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Rdsumd. Nous 6tudions deux cm
particuliers de var14t4s dirig6es en 1niIieu al6atoire. L'un

est le Trod+le h z6ro dimension d'une particule dans
un

potentiel al6atoire, l'autre le cm limite oh

la var14t6 est plong6e dans
un espace de dimension 61ev6e. Nous utilisons la m6thode introduite

r6cemment des variations gaussiennes dans l'espace h des r6pliques, avec brisure de la sym6trie
des r4pliques, et nous la comparons k des r6sultats connus ainsi qu'h des simulations num4riques
de ce mod+le. En grande dimension (N

-
co) la m6thode variationnelle est exacte. Nous

calculons un des diagrammes qui contribuent aux corrections en
1IN.

Abstract. We discuss two special cases
of directed manifolds in random media. One is the

zero dimensional" toy" model of one particle in a random potential, the other is the limit where

the manifold is embedded in
a space of large dimensionality. We use the recently introduced

Gaussian variational approach in replica space, with replica symmetry breaking, and compare it

to known results and simulations of the toy model. In large dimensions (N
-

co) the variational

approach is exact. We compute one of the diagrams contributing to the O(1IN) correction.

1. Introduction.

In the presence of quenched disorder, equilibrium statistical mechanics
or field theories

present some interesting new phenomena which are not easy to study analytically. Systems
like polymers or manifolds in random media, the random field Ising model etc.., present many

metastable states which cannot be handled by standard perturbation theory. Last year there

had been proposed
a

combination of the replica approach with
a

variational method of the

Hartree Fock type, in order to study such systems [I]. The existence of the many metastable

states is then taken care of by a spontaneous breakdown of replica symmetry (r.s.b.).
Recently this method has been extended to the study of the flux line lattice in high Tc

superconductors [2, 3], and to the random field Ising model in the bulk [4]. In this paper we
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apply it to two extreme cases
of the random manifold problem: the

zero
dimensional case of

one particle in
a

random potential, which is a toy model of disordered systems, on which the

general approach is tested and compared to standard approaches. The other case is that of a

manifold in a space of infinite dimension (N
-

cc). In this limit the approach of [I] is exact,
and gives back the Flory like exponent for the wandering of the manifold. We carry here the

first step of an expansion to order I IN, by an explicit computation of the simplest O(I IN)
diagram of the self energy. Although this correction looks divergent at first sight,

we
will show

how a special cancellation due to some
"replica identities" make this correction finite. The

road towards
an

estimate of the O(I/N) corrections to the Flory exponent is then outlined.

The next section is devoted to the zero dimensional "toy model" and section 3 presents
the computation of the simplest self energy diagramm to order I/N. Short conclusions are

contained in section 4.

2. The toy model.

We study the problem of
a

classical particle which moves in
a one dimensional space and

feels
a

potential which is the sum of
a

harmonic term and
a

random term. We concentrate

on the static equilibrium properties (some aspects of the dynamics of such
a particle in the

presence of
an external force are reviewed in [5]). Denoting by w

the position of the particle,
the Harniltonian is:

H
= (w~ + v(w). (I)

V is
a

random potential with a Gaussian distribution characterized by its first two moments:

@
=

° V(W)V(W')
= ~~j

[
~~

(W W')~~~~ + W + f(W W') (2)

(Actually the average free energy depends trivially
on W, as can

be seen by subtracting from V

a sample dependent uniform Gaussian random potential tT(w)
=

tT, with U
=

0 and tT2
=

W.

In the following we keep to W
=

0).
This problem is nothing but

a very simple case of the general problem of
a D dimensional

manifold in
a N + D dimensional space which was studied in ill, where here we have D

=
0 and

N
=

I. The slightly more general
case

of
a

particle in
a

N dimensional space can
be studied

similarly, but here we want to keep to the simplest non trivial case N
=

I. Always for the

sake of simplicity
we

keep to the
case

where the correlations of the potential
are

long range,

7 < 1. This problem has already been introduced and studied [6, 12] in the case 7 =
1/2. This

case, which corresponds to a
Brownian random potential, is also of particular interest since

it describes the asymptotic behaviour of
a

directed polymer in a random potential in I + I

dimensions ill]. Hereafter we
shall compare the results of the Gaussian variational Ansatz

with r-s-b- to some
"exact" results on

this simple problem. We first rederive
some analytic

results using scaling analysis, and then we state the form of the results of ii] in this case and

compare. The physical meaning of r.s,b is discussed in subsection 2.4. In a
fourth subsection

we compare the variational r-s-b. results to some numerical simulations.

