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Abstract. In this paper we propose a method aiming at a quantitative study of the glass
transition in a system of interacting particles. In spite of the absence of any quenched disorder,
we introduce a replicated version of the hypernetted chain equations. The solution of these
equations, for hard or soft spheres, signals a transition to the glass phase at reasonable values of
the density, and finds a nice form for the correlations in the glass phase. However, the predicted
value of the energy and specific heat in the glass phase are wrong, calling for an improvement
of this method.

1. Introduction

The long-lasting studies of the glass transition, in spite of recent progress [1], have not yet
produced a theory which would be able to derive the low-temperature behaviour of glasses
starting from a microscopic Hamiltonian of interacting particles.

It has been proposed in the last years that near this transition real glasses could behave
in the same way as some disordered systems which are described by a Hamiltonian with
quenched randomness [2–7]. This proposal is supported by the existence of a wide class of
mean-field systems, with fixed (non-random) Hamiltonians, which show a typical glassy
behaviour [3, 8, 9, 6, 10–14]. Although their Hamiltonian involves only one (or a few)
coupling constants, these systems behave as if they were typical samples of a class of
systems with quenched randomness (apart from the possible existence of a crystal-like
phase [9]).

In this type of approach, one finds that the disordered systems which are relevant for
the mean-field study of the glass transition belong to a special category, sometimes called
systems with a ‘one step replica symmetry breaking’ because of their peculiar pattern of
phase transition in the replica approach [21]. The physical nature of their freezing behaviour
displays, in particular, the following striking properties. There are two phase transitions: the
usual static transition at low temperature (TC), where the replica symmetry is broken and the
specific heat is discontinuous, is preceeded by a dynamic transition at a higher temperature
(TD), where some time-persistent correlations set in. In the region whereT < TD the infinite
system, quenched from some high-energy configuration, gets trapped into metastable states,
such that its energy density is larger than the equilibrium value. Therefore, dynamically the
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metastability appears atTD and the thermodynamic transition, which is present at a lower
temperature, is not accessible [2, 3, 15–19]. Beyond the mean-field approximation one finds
that the equilibration time is no longer divergent atTD, but it becomes large in the region
TC < T < TD. More precisely, it can be argued that in some spin model the equilibration
time diverges as exp(A|T −TC |−γ ), γ = d −1 in d dimensions [4, 5]. This very interesting
problem of the rounding of the dynamical transition in finite dimension will not be studied
here, we shall stay at a mean-field level.

In this paper we present a progress report on an analytical study of the glass transition for
a real three-dimensional model of interacting particles, within a static approach. In section 2
we show how to introduce the replica method in spite of the absence of randomness. In
section 3 we write down the hypernetted chain equations for the replicated theory, and the
numerical solution of these equations is given in section 4. The last part contains some
discussion and perspectives.

2. Breaking the replica symmetry

2.1. Generalities

We consider a system ofN interacting particles in a volumeV . We study the infinite
volume limit in whichN → ∞ at fixedρ ≡ N/V . The Hamiltonian is given by:

H {x} =
∑
i<k

U(xi − xk). (1)

We will consider two forms of the potential among particles. The hard-sphere case
where U(x) = ∞ for r ≡ |x| < 1 and U(x) = 0 for r > 1, and a soft-sphere case
U(x) = r−12.

In both cases, if the system is cooled from high to low temperature fast enough (or
alternatively if the density is increased), crystallization is inhibited and the system undergoes
a glass transition. For hard spheres this transition is known to occur at a density around
ρ ' 1.15 independently from the temperature, while the crystallization would occur for
an equilibrium system at a density aroundρ ' 0.95. In the case of soft spheres, the
thermodynamic quantities are functions of the dimensionless densityγ ≡ ρT −1/4 and the
glass transition is located aroundγ ' 1.6, while the freezing value ofγ is aroundγ ' 1.15
[20].

At low density the system is in the liquid phase, and the correlations of the positions
of the particles can be described by the two-point correlations:

g(x − y) ≡ 1 + h(x − y) ≡ 1

ρ2

∑
i 6=j

〈δ(xi − x)δ(xj − y)〉 (2)

where the correlationh goes to zero at large distances.

2.2. The replicated equilibrium theory

Let us considern replicas of the same system, withn a positive integer to start with. The
position of the particle numberj in the replicaa is xa

j , and the total energy is given by:

Hn{x} =
∑

a

H {xa} + ε
∑
a 6=b

∑
i,k

φab(x
a
i − xb

k ). (3)

This energy is the sum of two terms: one is the usual pair interaction between any two
particles within the same replica. To this we have added a new pair interactionφa,b between
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the particles in different replicas. The detailed form of this potential is irrelevant to our
approach. We shall just assume that it is short range in space (in order for the corresponding
energy to be extensive), that it is attractive, and that its strengthε is small.

