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We give a brief overview of some recent developments using concepts and techniques from 
spin glass theory in the study of other disordered systems. We discuss in particular the 
equilibrium correlations of a vortex lattice pinned by impurities. We mention how the replica 
approach, and the spontaneous breaking of replica symmetry, can be brought to bear on these 
problems. 

There are many reasons for the long lasting interest on spin glasses [l]. On 
the one hand these systems display very intriguing collective behaviour, taking 
place on extremely long time scales. The elaboration of a full theory of spin 
glasses is still a very open problem, but it is already clear that the beautiful 
construction of a sensible mean field theory is an achievement which is 
important in many other fields of research where quenched disorder and 
conflicting interactions are at work. Neural networks, and combinatorial 
optimization problems, provide two examples outside of physics. 

One of the main motivations for studying spin glass theory is that spin glasses 
should constitute a kind of archetype of systems with quenched disorder. The 
systems we have in mind are described by a Hamiltonian which depends on a 
large number (infinite in the thermodynamic limit) of quenched random 
variables. This creates some problems. First of all one cannot rely on symmetry 
arguments to find the possible phases of the system. Secondly one cannot 
specify in detail each sample, but one must characterize the probability 
distribution in the space of samples. Fortunately a large class of quantities 
(typically the extensive thermodynamic quantities) become sample indepen- 
dent in the thermodynamic limit. This has allowed the use of the replica 
method to compute the thermodynamic quantities in spin glasses. In spite of 
the apparent simplicity of this program, the real application of some of the 
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powerful techniques from spin glass theory to other physical problems (with 
randomness and frustration) has appeared only relatively recently. One reason 
for that is the need for a non-perturbative method. In the replica approach one 
studies IZ identical replicas of the system, and the appearance of a spin glass 
phase is characterized by the spontaneous breaking of the permutation 
symmetry of these IZ replicas (for a review see [2]). Such a breaking, which is 
characteristic of the existence of several (meta)stable states, unrelated to each 
other by a symmetry, can be detected only at a non-perturbative level. 

The last few years have witnessed some steps forward in this direction, using 
a variational approach. The difficult and fascinating problem of self-interacting 
random heteropolymers was studied with the replica technique and a variation- 
al method [3]. It was suggested that replica symmetry could be broken in this 
problem [4]. Unfortunately this is a complicated problem and one must make 
several approximations at various stages of the computation, so that the results 
on this issue of replica symmetry breaking in random heteropolymers are still 
not clear [5]. A much simpler problem is that of a directed polymer in an 
external random potential. In some sense this is a kind of mean field 
approximation for the problem of self-interacting heteropolymers. It is also an 
interesting problem for its own sake [6], which is connected to interface 
pinning problems and to growth phenomena [7]. A generalization of this 
problem, the case of directed manifolds in an external random potential, has 
been analyzed with the replica approach, and a variational method based on a 
quadratic trial Hamiltonian. It was shown that the replica symmetric solution is 
unstable, and a spontaneous breaking of replica symmetry a la Parisi yields a 
wandering critical exponent identical to that found by simple scaling arguments 
of the Flory type 191, but different from the one obtained through perturbation 
theory. 

We shall illustrate the general strategy of [9], which consists in using a 
variational approach based on the most general quadratic Hamiltonian, but 
allowing for replica symmetry breaking, on the very simple toy model of one 
classical particle in a random potential. Denoting by w the position of the 
particle, the Hamiltonian is 

H=$~*+V(W). (1) 

V is a Brownian random potential with a Gaussian distribution characterized 
by its first two moments, 

V(w) = 0 ) 
V(0) V(0’) = -glw - cdl+ W=f(o - w’) . (2) 

This model was introduced in [13] as a very simple example of an interface in 
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a random field problem at low temperature. It is also of particular interest 
since it describes the asymptotic behaviour of a directed polymer in a random 
potential in 1 + 1 dimensions [8]. It has been studied directly in [13-171. The 
variational method with replicas has been studied in [lo], and also recently in 
[11,12]. 

One is interested in the computation of the distribution of the particle’s 
position. For instance one would like to compute (w )*, where the overbar 
denotes an average over the random potential and the bracket is the thermal 
average. The interesting limit is the low temperature case, when g/p* is large 
(which means that the random part of the potential dominates). A simple 
Imry-Ma argument [21] allows to compute the typical value w,, of the position 
of the ground state: For a displacement o, the typical value of the potential is 
of order -m. So one should minimize the function ~E_LO* - fi, which 
leads to o0 - (gl~*)“~, so that 

(3) 

It can be shown that this scaling is exact. 
The problem is to try to get back this result starting from the Hamiltonian 

(1) and using some of the nice field theoretic methods which can then be 
generalized to real size finite dimensional problems. This turns out to be 
extremely difficult. The minimization of H leads to the equation 

po, = -V’(w,) . (4) 

The natural field theoretic approach consists in trying to solve this equation by 
a perturbation series in V. To lowest order one gets w = -V’(O)/p, which leads 
to 

which is a wrong scaling. The more surprising fact is that this wrong scaling 
actually persists to all orders in perturbation theory. An iterative solution of 
the equations has also been shown to be wrong. The reason is easy to trace 
back: (4), which characterizes the minima of H, has many solutions in the 
interesting limit where g/p’ is large, and the usual methods of field theory do 
not seem to be able to handle this situation. Although the model is extremely 
simple, the situation is very similar to that of the random field Ising model: 
There, the critical exponents computed order by order in perturbation theory 
verify the dimensional reduction rule (they are equal to those of the pure Ising 
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model in two less dimensions) [19,20], but this result is known to be wrong 
[18,22,23], because of the existence of several minima of the (free) energy [24]. 