2. I SCALING RELATIONS, EXACT RESULTS. Let E be the average over the quenched random

potential of the logarithm of the partition function at temperature T
=

I/fl:

E
=

Log dw e-Pl»W?/2+V(W)1, (3)
/
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We study the system for one fixed value of the exponent 7 characterizing the correlations

of the disorder. A plioli, E is
a

function of the three variables fl, p and g. For any positive
numbers I, I',

one can easily see that it satisfies:

E(fl,v,g)
=

E I(, i~, i~g) ,

(4)

E(fl>~>9)
"

E lpi )>(1')~~~9) )L°g(1'). (5)

These equations show that:

E(fl,~,g)
=

f(t) )Log(fl~)> (6)

where f depends only
on

the reduced temperature t defined
as:

,- ~ ~~
y(3 /2 ~) ~

fl~ ~~~

~~
T(1/2) ~) '

~~~

(the 7 dependent constant has been chosen in such
a way as to simplify the formulae below).

This shows in particular that the low temperature limit (fl
-

cc) is equivalent to the limit

where the quadratic part of the potential vanishes (~
-

0) and to the strong disorder limit

(g
-

cc). As for the correlation functions, they scale as:

< W~l > < W~r > "
(fl~) ~ ~?~~~ Cki..kr(t). (8)

These scaling relations allow for simple derivations of some well known results. Let us

consider the quantity < w2 >, at low temperatures. For 7 =
1/2 it has been shown exactly [12]

that < w2 > cip-co (g/~~)~/~,
a result which can also be derived from an Imry Ma argument

@jo derive this
we start from equation (8) and notice that, for fixed ~ and g, and fl

- oo,

< w2 > must be finite (neither
zero nor divergent). Therefore C2(t)

~wi-o const t~ I This gives
the desired result:

g
4

< UJ
>~ dp-co C~ m

(9)
~

The same reasoning shows that < w2P > scales as (g/~~)P/(1+~). The disconnected correla-

tion functions also have similar scaling behaviours ([or instance < w
>~ scales

as
(g/~~)~/(l+~)).

But the connected correlation functions behave dilTerently:

<W~>-<W>~=l <(W-<W>)~>=Aetc... (lo)

These identities have been derived in a more general case in [12]. Let us
briefly reproduce

the proof in the present simple model. One considers the modified Hamiltonian fl(w)
=

H(w) Alp. In the partition function the shift
w - w + I/(fl~) leads to:

j2
~°~~~~ ~°~~~~ ~ ~ 2fl~' ~~~~

provided that the distribution ofthe random potential is translationally invariant, which is the

case here. Equations (10) follow from dilTerentiating (it) with respect to I.

While equations (10)
are

certainly correct, one
should keep in mind that they compute

averaged (over the distribution of the samples) quantities, which are not necessarily typical
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ones. For instance defining the susceptibility for one
sample: x = < w~ > < w

>~,
we

shall see that y is quite dilTerent from the typical x of one
given sample, a

situation which is

analogous with what has been found in directed polymers ill, 14].

2.2 PERTURBATIVE APPROACH. As simple
as they may look, it is not trivial to obtain the

scaling relations (8) using usual field theory methods, in contrast with the equations (10) for

the connected correlations. For instance it has been shown that perturbation theory 18, 7] or

iteration methods 19] fail at low temperatures because they are unable to take into account the

many metastable states of the system.
The failure of perturbation theory has been proven by Villain [7]. One can either expand the

random potential in power series of w, or use the replica approach and carry a
perturbation

expansion
on

the replicated system. Let us briefly describe the content of this second approach.
The average of the replicated partition function is:

z"
=

fl dwa exp I- £ WI +
( £ f(Wa Wb) (12)~a~i

~ ~i ~

a,b

where the function f is the correlation function of the potential given in (2). One can think of

two types of expansions. The first one is to expand % in powers of f, which is basically a high
temperature expansion. In the present situation where there is no phase transition, this

seems

safe. The second type of expansion is the
one

which is used in the field theory studies of higher
dimensional systems. It amounts to expand f in series, to keep the quadratic term (wa wb)~,

and to treat all the higher order terms in perturbative series 10 Villain has shown that, in

the limit of temperature going to zero, the correlation is < w2 > =
2f'(0)/~~ to all orders in

perturbation. This is clearly
a wrong result which violates the exact scaling results derived

above. Therefore usual perturbation theory fails, and it is easy to trace back the reason of this

failure to the existence of many metastable positions at low temperatures.

2.3 VARIATIONAL METHOD IN REPLICA SPACE. We shall not reproduce here in all details

the computation using
a

Gaussian function with r-s-b-, since there
are

special cases of those

performed in [Ii. We shall just sketch the method and give the results. The method of [ii
consists in using a

variational method with the following trial hamiltonian:

Ha
"

~ £w( £
aabwawb (13)

2 2
a a,b

where the
a parameters are to be determined by the stationarity condition of the variational

free energy. These conditions read:

Uaa

b(#a)

Gab " i(lt ~ )~~iab. (~6)

«ah " a
(a # b) Gab

"
6abi~ + (1 Gab)G, (17)
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with:

G
=

,

G
=

~
,

a =
fl~+~~~g2~~ (18)

~ ~

This leads to the following two point correlation function:

(the onnected correlation nction satisfies (10) as it should). This result is in-

correct: for ixed ~

mperatures, which
is possible.

As was shown in [Ii, the replica synlnletry is ontaneously
broken in this approximation,

at low nough Using the -s-b- nsatz 15], the atrix «ah becomes

a function of a
ontinuous

parameter E [0, ii.
From

iii
one sees

very
epending n

hether
t is above or below a "critical emperature"

tc = I. For t > I, the
eplica symmetric

~t~l,
u < vi,

7

~
~ )~ "'~

~' "~ ~ " ~ "~' ~~~~

A l~ UP
=

ItWi
U2 < U>

where:

A
=

~t~ l~l
,

vi =

~
t

,
u2 =

~ (21)

For this solution the two point correlation function is equal to:

II ~i + lt-(~+J)) ,

t > 1,

< ~2 > =

fl~ 7 (22)
1+ 7 ~-i ~fl~ 7

This result is certainly more sensible, We shall discuss it hence, and compare it to nu-

merical simulations in section 2.5. For simplicity one may choose for instance ~ =
l and

g =