Basically we are interested in the limitε → 0 (taken after the thermodynamic limit).
If the positions of the particles with different replica indices remain correlated in this limit,
replica symmetry is said to be spontaneously broken. This criterion (withn → 0) is
known to provide a reliable identification of the existence of an equilibrium glass phase in
disordered systems like spin glasses [22] or directed polymers in random media [23]. It is
also useful in the present case, in spite of the absence of disorder, as we now argue.

2.3. The glass phase and its replica counterpart

We propose the following picture of the glass phase. There are many equilibrium states,
which we label by an indexα (modulo rotations and translations). These states are identified
by the local density〈ρ̂(x)〉α ≡ ρα(x) which depends onx in each state. In this paper we
denote byρ̂(x) the density operator

∑
j δ(x − xj ), and the brackets stand for thermal

expectation values. This situation will clearly lead to a replica symmetry-breaking effect of
the type described in the previous section, due to the possibility for different replicas to be
frozen in the same state.

It is in general difficult to have access to each individual state densityρα directly. The
quantities which can be computed are averaged over the equilibrium states, each of them,
α, being weighted by its corresponding weightwα in the Boltzmann measure†. Since the
one-point average

∑
α wαρα(x) = ρ is uniform, we need to study the two-point correlations

like:

g̃(x, y) = 1

ρ2

∑
α

wα

∑
i 6=j

〈δ(xi − x)δ(xj − y)〉α

g1(x, y) = 1

ρ2
∑

α w2
α

∑
α

w2
α

∑
i 6=j

〈δ(xi − x)〉α〈δ(xj − y)〉α.

(4)

As for the densities in two different states,α 6= β, we assume that they are generically
uncorrelated. For a given number of particles,N , the weightswα are deterministic quantities
(there is no disorder in this problem). However, we expect that they may strongly depend
on N , since they are sensitive to very small (non extensive) changes in the relative free
energy of the states. It is then convenient to introduce a probability distribution for the
weights,P [w], describing the fluctuations of the weights when we varyN inside a small
window aroundN , in the largeN limit. We shall use the notation:

wk ≡
∑

α

wk
α ≡

∫
dw P(w)wk. (5)

What is the translation of this situation in terms of the replicated system of the previous
section? We clearly need that, for smallε, the replica correlation verify:

1

n(n − 1)

∑
a 6=b

∑
i 6=j

〈δ(xa
i − x)δ(xb

j − y)〉 = ρ2(w2g1(x, y) + 1 − w2). (6)

† At this stage we assume that the crystalline states do not contribute. The equilibrium situation that we study is
only a quasiequilibrium one reached dynamically, where these crystalline states do not appear.
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A more subtle constraint comes in when one considers higher-order coorrelations like, for
instance, the four-point density correlation function. One needs that

1

n(n − 1)(n − 2)(n − 3)

∑′

a,b,c,d

∑′

ijkl

〈δ(xa
i − x)δ(xb

j − y)δ(xc
k − z)δ(xd

l − t)〉 (7)

(the
∑′ means that all the indices which are summed are different one from each other)

behaves likew4g1(x, y)g1(z, t) whenx − y = O(1), z − t = O(1) andx − z → ∞. This
limiting behaviour is different from the factorized form(w2)

2g1(x, y)g1(z, t). This non-
factorization of the correlation function is deeply linked to the probability distribution of
the variablesw. This crucial ingredient of the description is usually dealt with by using
the replica symmetry-breaking formalism. In this formalism, the correlation functions (e.g.∑

i 6=j 〈δ(xa
i − x)δ(xb

j − y)〉) are no longer symmetric under the permutation of the replicas,
but they have the advantage of being clustering†. This formalism provides and automatic
bookkeeping of all complications which arise from the existence of many states. If one
assumes a given form for replica symmetry breaking, it corresponds to a given form for the
probability distribution of thew. In the simplest case, called one step breaking, one divides
the set ofn replicas inton/m groups ofm replicas and one assumes the following structure
of correlation functions:∑
i 6=j

〈δ(xa
i − x)δ(xa

j − y)〉 = ρ2g̃(x − y)

∑
i 6=j

〈δ(xa
i − x)δ(xb

j − y)〉 =
{

ρ2g1(x − y) for a 6= b in the same group

ρ2 for a andb in different groups.

