)

One can easily check that after averagingZm ≡ Zm and taking into account the contributions
of the two minima of the corresponding replica HamiltonianHm one recovers the series in
equation (2.29).

The only ‘magic’ rule which should be followed in the direct replica calculations is
that the ‘background’ state,φ0 = 0 (the one with zero energy) in the ansatz for the replica
vectorφa of the type (2.26) should be placed in thelast group of replicas. Using this rule,
the series obtained for the free energy will correspond to the above interpretation (2.32).

2.3. One-well potential

Consider now how the method works in the case where the Hamiltonian has only one
minimum:

H = 1

α
φα − hφ (2.33)

where φ > 0 and α > 2, and the random fieldh is again described by the Gaussian
distribution (2.2). Forα = 4 this system can be interpreted as the variant of the Hamiltonian
(2.9) in the limit of strong magnetic fields.

In the zero-temperature limit the free energy is defined by the ground stateφ(h) =
h1/(α−1) for h > 0, andφ = 0 for h 6 0. Its energy isE(h) = − α−1

α
hα/(α−1) for h > 0,

andE = 0 for h 6 0. Therefore, for the averaged zero-temperature free energy we find:

F(h0) = −α − 1

α

∫ +∞
0

dh√
2πh2

0

h
α
α−1 exp

{
− h

2

2h2
0

}

= − h
α
α−1

0 × α − 1

α

∫ +∞
0

dx√
2π
x

α
α−1 exp(−1

2
x2) ≡ A(α)× h

α
α−1

0 . (2.34)

In terms of replicas, the corresponding replicated Hamiltonian is:

Hn = 1

α

n∑
a=1

φαa −
1

2
βh2

0

n∑
a,b=1

φaφb. (2.35)

This Hamiltonian has a trivial ‘background’ extremum atφ = 0 with zero energy. Therefore,
following the scheme proposed in the previous section, we look for non-trivial saddle-point
solutions in terms of the following ansatz:

φa =
{
φ for a = 1, . . . , k

0 for a = k + 1, . . . , n.
(2.36)

For the corresponding Hamiltonian and the saddle-point equation (in the limitn→ 0) one
gets:

Hk = 1

α
kφα − 1

2
βh2

0k
2φ2 (2.37)

φα−1− βh2
0kφ = 0. (2.38)
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The solution of this equation and the corresponding energy are:

φ = (βkh2
0)

1
α−2 (2.39)

Hk = − 1

β

α − 2

2α
(βk)

2(α−1)
α−2 h

2α
α−2

0 . (2.40)

(Note, that although one can try with more RSB steps in the replica vectorφa it can be
easily proved that there exists only one type of the non-trivial solution given by the ansatz
(2.36).) Then, in terms of the procedure described above for the free energy we have:

F(h0) = − 1

β

∞∑
k=1

(−1)k−1

k
exp

{
α − 2

2α
(βk)

2(α−1)
α−2 h

2α
α−2

0

}
. (2.41)

The summation of this series can be performed in terms of the integral representation
equation (2.19):

F(h0) = 1

2iβ

∫
C

dz

z sin(πz)
exp

{
α − 2

2α
(βz)

2(α−1)
α−2 h

2α
α−2

0

}
(2.42)

where the integration goes over the contour in the complex plane shown in figure 1(a).
Then, again, we move the contour to the position shown in figure 1(b) and redefine the
integration variable:

z→ 1

β
h
− α
α−1

0 ix. (2.43)

In the limit β →∞ we have:

sin(πz) ' 1

β
iπh
− α
α−1

0 x (2.44)

and

F(h0) = −h
α
α−1

0

1

2π

∫
C1

dx

x2
exp

{
α − 2

2α
(ix)

2(α−1)
α−2

}
≡ B(α)× h

α
α−1

0 . (2.45)

Thus, we have obtained the correct scaling of the free energy as a function ofh0. Note
however, that although it is also possible to calculate the value of the coefficientB(α) in
the integral (2.45), such a calculation would not make much sense because to obtain the
correct coefficient (which is given by the integral in (2.34)) one would need to take into
account replica fluctuations which we have neglected here.