~~~~~~ 2~~~~ /7,
so that t is the usual temperature: t

=
I/fl. Then the r-s-b- solution

r(3/2 -7)
predicts the behaviour:

t+ ~, t>1,

< w2 > =
(23)

1+- t<1.
7
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2.4 PHYSICAL DiscUssioN. As we have seen above, the variational method predicts
a

phase transition in this system at a
critical temperature tc

=
I. This phase transition is clearly

unphysical in a system with only one degree of freedom. It is therefore an artefact of the

variational method, but in a sense this is a clever artefact. The reason can be traced back to

the physical interpretation of the quadratic trial hamiltonian (13) which has been worked out

in [I]. This trial harniltonian corresponds to a certain choice of the probability distribution of

w.

For the case of a replica synlnletric solution this probability is built as follows:

to each sample is associated an average position of the particle, wo, which is a random number

drawn with the Gaussian distribution

1 ~2
~~"°~

2xG/fl ~~~

G)fl~
'

~~~~

the thermal fluctuations of the particle position for
one

given sample are also Gaussian:

~~")
" exp

(- (i$
"°)~

~~(i~ G)/fl ~(G G)/fl
(25)

where G and ©
are given in (18). This is clearly a simple minded distribution which is unable

to take into account the many metastable states at low temperatures.
The r-s-b- solution corresponds to a

much
more

complicated distribution as described in [Ii.
In a nutshell, at one step the breaking of the Gaussian p(w) is subdivided into a superposition
of Gaussians, with centers which are scattered (again with a Gaussian distribution) around

wo, and varying relative weights. At each new breaking the previous Gaussians
are

subdivided

into superpositions of subgaussians, and the final distribution is the continuum limit of this

hieriarchical breaking process. This is able to represent some quite complicated distribution

with many metastable states.

A critical discussion of the meaning of the Gaussian variational r-s-b- solution in terms of

the probability distribution of the particle's position has been done in [16]. To summarize it

briefly, let
us

mention two facts:

The fact that this variational approach finds
a

fake phase transition is not a surprise:
a

simple

case of this phenomenon can be found in
a

double well potential of the type V(w)
=

-aw~ +w~.

If
one

performs
a

variational analysis based on the quadratic Hamiltonian Hv
= (w -wo)~ /(2A),

there is a "phase transition" at a = ac: For a < ac the best solution is wo =
0, while for a > ac

it is wo =
+w* (a). (The true solution should have a symmetric double peak structure, but this

requires including the tunneling states between the two minima. For large
a

the variational

solution givesj nevertheless, a rather good description of the system).
The problem can

be rephrased
as

that of finding the best functional probability distribution

(over the choices of samples) of the probability distribution which describes the thermal fluc-

tuations of the particle's position in one
sample [16]. The variational Gaussian r-s-b- method

provides
a

large class of such functionals, which is able to encode some "shaky" distributions

characteristic of
a

problem with many metastable states.

Though the Gausssian variational r-s-b- solution of the previous section is still
a

rather crude

approximation, it possesses some very interesting properties which
are not so easy to obtain in

this problem. The solution has the correct scaling form C2(t)
~wt-o

t~~ at low temperatures,
which ensures

that the scaling behaviours (9) and (10) are correct. This is not trivial, since for

instance the scaling (10) of the connected correlations (which govern the thermal fluctuations)
is dominated by

rare
samples ill, 14]. This behaviour is reproduced here correctly

as can
be

shown for instance by computing (< w2 > < w