(8)

In the physically relevant case wherem < 1, this form of the correlations corresponds
to assume thatwα = exp(−βfα)/[

∑
α′ exp(−βfα′)] where thefα are negative quantities

extracted with a probability distributionβm exp(βmf ). Therefore, one gets, for instance
w2 = 1 − m and the relation (6) is verified. The details of this construction are described
extensively in the literature [21].

2.4. From equilibrium computations to dynamical quantities

In the above scheme one finds a free energy which depends on the parameterm, giving the
size of the groups in the one-step replica symmetry-breaking solution. In a static equilibrium
approach,m should be considered as a variational parameter and it is fixed by a stationarity
condition of the free energy (in fact the free energy must be maximized—not minimized!—
with respect tom) [21]. The glass phase is characterized by the existence of a maximum
of the free energy atm(T ) < 1, and the glass transition temperatureTC is obtained when
this maximum occurs atm(TC) = 1.

This criterion holds in the equilibrium situation. On the other hand, without resorting to
a direct dynamical approach, one can perform a static study of the appearance of metastable
states which will trap the dynamical evolution of the system. This can be done either
by a direct study of the solution of some mean-field equations, like the TAP equations
in spin glasses [3, 24, 17], or by a replica approach where the parameterm is no longer
fixed [17, 18]. The accumulated experience, particularly on the study of some types of
spin glasses like thep-spin interaction spin glasses, shows that it is possible to identify the
dynamical transition temperature by a ‘so called’ marginality condition [2, 3, 24, 18, 17]. In

† We thank Francesco Guerra for discussions on this point.
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the replica approach, it has been argued on general grounds that this transition is signalled
by the existence of a non-trivialg1(x) in the limit m → 1 [18, 17].

Within this static approach there is no obvious definition of the energy which is reached
dynamically. In the case (like the spherical spin glass withp-spin interactions) where
the equilibrium states of the system can be followed in temperature without a chaotic
dependance, then it is possible to compute the energy (or the correlations) of the system
at temperatureT by constraining it to have a non zero correlation with a reference system
which is equilibrated at the dynamical transition temperatureTD [17]. This is the procedure
which we shall follow hereafter to compute the dynamical energy.

3. The replicated hypernetted chain approximation

The programme of the previous section is thus clear. The real difficulty consists in
implementing it, i.e. in computing the properties of our replicated system of interacting
particles, allowing for replica symmetry breaking. Here we propose a first step in
this direction, using the hypernetted chain (HNC) approximation. This is a standard
approximation scheme which basically amounts to keeping only a given class of diagrams
in the virial expansion [25]. It gives a reasonable account of the liquid phase, and it
has also been used for studying the first-order transition to the crystal phase [27]. We will
consider here this approximation because it has the advantage of having a simple variational
formulation.

In the liquid phase, where the density is constant, the usual HNC equation (for the
non-replicated system) can be written as

g(x) = exp(−βU(x) + W(x)) (9)

where:

ρ2g(x) = ρ2(1 + h(x)) = 〈ρ̂(x)ρ̂(0)〉 − ρδ(x)

W(x) ≡
∫

ddp

(2π)d
e−ipx ρh(p)2

1 + ρh(p)

(10)

and we denote byh(p) the Fourier transform ofh(x).
This equation can be derived by minimizing with respect toh(x) the following free

energy per unit volume, in the space of functions of|x|:

2βF =
∫

ddx ρ2g(x)[ln(g(x)) − 1 + βU(x)] +
∫

ddq

(2π)d
L(ρh(q)) (11)

whereL(x) ≡ − ln(1 + x) + x − x2/2.
We now implement the programme outlined in section 2, using this HNC approximation.

We start from n replicas of our system ofN particles, described by the HamiltonianHn of
(3), which includes, besides the usual pair interactionU(xa

i − xa
k ) between particles of the

same type, an arbitrary but small pair attractionεφab(x
a
i −xb

k ) between particles of different
types. It is straightforward to go through one of the usual textbook derivations of the HNC
equation in the present case, for anyn (positive integer). Specifically we have followed the
physical approach of Percus [26], but a purely diagrammatical derivation is also certainly
possible. The HNC equation reads in this case:

gab(x) = exp(−β(U(x)δa,b + εφab(x)) + Wab(x)) (12)
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where:

gab(x) = 1 + hab(x)

Wab(x) ≡
∫

ddp

(2π)d
e−ipx(ρh(p)2(1 + ρh(p))−1)ab.