2.4. The toy model

Let us consider now a slightly less trivial example of a zero-dimensional system which
cannot be solved by elementary algebra. This system, generally called the ‘toy model’,
consists of a single degree of freedom,φ, evolving in an energy landscape which is the sum
of a quadratic well and a Brownian potential. The Hamiltonian is:

H = 1
2µφ

2+ V (φ) (2.46)

whereV (φ) is the random potential described by the Gaussian distribution:

P [V (φ)] ∼ exp

{
− 1

4g

∫
dφ

(
dV

dφ

)2}
. (2.47)
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TheV distribution is characterized by its first two moments:

(V (φ)− V (φ′))2 = 2g|φ − φ′|
V (φ) = 0

V (φ)V (φ′) = C − g|φ − φ′|
(2.48)

whereC is an irrelevant constant. This problem was introduced originally as a toy, zero-
dimensional version of the interface in the random field Ising model [4]. It has the virtue of
showing explicitly how the most standard field-theoretic methods such as the perturbation
theory, iteration methods or supersymmetry get fooled in this problem, in the lowµ, low-
temperature limit, by the existence of many metastable states [5–8]. The main point is that
at low enough temperatures the usual perturbation theory does not work and a qualitatively
reasonable theory must involve the effects of the replica symmetry breaking. This has been
demonstrated within the replica Gaussian variational approximation [9, 10].

One quantity which one would like to calculate in such a system is the value of〈φ2〉 in
the limit of the zero temperature. Using simple energy arguments one can easily estimate
what must be the scaling dependence of this quantity on the parametersµ and g. For a
given value ofφ the loss of energy due to the attractive potential in the Hamiltonian (2.46)
is ∼ µφ2. A possible gain of energy due to the random potential according to statistics
(2.47), (2.48) can be estimated as∼ √g√φ. Optimizing the total energyE ∼ µφ2−√g√φ
with respect toφ one finds that

〈φ2〉 = C2
g2/3

µ4/3
. (2.49)

This result tells that the typical energy minimum of the Hamiltonian (2.46) lies at a finite
distance from the origin. The scaling (2.49), which is obviously right, is not so easy to
derive from some field-theoretic methods which could also be used in higher dimensions,
and there is no known exact result for the constantC2 at the moment.

Let us try to calculate the value of〈φ2〉 in the zero temperature limit using the method
considered above. The replicated Hamiltonian of the system (2.46) is:

Hn = 1
2µ

n∑
a=1

φ2
a + 1

2βg

n∑
a,b=1

|φa − φb|. (2.50)

The corresponding saddle-point equations are:

µφa + βg
n∑
b=1

Sign(φa − φb) = 0. (2.51)

(Note that in this formula, whenever there is some ambiguity, one should always
assume that there is at some intermediate step a short-scale regularization. Therefore,
one must interpret for instance Sign(0) = 0.) Let us first look for non-trivial solutions of
equation (2.51). It can be easily proven that within the ‘one-step’ RSB ansatz (2.13) no
non-trivial solutions exist. Let us consider the ‘two-steps’ ansatz for the replica vectorφa:

φa =


φ1 for a = 1, . . . , k

φ2 for a = k + 1, . . . , k + l
φ3 for a = k + l + 1, . . . , n.

(2.52)

From equation (2.51) one finds the following equations forφ1,2,3 (in the limit n→ 0):

µφ1+ βgl Sign(φ1− φ2)− βg(k + l) Sign(φ1− φ3) = 0

µφ1+ βgk Sign(φ2− φ1)− βg(k + l) Sign(φ2− φ3) = 0

µφ3+ βgk Sign(φ3− φ1)+ βgl Sign(φ3− φ2) = 0.

(2.53)
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The solution of these equations is:

φ1 = − g
µ
βk φ2 = + g

µ
βl φ3 = g

µ
β(l − k) (2.54)

and the corresponding energy is (in the limitn→ 0):

Ekl = −β
2g2

2µ
kl(k + l). (2.55)

It can be proven that there exist no other solutions of the saddle-point equation (2.51)
with a number of RSB steps larger than two.

Therefore (after taking the limitn→ 0) for the RSB part of the free energy we get the
following series (see equation (2.28)):

FRSB= − 1

βn

n∑
k+l=1

n!

k!l!(n− k − l)! exp(−βEkl)

→− 1

β

∞∑
k+l=1

(−1)k+l−1

k + l
(k + l)!
k!l!

exp{λkl(k + l)} (2.56)

where

λ = β3g2

2µ
→∞. (2.57)

We again carry the summation of the asymptotic series (2.56) with the integral method
mentioned in section 2.2:

FRSB= 1

β(2i)2

∫ ∫
C

dz1 dz2

(z1+ z2) sin(πz1) sin(πz2)

0(z1+ z2+ 1)

0(z1+ 1)0(z2+ 1)
exp{λz1z2(z1+ z2)}

(2.58)

where the integrations overz1,2 both go around the contour in the complex plane shown in
figure 1(a).