>2)k [Ii.
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Fig-I- Plot of the particle's position < w2 > versus the reduced temperature t. The points are

the results of the numerical simulation. The full lines are
the replica symmetric (r.s.) and replica

symmetry breaking (r.s.b.) Gaussian variational solutions. They coincide above t
=

1. Below t
=

I

the
r-s-

solution gives only nonsense, while the r-s-b-
one

approximates the gradual freezing by a phase

transition. The exponent 7 which caracterizes the correlations of the potential is 0.5 for the left curve

and 0.75 for the right curve.

2.5 NUMERICAL SIMULATIONS. We have performed some numerical simulations in order

to test the prediction (23). We choose ~ =
l and g =

~~~~~~ 2~~~~/7. We discretize aT(3/2 7)
suitable interval of the

w
axis of length

~w
2011Y~ with typically of order N

=
4000 points

and compute then < w2 > exactly. The most extensive simulations, involving averaging over

25000 to 50000 samples,
were done at 7 =

1/2 and 7 =
.75. The correlated potential is

generated
as

follows: We generate Vo,
...,

VN together with V-N,.. V-i where V-; + l§. This

even and periodic function is obtained by fast Fourier transform from the Fourier components
ik The ik

are independent random variables of width ak. The ak are chosen in such a way as

to reproduce the correlations (2) exactly for the variables Vo,
,

VN. An alternative solution

for the case 7 =
1/2 is to generate l§

=
c~ (£j~~h; £$; h;), where h; are identically

distributed random variables with a flat distribution. The results for < w2 > are shown in

figure I, together with the prediction of the replica symmetric (r.s.) and r-s-b- Gaussian

variational solutions. The r-s- and r-s-b- solutions coincide at high temperature and give the

correct result. Actually we have checked that the high temperature expansion coincides with

the r-s-b- solution at high t, with corrections of order t(~l~~~). The r-s-
solution is totally

wrong at low temperatures, as we already noticed. The r-s-b. solution is relatively good. It fails

to describe the smooth freezing below t
=

I/fl
=

I but approximates it by a
phase transition.
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3. The lin£t of large dimensions.

The general problem of a D dimensional directed manifold in a N + D dimensional space,
subjected to a

random potential, is described by the Hamiltonian:

HI"]
"

/
d~

f ~))~
+
/

d~ v(~> "(~))> (26)

~~j

where
w

is a N dimensional vector and
~

is D dimensional. The replica Gaussian variational

method applied to this problem is exact when the space dimension N goes to infinity (at D

and 7 fixed) [Ii. The hierarchical r-s-b- Ansatz [15] then gives for the wandering exponent:

< (W(z) W(°))~ > +~izi-m (z(
W (27)

It would be particularly interesting to compute the corrections to this exponent to order

I/N. This should be possible using the usual methods of I IN expansion (see for instance

[18, 17]) for the replicated theory. The road is somewhat complicated by the fact that the

zeroth order approximation has a spontaneous r-s-b-- Here we shall do only the first step in

this direction, which is the computation of the simplest O(I IN) correction to the self energy.
As in the usual case, this does not change the exponent and one needs to resum

first of all

the O(I/N) diagrams in order to get the logarithnfic changes in the self energy which can be

interpreted
as a

change of the wandering exponent to order I IN.
Let us start from the large N formulation of [I]. From (26) one gets a replicated Hamiltonian

which describes a system of
n

interacting manifolds (n the end
n goes to 0). For large N it is

convenient to introduce auxiliary fields:

tab(z)
= jwa(z).Wb(z) (a 5 b), (28)

together with the Lagrange multipliers sob(z) which implement these constraints. This gives:

