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Landscape approach for pinned elastic interfaces
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Abstract

We discuss the large scale effective free energy landscape for elastic objects pinned by a random potential. In the static
approach, converging analytical results show that this landscape consists in a succession of parabolic wells of random depth,
matching on singular points where the effective force is discontinuous. We discuss the consequences for the dynamics of these
pinned interfaces.
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1. Introduction

The physics of elastic objects pinned by random impurities is of fundamental importance both from a theoretical
point of view (many of the specific difficulties common to disordered systems are at stake) and for applications: the
pinning of flux lines in superconductors [1-3], of dislocations, of domain walls in magnets, or of charge density
waves [4,5], controls in a crucial way the properties of these materials. Interestingly, this problem is also intimately
connected to surface growth [6], to fracture [7] and to turbulence [8].

One may first consider the equilibrium problem, where the probability distribution of the position of such a
manifold is assumed to be given by Boltzmann law (the dynamical problem, where one discusses the relaxation
towards this equilibrium — possibly never reaching it —~ will be discussed below). Two different general approaches
have been proposed to describe this static problem, for which perturbation theory fails. The first one is the variational
replica method which combines a Gaussian trial Hamiltonian with ‘replica symmetry breaking’ (RSB) to obtain
a quantitative description of the low temperature, strongly pinned phase [9-11]. The second is the ‘functional
renormalisation group’ (FRG) which aims at constructing the correlation function for the effective pinning potential
acting on long wavelengths using renormalisation group (RG) ideas [12,13]. These two methods seemed somewhat
difficult to compare directly since the quantities one computes in each of them are quite different. Recently we
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obtained some new results on the connections between these two approaches [14]. Besides its mathematical interest,
this work also sheds some new light on the physical mechanisms, and particularly the ‘landscape aspects’ underlying
the glassy behaviour of the pinned phase. We show that both formalisms are indeed struggling to describe an awkward
reality: the effective, long wavelength pinning potential is a succession of parabolic wells of random depth, matching
on singular points where the effective force (i.e. the derivative of the potential) is discontinuous. These discontinuities
induce a singularity in the effective potential correlation function, and are encoded in the replica language by the
RSB. The replica calculation furthermore provides an explicit construction of this effective (random) potential. This
allows us to get more information, for instance on the depth of the potential minima, and also to make more explicit
the assumptions on which the FRG approach relies.
We consider the general problem of pinned elastic manifolds described by the Hamiltonian:
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where x is a D-dimensional vector labelling the internal coordinates of the object, and ¢(x) an N-dimensional
vector giving the position in physical space of the point labelled x. Various values of D and N actually correspond
to interesting physical situations. For example, D = 3, N = 2 describes the elastic deformation of a vortex lattice
(after a suitable anisotropic generalisation of Eq. (1)), D = 2, N = 1 describes the problem of domain walls pinned
by impurities in three-dimensional space, while D = 1 corresponds to the well-known directed polymer (or single
flux line) in an N + 1-dimensional space. The elasticity of the structure is characterised by the modulus c. Obviously
for each specific case the elastic term should be adapted (for instance in vortex lattices one should introduce the
three moduli C11, C44, Ces), but in this presentation we want to stay at a general level and we shall discuss the
simplest case, leaving aside such (important) details. The pinning potential Vp(x, ¢(x)) is a random function, which
we shall choose to be Gaussian distributed with a correlation function:
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where W measures the strength of the pinning potential. We shall here concentrate on the case where the correlation
function is short ranged (although the long range case is also interesting), and we shall choose for convenience
Ro(y) = exp(—y/ 2A?%), where A is the correlation length of the random potential.

2. Statics

A lot of efforts have been devoted to this type of problem, particularly for computing the wandering exponent
characteristic of the transverse fluctuations of the manifold at low temperature, which is known to be non trivial below
four dimensions. Simple scaling arguments, which are rather successful [15], are complemented by microscopic
computations using the two methods mentioned before [9,13], leading to some approximate values of the exponents.
We shall not discuss this aspect here, but we want to focus on the physical pinning mechanisms. One aim of the
theory is to understand how the microscopic pinning potential will affect the elastic manifold on long length scales,
relevant for macroscopic measurements. In other words, one would like to construct the effective pinning potential
seen by a low wavevector mode of the structure, after thermalising the modes with shorter length scales. Both the
FRG and the replica approach propose an approximate construction of this effective potential.