The replica method starts by computing the average of the nth power of the 
partition function: 

(6) 

Having got rid of the disorder one can go back to familiar methods. One of 
them is the Hartree approximation, which consists in finding the best quadratic 
Hamiltonian to approximate this distribution. One considers the trial Hamilto- 
nians 

(7) 

where the u parameters are to be determined by the stationarity condition of 
the variational free energy. It turns out that there are two regimes. At high 
temperature, or small g/p2, the best self-energy matrix is replica symmetric: 
u = u (a #b) and a,, = - CbCfaj a,,. At low temperatures or large g/p2, one 
r&ds to break the replica symmetry. Physically this is natural because of the 
existence of several solutions to eqs. (4). Technically the solution has been 
found using the hierarchical replica symmetry breaking scheme invented by 
Parisi in the framework of the mean field theory of spin glasses [2]. This 
solution gives back the correct scaling (3) for the position of the particle, and 
the prefactor which is found is off by something like 10 percent only [lo]. The 
physical reason for this success is that a Gaussian measure in replica space, 
together with replica symmetry breaking, can represent a very complicated and 
non-Gaussian measure in physical space [9]. 

Recently this strategy and some variations of it have been applied to a 
number of interesting problems. Let us mention, apart from the ones already 
quoted, the random field Ising model [25] and the pinning of a vortex lattice by 
impurities [28]. This last problem may have particularly interesting experimen- 
tal implications since decoration techniques now allow the visualisation of 
relatively large vortex lattices [26], and can thus provide some detailed 
microscopic information to be compared with theoretical predictions. 

The essence of the problem is that of the equilibrium deformations of a 
crystal in the presence of a quenched random potential. (Another - two 
dimensional - experimental realization is that of magnetic bubbles in garnet 
films [27]). We consider a D-dimensional crystal. The equilibrium positions of 
the atoms at zero temperature are labelled by x. Due to disorder and thermal 
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fluctuations the atom at x is displaced to a position r(x) =x + u(x). Neglecting 
dislocations, the Hamiltonian is the sum of an elastic term and a pinning term: 

V is a Gaussian random potential. Its first two moments are chosen to be 

V(r) = 0 ) V(r) V(r') = W exp - 
( 

(r - d)* 
242 

> 
(9) 

and we consider here only the case where A is much smaller than the lattice 
spacing. One of the interesting questions is to understand the behaviour of the 
correlation function 

C(x) = vizrz (10) 

at small temperatures and large X. The same variational approach in replica 
space [28] has led to the following predictions: The long range positional order 
of the lattice is destroyed below D = 4. There are three regimes corresponding 
to different scales of [U(X) - u(O)l, which in turn correspond to different scales 
of x. 

At short distances /u(x) - u(O)1 is smaller than the correlation length A of the 
potential. One can then linearize the potential and get back the random force 
model introduced years ago by Larkin [29]: 

The 

z+~dx(+y-~ u(x).f(x). 

scaling is then 

C(X) -&4-D)‘* . 

(11) 

(12) 

(Notice that the discrete nature of the pinning term is important. If one would 
replace the discrete sum by an integral the exponent would become (2 - D)l 

2.) 
The intermediate distance regime corresponds to the situation where ]u(x) - 

U(O)/ is larger than A but smaller than the lattice spacing. One cannot linearize 
the potential but one can consider that each atom sees a random potential 
which is different from the potentials seen by the other atoms: 

(13) 
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This Hamiltonian is just the same as the one of the random manifold problem 
[9] for which the replica Gaussian variational approach gives 

qx) _ c;c(4-~v(4+~) . 

Finally the real long distance regime described by (8) is dominated by a 
glassy phase where the vortices can feel they are in the same random potential. 
Using a regularization of the disorder, one finds the scaling 

C(X) - &(4-D)‘4 . (15) 

The exponents and prefactors corresponding to vortex lines have been 
computed. Apparently the experiments both in high-T, and in two dimensional 
magnetic bubble experiments seem to probe the intermediate distance (random 
manifold) regime, and there is a rather good agreement with the predicted 
behaviour. 

Obviously a lot of work still remains to be done, but I think it is interesting 
to see that it is now possible to build systematic microscopic approaches to 
these difficult problems with quenched randomness. An important open 
problem is to generalize this approach to the dynamical behaviour, in order to 
see if the situation of thermal equilibrium described here is really obtained in 
the experiments. 

The content of this paper is the result of works done in collaboration with G. 
Parisi, J.P. Bouchaud, J.S. Yedidia, A.P. Young and S. Franz. It is a pleasure 
to thank these colleagues. 
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