W
=

/ fl (dlrabldlsabl) e'~~l~>'1, (29)

with:

Glr, Sl =

L /
dz Sab(z)tab(z)

/
dz L f(raa (z) + rbb(z) 2rab(z)) + Slsl, (3°)

e~l'l
=

/
d[wi].. d[wn] exp

~ £ /
dz wa(z) ((-V~ + ~)Gab sob(z))

b(z)1.
(31)

2
~ ~

The infinite N limit is worked out by solving the stationarity equations for G[r, s], which is

equivalent to using the variational method based on a Gaussian distribution. To go beyond,

one
expands

r
and

s
around the saddle point: rob "

r[j~'+ Grab, sob "
s[f'+ 6sab and expands

G to second order in 6r, 6s. As explained in the Appendix I of iii,
one can integrate easily

over the fields Grab (a < b) and 6saa. After some work one finds the full order I IN correction to
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Fig.2. The self energy diagram computed in the appendix.

the self energy:

6~ab(~)
"

fl~ L /
~~,) ~Q~>db(P + ~) (~$d(P) Gld(P) G$b(P) + Glb(P))

'

(32)

~(#a),d(#b)

~

where G(~(p)
= [(p~ E)~~]ab is the infinite N propagator computed in Iii. I<a~,db(p) is

a

n(n -1) /2 x n(n 1)/2 matrix defined for all pairs of different replica indices. K is the inverse

of the matrix:

Kz[~~(k) =
N ~~(~'~~~~ N

f @
(Gl~(q) + Gl~(q) Gl~(q) GL(q))

,

a~

(Glb(q + k) + Gl~(q + k) Gl~(q + k) GL(q + k))
,

(33)

with:

~ab
"

911"(
/ )

(~ia(~) + Gtb(~) ~Gtb(~)) (3~)

A full computation of the order (I IN) corrections requires the inversion of K~~ This is
a

complicated problem, which
can

probably be attacked using the methods developed in [19],
but we shall leave this computation for future work. Here we

make
a

simpler attempt by
computing the diagram of figure 2. Its value is obtained by expanding K to second order in g.
The corresponding contribution to the self energy will be called Sab(q). It is given by:

dD ~ dD ~ dD ~ 3

Sab(~)
" fi

£ hachbd
/ @@@$(£ k; q)Babcd(kl )Babcd(k2)Babcd(k3)>

c(#a),d(#b)
~ ~ ~

i=J

(35)
where:

~abcd(k) ~ Gib(~) + Gid(~) Gid(~) Gtc(~). (36)

One must evaluate Sab(q) using the infinite N propagator of [Ii. In the limit
n -

0 the

pair of replica indices is turned into a continuous variable
u and the propagator becomes a

function G°(k, u). The infinite N self energy is a function E(u) which scales at small u like

E(u)
~w

u(~/X~ I) where X is the exponent which governs the free energy fluctuations. The results

of the detailed analysis of the long distance correlations performed in [Ii can be recovered by
simple scaling arguments. These amount to saying that the large distance limit of the physical
propagator is dominated by the small u, small k limit of G(k, u), and that

u
should be scaled

as kX in this limit. Such a simple scaling analysis gives for S(k)
a behaviour in

S(k)
~wk-o

k~(~~D)k~Dk~~(~+X) (37)
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In this formula, the first term comes from the factors h~~hbd (using the scaling laws of [Ii);
the second term comes from the integrals over k; and the 6 function, and the last term comes

from the B factors. Altogether this leads to:

S(k)
~k-o

k~-~x, (38)

which is more singular than the infinite N contribution: S(k)
~w

E(k)k~~X. This simple scaling
argument would

mean
that this single O(I/N) diagram changes the infinite N exponents.

However this turns out to be wrong. As can be seen in the full computation of S described in

the appendix, there is an extra cancellation among various terms in the sums over the replica
indices

c
and d, in equation (35). In fact the final scaling of S(k)

can
still be deduced from

a simple scaling analysis of (35), but using the fact that the sums over the two extra replica
indices c,d basically correspond to two extra integrations over internal"u" type variables,
which provide

a new factor of k~X needed to have S scale in the same way as E.