(13)

This equation derives from the following replicated free energy:

2βF = ρ2
∫

ddx
∑
a,b

gab(x)[ln(gab(x)) − 1 − β(U(x)δa,b + εφab(x))] + Tr L(ρh) (14)

whereh is now an operator both inx space and in replica space.
If in the limit ε → 0 one finds that at large enough densitiesgab is non zero off the

diagonal, replica symmetry is broken. In the case wheregab is of the form shown in (8),
this equation can be used to compute the properties of the correlation function in the glassy
phase, as discussed in section 2.

Within the one step breaking scheme (8), the free energy is:

lim
n→0

2βF

nρ2
=

∫
ddx {g̃(x)[ln(g̃(x)) − 1 + βU(x)] − (1 − m)g1(x)[ln(g1(x)) − 1]}

−
∫

ddq

(2π)d

(
h̃(q)2

2
− (1 − m)

h1(q)2

2
− h̃(q)

ρ

+ 1

mρ2
ln[1 + ρh̃(q) − (1 − m)ρh1(q)]

−1 − m

mρ2
ln[1 + ρh̃(q) − ρh1(q)]

)
. (15)

The static transition is identified as the temperature (or density) at which there exists a
non trivial solution to the replicated HNC equations∂F/∂g̃(x) = 0, ∂F/∂g1(x) = 0 and
∂F/∂m = 0, for m ∈ [0, 1] (in fact we must minimize the free energy with respect tog̃,
but maximize with respect tog1 andm). The equations to be solved for the statics are thus:

g̃(x) = exp(−βU(x) + W̃ (x)) g1(x) = exp(W1(x)) (16)∫
ddx g1(x)[ln(g1(x)) − 1] =

∫
ddq

(2π)d

(
h1(q)2

2
+ 1

mρ

h1(q)

1 + ρh̃(q) − (1 − m)ρh1(q)

− 1

m2ρ2
ln

1 + ρh̃(q) − (1 − m)ρh1(q)

1 + ρh̃(q) − ρh1(q)

)
(17)

where the Fourier transforms̃W (q) andW1(q) of W̃ (x) andW1(x) verify:

W̃ (q) − (1 − m)W1(q) = ρ
(h̃(q) − (1 − m)h1(q))2

1 + ρ(h̃(q) − (1 − m)h1(q))

mW1(q) = ρ(h̃(q) − (1 − m)h1(q))2

1 + ρ(h̃(q) − (1 − m)h1(q))
− ρ(h̃(q) − h1(q))2

1 + ρ(h̃(q) − h1(q))
.

(18)

The dynamical transition may be characterized as the highest temperature at which there
is a non-trivial solution of the stationarity equations∂F/∂g̃(x) = 0 and∂F/∂g1(x) = 0 at
m = 1−. The corresponding equations are obtained by substitutingm → 1 in the first two
equations of (17). The equation forg̃ is identical to the usual HNC equation (10), while
g1 is a solution ofg1(x) = exp(W1(x)), with W1 given by the second equation of (18)
at m = 1. The computation of the dynamical energy follows the strategy defined in the
previous section.
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Figure 1. The static energy of a system of soft spheres as a function of the dimensionless
inverse densityγ from numerical simulation (full squares), from the replica symmetric HNC
equation (full curve) and from one-step replica symmetry-broken HNC equation (open circles).

4. Solution of the replicated HNC equations

We have solved these HNC equations numerically. Let us first discuss some technical points
which are common to the soft- and hard-sphere cases. In both cases the first task is to solve
the replica symmetric HNC equation. For spherically symmetric functions in dimension
three we use the Fourier transform for the radial dependance, in the following form:

qh(q) = 2π

∫ ∞

0
dr sin(qr)rh(r). (19)

We discretize this formula introducing inr space a cut-offR and a mesh sizea. In this
way we have a simple formula for the inverse Fourier transform and we can also use the fast
Fourier transform algorithm. In most of the computations we have takena = 1/32.5 and
L = 128∗ a ≈ 4. We have tried smaller values ofa and larger values ofL without serious
effects. The solution of the equations can be found either by using a library minimization
program†, or a program which solves nonlinear equations. We have found first the solution
at low enough density and then followed it by continuity while gradually increasing the
density.

4.1. The soft-sphere case

The HNC equation gives a description of the liquid phase which is not perfect, but precise
enough for our purpose. The energy (or equivalently the pressure), does not depart more
than 15% from the correct value (see figure 1), and the correlation function is also well
reproduced (see figure 2).