The FRG method consists in writing down a recursion relation for the correlation function of the potential acting
on ‘slow’ modes ¢ _, after ‘fast’ modes ¢.. (corresponding to wavevectors in the high-momentum shell [A /b, A})
have been integrated out using perturbation theory, and after a proper coarse graining of the variables both in x space
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and in ¢ space [13]. Assuming that the renormalised random pinning potential still has a Gaussian distribution, one
can write a recursion relation for the two-point correlation function of the potential. Close to four dimensions, to
first order in € = 4 — D, one can argue that this correlation function keeps the form (2), where the function Ry(y) is
replaced by a scale dependent correlation R;(y). The iteration of the recursion equation from the ‘initial’ condition
R(y) = Rp(y) converges towards the fixed point R*(y), describing the long wavelength properties, which has the
singular small y expansion [13]
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In terms of the effective force f acting on the manifold (defined as minus the derivative of the effective potential
with respect to ¢), one finds that the force correlation function behaves as
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The two main assumptions underlying this computation are the use of perturbation theory in the decimation procedure
on the one hand, and the assumption of Gaussian statistics on the other hand. Within this framework the effective
force acting on the manifold would seem to behave, for N = 1, as a random walk in ¢ space.

The replica approach is, in some sense, more ambitious, since it provides an explicit probabilistic construction of
the effective disordered potential seen by the manifold. On the other hand, it is based on a non-perturbative variational
method (of the Hartree type) which is exact only when N — oo. Furthermore it turns out that the probabilistic
construction of the effective potential is somewhat intricate [8,9], so that the computation of the effective large
scale correlation of this potential is not easy. This is basically the computation which was done in [14], and for
which we describe here only the general idea. One first isolates a particular, very slow mode ko — 0. The effective
force acting on ¢y = @ (Ko) is f5 (o) = —(1/8)(3/3¢f) In Pe (¢y), where Py () is the probability to observe
o for a given realisation of the random pinning potential £2 (notice that all the other modes are supposed to be
thermalised). One computes the correlation function of f with the aid of replicas through the object:
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which is directly calculable within the Gaussian RSB Ansatz. A somewhat elaborate computation leads, in the limits
ko - 0, D — 4, N — o0, to a two-point correlation for the large scale effective pinning potential which has the
same structure as the one derived from the FRG, confirming the convergence of the results of the two methods in
this regime. This was hoped for, since the FRG is supposed to hold when € — 0 and the Gaussian variational replica
approach is supposed to hold when N — oo.

Things become more tricky, and more interesting, when one considers the physical interpretation of the replica
computation, which also allows to compute higher moments of the large scale potential (V) statistics. The Gaussian
variational ansatz with RSB does not mean at all that the statistics of V, is Gaussian. Let us first discuss the replica
construction of the effective potential in the case D = 1 where a simpler, one step RSB, solution holds [8,9]. In this
case, one has
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where o label the ‘states’, centred around ¢, and of free-energy F,, both depending on the ‘sample’ £2. The
priviledged positions ¢, are uniformly distributed, while the free energies F, are exponentially distributed:
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Fig. 1. Schematic view of the effective energy landscape as a succession of parabolic wells matching at singular point. This picture actually
corresponds to a ‘one-step’ replica symmetry breaking scheme.

The full distribution of the effective force aV(, /3¢ (corresponding to the velocity in the Burgers turbulence
problem) was analysed in detail in [8], in the turbulence language. Translated into the present language, one finds
that the potential has for N = 1 the shape drawn in Fig. 1: it is made of parabolas matching at angular points.
The singular behaviour of the force—force correlation function, Eq. (4), is due to the fact that with a probability
proportional to the ‘distance’ |y — |, there is a shock which gives a finite contribution to f () — f (p). This

means in particular that all the moments | f(vg) — f([)|? grow as |¢g — | for p > 1, instead of |y — <p()|1’/ 2 as
for Gaussian statistics. In the case of continuous RSB, the construction of the effective potential is more complicated.
Basically it is recursively constructed via a set of ‘Matrioshka doll” Gaussians [9,14]. It is schematically drawn in
Fig. 2 for the transverse fluctuations ¢ (/) — ¢ (0). The singular structure of the two-point correlations R(y) for small
y still holds.