Shifting the contour of integration to the position shown in figure 1(b), and redefining
the integration variables:z1,2→ λ−1/3ix1,2 in the limit β →∞ (λ−1/3→ 0) one gets:

FRSB= 1

β

λ1/3

2π2

{∫ ∫ +∞
0

dx1 dx2

[
sin(x1x2(x1+ x2))

x1x2(x1+ x2)
+ sin(x1x2(x1− x2))

x1x2(x1− x2)

]}
. (2.59)

Substituting the value ofλ = β3g2/2µ we finally get the result for the zero-temperature
free energy:

FRSB= g2/3

µ1/3

√
30( 1

6)

4π3/2
. (2.60)

To this piece we must now add the replica-symmetric contribution. The saddle-point
equations have the trivial solution:φa = 0 with the corresponding energyE0 ≡ Hn[φa =
0] = 0. As we want to get a quantitative result for the constantC2, we must also include
the contribution from the replica fluctuations around this saddle point. This cannot be done
just at the level of integrating the quadratic fluctuations. We shall rather make the following
(strong) assumption, namely that this whole ‘RS’ part of the free energy, including the
replica fluctuations, is given by the Gaussian replica variational method [10, 8, 9]. We
do not have a very convincing argument to support this hypothesis; we just point out that
this Gaussian variational method involves the Gaussian integration over replica fields which
in a sense is ‘symmetric’ with respect to the pointφa = 0. In the end the hypothesis is
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best supported by the good result one gets forC2. We denote the Gaussian variational
contribution byFrv, and our conjecture is thatF = Frv + FRSB.

According to equation (2.46):

〈φ2〉 = 2
∂F

∂µ
= 〈φ2〉rv −

g2/3

µ4/3

0( 1
6)

2
√

3π3/2
. (2.61)

Using the result of [8] for the value of〈φ2〉rv we finally get:

〈φ2〉 = g2/3

µ4/3

(
3

(4π)1/3
− 0( 1

6)

2
√

3π3/2

)
' 1.001 81

g2/3

µ4/3
. (2.62)

We have compared this result with some numerical simulations of the problem. The
scaling inµ andg is obviously correct, the only point to check is the prefactorC2. Choosing
for instance the values of the parametersµ = 1 andg = 2

√
π (when the replica variational

method gives〈φ2〉rv = 3 ) we obtain from (2.62) the analytical prediction:〈φ2〉 ' 2.3291.
The numerical simulation was done at zero temperature, with the same values ofµ and
g. The φ interval [−8, 8] is discretized in 2N points, on which one generates a random
potential as in (2.46). The exhaustive scan gives the minimum, from which one computes
〈φ2〉. We average over 100 000 samples. The number of points 2N ranged from 28 to 216,
in this regime there is no systematicN dependance. There is no systematic error due to
the finite width of the interval since we have checked that, within our statistics, there is
no sample for which the minimum is found with|φ| > 7. The result of the simulation is
〈φ2〉 ' 2.45± 0.02. The value predicted by our replica saddle-point summation is rather
close, although there is a clear small discrepancy.

2.4.1. The result for〈φ4〉. To be sure that this relatively good agreement of our prediction
for 〈φ2〉 with the numerical result is not just a coincidence we have performed similar
calculations for the next-order correlator〈φ4〉. The computations, which are similar to the
ones we have just presented but more cumbersome, are given in the appendix. The result
is:

〈φ4〉 = 〈φ4〉rv + 〈φ4〉RSB=
g4/3

µ8/3

(
27

(4π)2/3
− 17
√

3[sin(π/12)+ cos(π/12)]

3
√
π0( 1

6) sin(π/6)

)
. (2.63)

For the values of the parametersµ = 1 andg = 2
√
π (when the replica variational method

gives〈φ4〉rv = 27 ) we obtain:〈φ4〉 ' 16.25. The numerical result is obtained by using the
same procedure as above and gives〈φ4〉 ' 17.05± 0.2. Again these number are close but
there is a significant difference.