The numerical solution of the replicated HNC equations finds a dynamical transition
at γ ' 2.05, and a static replica symmetry-breaking solution atγ ' 2.15. In numerical
simulations the glass transition is found at a smaller value ofγ , namelyγ = 1.6. In the glass
phase, the correlation functiong1(r) is essentially a smoothed form of the functiong̃(r)

plus an extra contribution at short distance which has integral near to 1 (see figure 3). This
form seems very reasonable: considering the definition (4) ofg1, we see that it basically

† When one has to minimize the free energy with respect to one variable and maximize it with respect to another
one, we first minimize with respect to the first variable, later maximize with respect to the second, and iterate the
procedure until convergence.
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Figure 2. The correlation functioñg(r) of a system of soft spheres as a function of the distance
at the dimensionless densityγ = 1.6 corresponding to the numerical glassy transition: numerical
simulations (broken curve) and replica symmetric HNC equation (full curve).

Figure 3. The correlationsg̃(r) (full curve) and g1(r) (broken curve) obtained from the
replicated HNC equations, as functions of the distance, for soft spheres at the density where
replica symmetry is broken (γ = 2.15).

characterizes the average overα of the productρα(x)ρα(y), which is precisely expected to
have this kind of peak structure.

In spite of this nice form forg1, this solution has some problems. A first one is found
on the value of the energy. The static energy as a function ofγ (or equivalently ofT at
density 1) is plotted in figure 1. Although there is a discontinuity in the specific heat, it
is extremely small and the final effects on the internal energy are more or less invisible.
The specific heat remains extremely large. Moreover, the value ofm has a very unusual
dependence on the temperature (see figure 4). In all the known models with one step replica
symmetry breaking, the breakpointm varies linearly withT at low temperatures. Here the
behaviour is very different. We have also computed the dynamical internal energy and
found out that it differs from the equilibrium one by an extremely small amount.

We conclude that if we consider the qualitative behaviour of the correlation functions,
we find a reasonable form, on the other hand the energy in the glassy phase turns out to be
quite wrong.
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Figure 4. The value of the breakpointm in the replica symmetry breaking solution for soft
spheres as a function of the dimensionless densityγ .

4.2. The hard-sphere case

The situation is quite similar in the case of the hard sphere. The HNC approximation works
reasonably in the liquid phase. The pressure, which can be extracted either from the free
energy or from its relation withg(1+), does not depart from the correct one by more than
15% in the liquid phase. The main defect is the absence of the peak aroundr = √

3 and
a too large value of the peak atr = 2. The pressure seems to diverge proportionally to
(ρc − ρ)−2, whereρc is around 1.6, while the maximum possible density, corresponding to
the fcc lattice, is

√
2.

Here replica symmetry is broken aroundρ ' 1.19 and the dynamical transition is located
at ρ ' 1.17. These values are very close to the result of the numerical simulations which
find a freezing transition aroundρ ' 1.15. Unfortunately also in this case the computed
value for the pressure differs by a very small amount from the replica symmetric one and it
is therefore unacceptable. Similar conclusions have also been reached for the Lennard–Jones
potential.

5. Conclusions

The simple implementation of the replica approach to glasses which we have proposed here
provides some interesting results, like the existence of a glass transition at a reasonable
value of the density. However, it is not satisfactory, in the sense that the effects of the
transition on the thermodynamic of the systems are much too small.

At the moment we do not have a clear understanding of the reasons for this failure to
grasp the thermodynamic properties of the glassy phase. Two possible explanations came
to mind. The first one would be that an approximation like that of HNC may miss some
of the main physical characteristics of the problem in the glassy phase. A first look at the
corrections to the free energy indicates that they are quite large, lending some support to
this hypothesis. More work is needed to decide what class of diagrams should be added to
cure this problem. On the other hand we must also admit that it is not obvious that this type
of coupled equations for the two-point density is the best starting point for the discussion
of the glass phase. This approach amounts to a study of the density modulations in the
glass phase at the level of the two-point function. In the glass phaseρα(x) becomes space
dependent. It is the necessity of averaging over the statesα which forces us to study thisx
dependence at the level of the two point correlations; our correlationg̃ reflects the structure
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of ρα(x) as a sum of peaks of unit weights, smoothed by the average over states. A more
proper approach could be to work with a free energy expressed as a functional of the density
ρ(x), seeking all the (non-translational invariant) solutions corresponding to glass phases.
Then the correlations and thermodynamics could be studied by giving to each solution a
weight proportional to exp(−βFα), Fα being the free energy of the solution labelled byα.

We think that finding an analytic approximation scheme which produces reasonable
results in the glass phase is within reach. The method we propose seems to be promising
in this respect and shows how the replica method could be used to study the glass phase.
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