The relation with Burgers’ equation is actually quite interesting. Keeping N = 1 for simplicity, consider a toy
model for the FRG mode elimination in which the renormalized effective potential is defined as

BVr(p<) = —In [ / d(p>e‘ﬂ[(”‘2/2)w§+Vo(<p<+so>)]:| ’ o

This means that Vg (¢.) is precisely the Cole—Hopf solution of the Burgers equation [16]:
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Fig. 2. Multiscale energy landscape corresponding to a full replica symmetry breaking scheme. In this case, the construction is that of
parabolas within parabolas, in a hierarchical manner. The depth of the wells (and thus also the height of the barriers) typically grows as
|¢ — ¢'|°/%. The figure actually corresponds to a two-step breaking scheme, with ) = 0.5 and ug = 0.05. The inset is a zoom on a
particular region, showing the first level of Gaussians.

with

Vip,t = 0) = Vo(e), Vr(p) =V(p,t = 1). (10

As is well-known [16,17], a random set of initial conditions (here the bare pinning potential acting on ¢) develops
shocks which separates as time grows, between which the ‘potential’ V (¢) has a parabolic shape. Elimination of
fast modes in a disordered system thus naturally generates a ‘scalloped’ potential, with singular points separating
potential wells — the famous ‘states’ appearing in the replica theory.

The reason why the FRG succeeds in getting correctly the singularity in R(y) while it uses the wrong assumption
of the large scale potential being Gaussian is not totally clear. To get some idea about this issue, one must keep
in mind that the effective potential calculated within the FRG procedure involves an extra step which we have not
performed within the replica construction, which is a coarse graining of the ¢ variables. In the FRG calculation,
one restricts to configurations which are such that ¢ is constant on scales /, and scales as /5. The correct choice of
¢ then ensures that there are only a few shocks on the scale /. This is perhaps why the FRG can still be controlled,
the departure from Gaussian statistics being in some sense (which we do not fully understand) ‘weak’.
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3. Dynamics

We believe that our construction of the effective pinning potential could turn out to be very useful in order to
understand the dynamics of such objects at finite V. It suggests for instance to analyse the relaxation of one mode in
terms of hops between the different minima (‘traps’), corresponding to metastable long wavelength configurations.
Of course one must be cautious about this approach because it is not clear that one can really analyse the relaxation
of one mode in its effective static potential: this amounts to assume that all the other modes are already equilibrated,
which is not guaranteed since they are themselves slow! Keeping this in mind, it is nevertheless interesting to notice
that the trapping time distribution, which is controlled by the distribution of F,, is a broad distribution without a
first moment. More precisely, the lifetime of each ‘trap’ is activated t ~ g exp(S8AE), which is distributed — in
the full RSB picture — as a power-law 7! ~“®) for large 7, where the exponent u(k) o« k¥ depends on the ‘size’ of
the jump (i.e. the mode involved in the change of conformation), small u(k) corresponding to large wavelengths.
(6 is the so-called energy exponent which is close to 2 in dimension D ~ 4). Then, as emphasised in [18] where
precisely the same ‘trap’ picture was advocated for spin-glasses, the dynamics becomes non-stationary and aging
effects appear at low temperatures and/or long-wavelengths such that u(k) < 1.

A direct analytic study of the dynamics has also been developed by mean field methods which hold for large N.
Using the dynamical field theory approach [19-21], one can write [22] in this limit (it is important that the large N
limit is taken before the large time limit in this approach) some coupled equations for the correlation:

1
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and the response:
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These dynamical equations involve a memory kernel and an effective noise which are determined self-consistently.
The understanding of this mean field dynamics parallels that of spin-glasses. For simplicity we shall discuss the case
of zero dimension. At high temperature one finds a solution which is, at large enough time, both time translational
invariant (TTI) and obeys the fluctuation dissipation theorem (FDT). At a critical temperature the relaxation time
becomes infinite [22]. In the low temperature phase, as first recognised in spin-glasses by Cugliandolo and Kurchan
[23], the solution loses the two properties of TT1 and FDT (notice that this can be seen only keeping the initial
time, and thus the age of the system, fixed, while sending N — 00). The solution of the dynamical equations at
low temperature was developed in [24] for the case of long range correlated noise, and then in [25] for the case of
short range correlations. Roughly speaking, the main features of the solution look as follows. There exist several
different ways of having the two times ¢ and ¢’ large while keeping a non-trivial dependance of the correlation and
response. The usual asymptotic regime corresponds to having ¢ — oo, t' — oo, with a fixed value of t = — ¢'.
Then the correlation and response go to their asymptotic forms Cas(7) and ra(7), and represent the stationary
dynamics.