Clearly, the vector type of RSB that we have been using on all these zero-dimensional
problems is somewhat strange, and we cannot assert that we control all of its aspects (in
particular the fact that the replica fluctuations around the RS saddle point are summed by the
Gaussian variational method is still unclear). However, in all these cases, and in particular
in the non-trivial case of the toy model, we have obtained good results using this simple
method. Therefore, we now turn to its application to more elaborate problems, starting with
systems in one dimension.

3. Directed polymers in random media

The problem of a directed polymer in a random medium is an important problem which
recently has been greatly studied [11]. Although the situation in 1+ 1 dimensions, with a
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delta correlated potential, is relatively well understood, there are still a lot of uncertainties
about more complicated cases.

We shall consider a one-dimensional case with long-range correlations of the potential.
It is described by a one-dimensional scalar field system with the following Hamiltonian:

H =
∫ L

0
dx

[
1

2

(
dφ(x)

dx

)2

+ V (x, φ)
]

(3.1)

where the random potentialsV (x, φ) are described by the Gaussian distribution withnon-
local correlations with respect to the fieldsφ:

V (x, φ)V (x ′, φ′) = δ(x − x ′)[constant− g(φ − φ′)2α] (3.2)

where 0< α < 2.
This problem naturally arises, withα = 1

2, when one considers an interface in the two-
dimensional random field Ising model at low temperatures: then the fieldφ just describes
the lateral fluctuations in the interface, in a solid-on-solid approximation.

One first basic question that we would like to answer concerns the scaling behaviour
of the lateral fluctuations. Let the value of the fieldφ(x) be put to zero at the origin:
φ(x = 0) ≡ 0. Then one would like to know how the average value of the field atx = L,
〈φ(L)2〉, scales withL:

〈φ(L)2〉 ≡
(
Z−1

∫
dφ0 φ

2
0

∫ φ(L)=φ0

φ(0)=0
Dφ(x) exp(−βH [φ(x), V ])

)
∼ L2ζ (3.3)

where the partition functionZ (for a given realization of the random potential) is given by the
integration over all the trajectoriesφ(x) with only one boundary conditionφ(x = 0) = 0.
The ‘wandering exponent’ζ has been computed in the case of local correlations of the
random potential, it is then equal to23 [12]. In the case of non-local correlations such as
(3.2), it is believed that this exponent should be equal to3

2(2− α) at small enoughα. This
is the result that is obtained from the Gaussian variational ansatz [10], and it can also be
derived from a mapping to the Burgers (or the KPZ) equation and a study of this equation
through a dynamical renormalization group procedure [13].

A simple derivation of this scaling can be obtained by an energy balance argument given
by Imry and Ma [14]. Let the value of the field be equal toφ0 at x = L. Then the loss of
energy due to the gradient term in the Hamiltonian (3.1) can be estimated asEg ∼ φ2

0/L.
The gain of energy due to the random potential term, according to equation (3.2), can be
estimated asEV ∼ −

√
L
√
gφα0 . By optimizingEg andEV with respect toφ0 one finds:

φ0 ∼ L
3

2(2−α) g
1

2(2−α) . (3.4)

In this section we will demonstrate how this result can be obtained in the zero-
temperature limit in terms of the proposed replica saddle-point method. The replicated
Hamiltonian is:

Hn =
∫ L

0
dx

[
1

2

n∑
a=1

(
dφa(x)

dx

)2

+ 1

2
βg

n∑
a,b=1

(φa(x)− φb(x))2α
]
. (3.5)

Strictly speaking, the systematic way of solving this problem following our general method
is as follows. One must findn saddle-point trajectoriesφa(x) for fixedn boundary conditions
φa(L), then one has to derive the corresponding energyH̃n[φa(L)], and finally one has to
find the saddle-point solutions with respect to the values ofφa(L).