This is
a

particularly miraculous cancellation if
one

considers the fact that several contribu-

tions to (35)
,

like the term c =
b, d

= a
do not involve any integral

over
internal variables, and

diverge individually like (38). It seems that such cancellations are frequent in the computation
of loop diagrams in theories with replica synlnletry breaking [20]. It would be very interesting
to understand their origin. The final result for S corresponds to the usual behaviour of the

I IN correction of the critical exponents: In the usual (#~)~ theory this single diagram does

not change the exponent, but one needs first to resum all the bubble diagrams in order to get
the corrections to order I IN to the exponent. This could well be also the case here.
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Appendix.

We compute the self energy Sab(q) defined in (35). In the sum over replica indices
c

and d,

one must distinguish several cases depending on which indices are equal. We write

Sab(~)
"

j fsib(~) (~l)

where S~ is the term d
= a,c =

b, S~ is the term d
= c,

S~ is the term d
= a, c

# b, S~ is the

term d # a,c =
b, S~ is the term where all the four replica indices

are
distinct. Introducing

~D~~ ~D~~ ~D~~ 3

91b ~
Gla(ki) Glb(ki) ~~d d(k) ~ q (~,)D (~,)D

6(L k' ~)> ~~
fi~d

i~j

Slb(~)
"

~8hlb d(k)91b91bglb

s(b(~)
"

L'
hachbc

/
d(k)(91c + glc glb)(glc + glc glb)(glc + 9?c 91b)

abc

s]b(~)
"

L' hachbc
/

d(k)(91c 91b 91c)(91c 91b 91c)(9?c 91b 91c)

abc

Sib(q)
=

Sta(q)
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Slb(~)
"

L'
hachbd

/ d(k)(gld+glc~glb~91d)(91d+91c ~91b~91d)(91d+gic~91b~~fd) (A2)

abed

where the £'
means that all the indices are distinct. In the limit n -

0 the n x n matrices

become functions of the internal parameter defined on the interval [0,1]. In terms of the

functions h and g' the above expressions read (denoting by u the internal parameter associated

with the pair of indices (ab) 0:

S~
=

-8h(U)~g~(U)g~(U)g~(U)

S~
=

-2h(U) /~ dv h(v)g~(v)g~(v)g~(v) h(U)~Ug~(U)g~(U)g~(U)

/~ dv h(v)~(2g~(v) g~(U))(2g~(v) g~(U))(2g~(v) g~(U))

S~ + S~
=

2h(u)
/

dv h(v)g~(v)g~(v)g~(v) + 2h(u)
/

dvh(v)g~(1t)g~(u)g~(1t)
~ ~

+2h(U)~Ug~(U)g~(U)g~(U) + 2h(U)~ f~ dv(2g~(U) g~(v))(2g~(U) g~(v))(2g~(U) g~(v))

S~
=

2 /~ dv /~ dwh(U)h(v)(g~(W) g~(U))(g~(W) g~(U))(g~(W) g~(U))

+4 /~ dv /~ dwh(U)h(v)(g~(W) g~(v))(g~(W) g~(v))(g~(W) g~(v))

+ /~ dv /~ dwh(U)~(g~(v)+g~(W)-2g~(U))(g~(v)+g~(W) -2g~(U))(g~(v)+g~(W) -2g~(U))

+2 /~ dW /~ dvh(v)h(W)(g~(W) g~(U))(g~(W) g~(U))(g~(W) g~(U))

+2Uh(U)~ /~ dv(g~(v) g~(U))(g~(v) g~(U))(g~(v) g~(U))

+ /~ dvvh(v)~(g~(v) g~(U))(g~(v) g~(U))(g~(v) g~(U))

+ /~ dv /~ dwh(v)~(2g~(v)-g~(U)-g~(W))(2g~(v)-g~(U)-g~(W))(2g~(v)-g~(U)-g~(W))

+U f~ d»h(U)~(g~(U) g~(v))(g~(U) g~(v))(g~(U) g~(v)) (A3)

where the various contributions to each S'
come from the various way of organizing the replica

indices on an ultrametric tree. Adding up all these contributions,
one

finds the result announced

in the text about the scaling of S at small u and small q. For instance the only term involving

no integral over internal indices is:

S(q,u) a
( d(k)h(u)~(-7)g~(1t)g~(1t)g~(1t)

(A4)

The various terms containing h(u)~u~g~(u)g~(u)g~(u) with a =
0 or a =

I
,

in the above

expressions for S~, cancel, leaving only the term a =
2 in the final sum. Similar cancellations

occur in all the other dangerous terms.
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