In the simplest case (corresponding to ‘one-step’ replica symmetry breaking solutions for the statics), the in-
teresting aging regime is unique and corresponds to the domain in which 1 — oo, t’ — 00, with a fixed value
of A = h(t')/h(t), where h(t) is an increasing function which has not yet been determined by the theory. A pos-
sibility could be that A(t) o ¢, as is the case for coarsening models or in the trap model alluded to above. In
this aging regime, one has C(¢,t) ~ C(»), and similarly for the response. This implies a response ‘anomaly’,
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which means that the system develops a long term memory. Mathematically this can be found from the following
relation:

tw o0
tlim / dsr(ty,s) 75/ dt ras(7), (13)
w—>00
0 0
Furthermore in this aging regime the FDT is substituted by [23]:
ac(, v
Tty = 2 (14)

where the fluctuation dissipation (FD) ratio x is smaller than one.

In more complicated cases (corresponding to ‘full’ replica symmetry breaking solutions for the statics), there exist
several aging regimes. For instance one could take the limits t — 00,1 — 00, with an fixed value of A = (£ —t')/¢*.
In each such regime there will be a modified FDT as in (14), with an FD ratio which depends on the regime. (For
some non-understood reason the set of values of the FD ratio is related to the Parisi order parameter function in the
replica solution of the statics, whenever there is a full RSB solution [24,26]).

The derivation of the aging effect from mean field dynamics, and the subsequent analytical progress, is an
important breakthrough. Yet the physical mechanism underlying aging in these mean field models is not totally
clear. In particular, in the simplest ‘one-step’ models, the dynamics is rather insensitive to temperature, and remains
qualitatively the same from the dynamical transition temperature to zero temperature. This is related to the fact that
aging is due to a diffusion like effect in a very high-dimensional phase space, where trapping and activated effects
are absent (there is always a path to escape). In this respect, various possible scenarios have been proposed recently,
including purely entropic barriers [27,28], or diffusion along basin boundaries in high-dimensional space [29]. Full
RSB models are more intricate, and it would be very interesting to understand in more details what happens in these
models. It thus seems necessary at this stage to develop new tools to understand the various types of aging which
have been seen (a first tentative classification has been proposed in [30]). A truly challenging task, in particular, is
to be able to control the finite N corrections to the mean-field models, which contain the activated effects. Precisely
the same problem appears within the ‘Mode-Coupling’ theory of glasses [31-33].

In this respect, we want to point out the links between the mean field dynamics for a particle in a random potential
and the mode coupling equations for glasses. The high temperature equations, which are the time translational
equations which apply far above the freezing temperature, are the same in both cases. This might seem surprising
in view of the fact that in one problem there exist a quenched disorder a priori, while in the other one there is no
such disorder, it is rather ‘self-induced’. In fact this difference may not be as big as it looks. Two types of recent
results point into that direction. On the one hand, it has been understood that some of the hypotheses underlying
the derivation of mode coupling equations just amount to assuming the existence of some hidden disorder [33] (or
pseudo-random disorder [32]). On the other hand, one can find some spin systems, without any quenched disorder,
which behave in all respects as bona fide spin glasses [34]. This analogy suggests to consider the low temperature
mean field dynamical equations, derived for a particle in a random potential, as the generalization of the mode
coupling equations well below the glass temperature. Interesting predictions on the aging behaviour of glasses can
be deduced from this suggestion [33].

4. Conclusion

We have shown in this paper that the FRG and RSB techniques give compatible results when they can be compared.
Both suggest quite an appealing physical picture: the phase-space of the system is, on large length scales, divided
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into ‘cells’ corresponding to favourable configurations where the potential is locally parabolic, and whose depth is
exponentially distributed. This general shape can be understood through a deep analogy with Burgers’ equation:
elimination of the fast modes is a non linear operation which generates ‘shocks’ in the effective force, and ‘laminar’
regions between the shocks (corresponding to the cells).

Full replica symmetry breaking corresponds to the fact that these cells are themselves subdivided into smaller
cells, etc. Each level of the hierarchy corresponds to a different length scale, finer details corresponding to smaller
length scales.

The dynamical picture which is naively inferred from this construction landscape is that of the (multi-level) trap
model [18]. The link with mean field dynamics is however not very well understood.

Another very interesting issue concerns the applicability of these ideas to spin-glasses in finite dimensions.
Actually, an early version of the picture developed in the present paper was proposed within the context of one-
dimensional spin-glasses in [35].
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