Here we shall follow a much simpler strategy. Since it is obvious that there always
exists the trivial solutionφ(x) ≡ 0, we will suppose that the correct scaling can be obtained
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simply by taking into account one non-trivial saddle-point trajectory. In other words, from
the very begining we are going to look for the saddle-point solutions within the following
ansatz:

φa(x) =
{
φ(x) for a = 1, . . . , k

0 for a = k + 1, . . . , n.
(3.6)

Comparing this ansatz with the zero-dimensional exercises of the previous section, we see
that it should amount to assuming that the lowest lying configuration dominates. This is
certainly true since one knows [15, 16] that the metastable states have an excitation energy
which scales asLω, with ω = 2ζ − 1. Substituting this ansatz into the replica Hamiltonian
(3.5) in the limitn→ 0 one gets:

Hk = k
∫ L

0
dx

[
1

2

(
dφ(x)

dx

)2

− βkgφ2α(x)

]
. (3.7)

As usual (see the previous section) the free energy is defined by the series:

F(L) ∼ − 1

β

∞∑
k=1

(−1)k−1

k
exp(−βHk) (3.8)

where the valueHk is defined by the corresponding saddle-point solution forφ(x).
The saddle-point trajectory is defined by the following differential equation:

d2φ

dx2
= −2αβkgφ2α−1 (3.9)

with the boundary conditions:φ(0) = 0 andφ(L) = φ0. This equation can be easily
integrated: ∫ φ(x)

0

dφ√
λ− φ2α

= x
√

2βkg (3.10)

where the integration constantλ is defined by the boundary condition:∫ φ0

0

dφ√
λ− φ2α

= L
√

2βkg. (3.11)

Substituting this solution into the Hamiltonian (3.7), we obtain after some simple algebra:

Hk = k
[
− βkgλL+

√
2βkg

∫ φ0

0
dφ
√
λ− φ

]
. (3.12)

Taking the derivative ofHk with respect toφ0 (and taking into account the constraint (3.11))
one finds the following saddle-point solution:

φ0 ∼ L 1
1−α (βkg)

1
2(1−α) (3.13)

andλ = φ2α
0 . Its energy (3.12) is:

Hk = − (constant)

β
(βk)

2−α
1−α L

1+α
1−α g

1
1−α . (3.14)

Now we proceed as before, introducing an integral representation of the series (3.8) and a
rescaling of the integration variable by a factor of1

β
L−

1+α
2−α g−

1
2−α . Then we get the scaling

of the free energy:

F(L) ∼ L 1+α
2−α g

1
2−α (3.15)
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from which we obtain the scaling ofφ0 as a function ofL:

φ0(L) ∼ L
3

2(2−α) g
1

2(2−α) (3.16)

which coincides with result (3.4) given by the naive energy arguments, as well as by more
elaborate calculations.

Although the example demonstrated in this section provides no new results we hope that
the proposed method could turn out to also be useful when applied for directed polymers
with smallerα, or in larger dimensions.

4. Random field Ising model inD dimensions

Since the topic of the random field Ising model covers an enormous amount of literature (see
e.g. [17]), it would be rather difficult to give any brief introductory review. Here, however,
we are mainly concerned with how the method we have proposed works in various situations.
Therefore, we will concentrate only on one particular aspect of the problem.

It is well known that the main problem in the studies of the low-temperature phase
in the random field Ising model is that one has to perform the summation over numerous
local minima states, which seems to be impossible to do within the framework of the usual
perturbation theory [17]. It has been proposed recently that, because of these local minima
states a special ‘intermediate’ (separating paramagnetic and ferromagnetic phase) spin-glass-
like thermodynamic state could set in around the critical point, and moreover, this state is
characterized by a replica symmetry breaking in the corresponding correlation functions
[18]. At low temperatures, and when the width of the distribution of the random field is
not too small, the same phenomenon must be present. It was proposed long ago [19], and
later elaborated in [20], that the metastable states in this regime should be characterized by
some ‘instanton in replica space’. Our method provides one more step in the elaboration of
this idea.

We consider the random field Ising model in terms of the usual Ginzburg–Landau
Hamiltonian inD dimensions:

H =
∫

dDx [ 1
2(∇φ)2+ 1

2τφ
2+ 1

4gφ
4− h(x)φ] (4.1)

where the random fieldsh(x) are described by theδ-correlated Gaussian distribution:

P [h(x)] =
∏
x

 1√
2πh2

0

exp

(
−h

2(x)

2h2
0

) . (4.2)

The corresponding replica Hamiltonian is:

Hn =
∫

dDx

[
1
2

n∑
a=1

(∇φa)2+ 1
2τ

n∑
a=1

φ2
a + 1

4g

n∑
a=1

φ4
a − 1

2h
2
0

n∑
a,b=1

φaφb

]
. (4.3)

According to the procedure developed in previous sections we are going to look for the most
simple non-trivial saddle-point solutions at the background of the trivial one,φa(x) ≡ 0. In
terms of the ansatz:

φa(x) =
{
φ(x) for a = 1, . . . , k

0 for a = k + 1, . . . , n.
(4.4)

The replica Hamiltonian (4.3) reads in then→ 0 limit as:

Hk = k
∫

dDx [ 1
2(∇φ)2− 1

2(h
2
0k − τ)φ2+ 1

4gφ
4]. (4.5)
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Consider for simplicity the situation atτ = 0 (notice that here we work close to the
critical temperature. The use of our saddle-point technique allows us to study the system
at tree level, which is supposed to give the leading singularities close toTc [21]). The
corresponding saddle-point equation is:

−1φ − λφ + gφ3 = 0 (4.6)

whereλ = h2
0k. As usual, the free energy is given by the series:

F(h0) ∼ −
∞∑
k=1

(−1)k−1

k
exp(−Hk) (4.7)

where the value ofHk is defined by the corresponding saddle-point solution of equation (4.6).
At this stage we see that the situation is getting rather different from the ones studied in

the previous sections. If we choose the obvious space-independent solutionφ = (λ/g)1/2,
we would find that the value ofHk is proportional to the volumeV of the system:
Hk = − 1

4k(λ
2/g)V = − 1

4g k
3h4

0V . Then, the summation of the series (4.7) would

immediately yield a free energy proportional toV 1/3 and not toV . Therefore this solution,
as well as any other solution with an energyHk proportional to the volume of the system,
is irrelevant for the bulk properties.

Thus, we have to look forlocalized solutions: the ones which are local in space
(breaking translation invariance) and which havefinite energy. Let us first assume that such
an ‘instanton’-type solution exists (see below), and that for a givenk it is characterized
by the spatial sizeR(k). Then, if we take into account only one-instanton contribution (or
in other words we consider a gas ofnon-interactinginstantons), due to the trivial entropy
factorV/RD (this is the number of positions of the object of the sizeR in the volumeV )
we get a free energy proportional to the volume:

F(h0) ∼ −
∞∑
k=1

(−1)k−1

k

V

RD
exp(−Hk) (4.8)

whereHk must be finite (volume independent).
It is easy to understand that equation (4.6) indeed has localized solutions. Let us assume

that the value of the fieldφ(x) is such thatλφ2 � gφ4. Then in a first approximation the
saddle-point equation (4.6) is linear:

1φ + λφ = 0. (4.9)

The simplest possible spherically symmetric solutions of this equation inD dimensions
are the well known Bessel-type functions. In particular oscillating solutions exist which
have a finite valueφ(r = 0) ≡ φ0 at the origin and which decay to zero atr → ∞ (like
∼ r−(D−1)/2 sinr). For example, in dimensionD = 3 this solution is simply:

φ(r) = φ0
sin(r
√
λ)

r
√
λ

. (4.10)

In dimensionsD these solutions have a finite spatial scale:

R(k) = λ−1/2 = (h2
0k)
−1/2 (4.11)

and finite energy:

Hk = −(constant)kφ2
0λ
−D−2

2 . (4.12)

At the level of equation (4.9) itself, the value ofφ0 remains arbitrary (the equation is linear).
On the other hand, from the point of view of the energy this is not an extremum since the
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energy explicitly depends on the value ofφ0 (this is the saddle-point solution for the fixed
boundary conditionφ(r = 0) = φ0). If we let the value ofφ0 be free in the absence of
the nonlinear termgφ4 it would, of course, fall down to infinity. However, if we take into
account the termgφ4 in the ‘exact’ Hamiltonian (4.5) it is natural to expect thatφ0 will
stabilize around the saddle-point value

φ2
0 =

λ

g
. (4.13)

The above qualitative arguments can be easily verified for the model double-well potential:
Ũ (φ) = − 1

2φ
2 for |φ| 6 √λ/g and Ũ (φ) = +∞ for |φ| > √λ/g, taken instead of the

‘real’ one: U(φ) = − 1
2φ

2 + 1
4gφ

4. In this case for any|φ0| 6
√
λ/g there exists the

exact Bessel-like saddle-point solution with finite energy (4.12), and real extremum of the
Hamiltonian would be achieved atφ0 = ±

√
λ/g.

Let us calculate the contribution of such solutions to the free energy. Substituting into
the series (4.8) the energy of the solution (4.12), the estimate for the value ofφ0 (4.13) and
the characteristic size of the solution (4.11), together withλ = h2

0k we get:

F(h0) ∼ −V
∞∑
k=1

(−1)k−1

k
(h2

0k)
D
2 exp

[
(constant)

gh2
0

(h2
0k)

6−D
2

]
. (4.14)

We see that the series is getting strongly divergent only at dimensionsD < 6. This is the
only regime where the considered saddle-point solutions provide a relevant contribution.

Now, following the scheme developed in the previous sections, we turn to the integral
representation and rescale the integration variable by a factor(gh2

0)
2

6−D h−2
0 , which gives a

free energy with the following scaling in the limitgh2
0� 1:

F(h0)

V
∼ 1

g
(gh2

0)
4

6−D . (4.15)

Besides, using the same scalingk ∼ (gh2
0)

2
6−D h−2

0 for the characteristic spatial scale of the
saddle-point solutions (4.11), which could be interpreted as a kind of disorder inducedfinite
correlation length (nearT = Tc, as we shall see in more detail below), we obtain:

Rc(h0) ∼ (gh2
0)
− 1

6−D . (4.16)

In the same way one gets the estimate for the value of the ‘disorder parameter’φ2 ∼ φ2
0 '

1
g
(h2

0k):

φ2
0 ∼

1

g
(gh2

0)
2

6−D . (4.17)

Finally, one can easily obtain the estimate for the value of the temperature intervalτc
aroundTc where all the above qualitative calculations make sense. Formally the derivation
of the saddle-point solutions has been done forτ = 0. Actually, according to the replica
Hamiltonian (4.5) the calculations should remain correct until|τ | � h2

0k. Using the above
scale estimate fork one finds the upper bound for the value ofτ :

|τ | � τc ∼ (gh2
0)

2
6−D . (4.18)

This value ofτc can be interpreted as the estimate for the temperature interval aroundTc
where the supposed disorder dominated (spin-glass-type) phase sets in.

Of course, the procedure proposed in this section is still incomplete. In a self-consistent
approach one should study the effects produced by the interactions between these instanton
solutions, not talking about the effects of the critical fluctuations. At the present stage we
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are not able to say anything about the ferromagnetic phase transition itself and in particular
about the behaviour of the corresponding ferromagnetic order parameter.

Nevertheless, we shall now show that these simple replica instanton estimates are
quite reasonable and can in fact be recovered in terms of (completely independent) simple
scaling arguments. Indeed, let us come back to the original random field Hamiltonian (4.1).
Configurations of the fieldφ(x) which correspond to local minima satisfy the saddle-point
equation:

−1φ(x)+ τφ(x)+ gφ3(x) = h(x). (4.19)

Let us estimate at which spatial and temperature scales the random fields give a dominant
contribution. We consider a large region�L of linear sizeL � 1. The spatially averaged
value of the random field in this region is:

h(�L) ≡ 1

LD

∫
x∈�L

dDx h(x). (4.20)

Correspondingly, the typical average value of the random field in this region of sizeL is:

hL ≡ [h2(�L)]
1/2 = h0L

−D/2. (4.21)

Then the estimate for the typical value of the order parameter fieldφL in this region can be
obtained from the saddle-point equation:

τφL + gφ3
L = hL. (4.22)

Then, as long as:

τφL � gφ3
L (4.23)

the typical value ofφL inside such clusters is dominated by the random field:

φL ∼
(
hL

g

)1/3

∼
(
h0

g

)1/3

L−D/6. (4.24)

Now let us estimate up to which characteristic size of the cluster the external fields can
dominate. According to (4.23) and (4.24) one gets:

L� (gh2
0)

1/D

τ 3/D
. (4.25)

On the other hand, the estimation of the order parameter in terms of the equilibrium
equation (4.22) can be correct only on length scales much larger than the size of the
fluctuation region which is equal to the correlation length (of the pure system)Rc ∼ τ−ν .
Thus, one has the lower bound forL:

L� τ−ν . (4.26)

Therefore, the region of parameters where the external fields dominate is:

τ−ν � (gh2
0)

1/D

τ 3/D
(4.27)

or

τ 3−νD � gh2
0. (4.28)

Such a region of temperatures nearTc exists only if:

νD < 3. (4.29)
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In this case the temperature interval nearTc in which the order parameter configurations are
mainly defined by the random fields is:

τc(h0) ∼ (gh2
0)

1
3−νD . (4.30)

In the mean-field theory (which correctly describes the phase transition in the pure
system forD > 4) ν = 1

2. Thus, according to condition (4.29) the above non-trivial
temperature intervalτc exists only in dimensionsD < 6. Substitutingν = 1

2 into (4.30) we
get:

τc(h0) ∼ (gh2
0)

2
6−D . (4.31)

Then, the random field defined spatial scale can be estimated from (4.25):

Lc(h0) ∼ (gh2
0)
− 1

6−D . (4.32)

Correspondingly, the typical value of the order parameter field at scalesLc(h0) is
obtained from equation (4.24):

φ2
Lc
∼ 1

g
(gh2

0)
2

6−D . (4.33)

The energy density is estimated asE
V
∼ φLchLc . Taking into account (4.21) and (4.33)

we find:

E

V
∼ 1

g
(gh2

0)
4

6−D . (4.34)

We see that we get, through these simple arguments, a region aroundTc where the
disorder induces a finite correlation length. Furthermore, the estimates forE

V
, Lc, φLc and

τc perfectly coincide with the results obtained in terms of our previous replica saddle-point
method, equations (4.15)–(4.18). Both approaches clearly hold only in a regime where
critical fluctuations can be neglected.

5. Conclusions

We have proposed a method to analyse random systems by summing up various saddle-
point contributions in the replicated Hamiltonian. We think that it may open a new route
in this type of study. In particular, the application to finite-dimensional systems, which we
started here with the directed polymer on the one hand, and with the random field Ising
model on the other hand, looks quite interesting. Indeed we have seen in this last case how
this method allows us to take into account instanton contributions which are usually out of
reach of most analytic methods in these systems. Such instanton contributions have been
argued to be important for a long time [2, 3]. We think we can get them under control with
the present approach.

Clearly our method is still not totally understood in all details. We have pointed out
that it involves one single basic rule, stating the way one has to order the various saddle
points in replica space. Within this hypothesis it gives reasonable results in all the cases
we have checked so far, but of course more studies are needed to justify this hypothesis.
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Appendix: Computation of the fourth moment in the toy model

Using the saddle point solution (2.54) we have:

〈φ4〉RSB=
n∑

k+l=1

n!

k!l!(n− k − l)! [kφ4
1 + lφ4

2 + (n− k − l)φ4
0] exp{−βEkl}

→
(
βg

µ

)4 ∞∑
k+l=1

(−1)k+l−1

k + l
(k + l)!
k!l!

kl(k + l)(3k2+ 3l2− 5kl) exp{λkl(k + l)}.

(A.1)

Proceeding similarly to the calculations of the free energyFRSB (2.58), (2.59) we get:

〈φ4〉RSB=
(
βg

µ

)4
∂

∂λ
{− 1

(2i)2

∫ ∫
C

dz1dz2

(z1+ z2) sin(πz1) sin(πz2)

0(z1+ z2+ 1)

0(z1+ 1)0(z2+ 1)

×(3z2
1 + 3z2

2 − 5z1z2) exp[λz1z2(z1+ z2)]}. (A.2)

Shifting contour to the position in figure 1(b) and redefiningz1,2→ λ−1/3ix1,2 in the limit
β →∞ (λ−1/3→ 0) we find:

〈φ4〉RSB=
(
βg

µ

)4
∂

∂λ

{
− λ

−1/3

2π2

∫ ∫
C1

dx1dx2

(x1+ x2)x1x2
(3x2

1 + x2
2 − 5x1x2)

× exp[−iλx1x2(x1+ x2)]

}
. (A.3)

Taking into account the contribution from the pole atx1,2 = 0 after somewhat painful
algebra we finally obtain the following result:

〈φ4〉RSB= −
g4/3

µ8/3

17
√

3[sin(π/12)+ cos(π/12)]

3
√
π0( 1

6) sin(π/6)
. (A.4)

Taking into account the contribution from the replica fluctuations [8]:

〈φ4〉rv =
g4/3

µ8/3

27

(4π)2/3
(A.5)

for the fourth-order correlator we get the final result:

〈φ4〉 = 〈φ4〉rv + 〈φ4〉RSB=
g4/3

µ8/3

27

(4π)2/3
− g4/3

µ8/3

17
√

3[sin(π/12)+ cos(π/12)]

3
√
π0( 1

6) sin(π/6)
. (A.6)
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