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Abstrrel. We discuss the equilibrium configurations of heteropalymers. The interaction 
polential for each pair of monomers is chosen in such a way (using a 'Hebbian' learning 
rule) that the (metalstable states of the polymer are some preassigned shapes. The problem 
is analysed in some detail in the infinite-dimensional case, where the 'shapes' correspond 
lo permutations, and the memory capacity is computed. The one-dimensional case is also 

~~~ . , - - ~ >  
SUl lb lYSICU.  

1. Introduction 

The protein-folding problem deals with the prediction of the native shape of a protein, 
stirting frem the 'first princip!es', i.e. the For- of the inter~ctiens of !he zxnolf?ers 
between themselves and with the solvent. While most proteins seem to have only one 
or a few equilibrium shapes, it is possible that one could 'build' a heteropolymer which 
might have many possible equilibrium (or metastable) shapes, completely different 
from one another. This may happen if one chooses the interactions between pairs of 
monomers in the chain in an appropriate way. We shall show that, at least for polymers 
living in an infinite-dimensional space, it is possible to memorize many distinct globular 
shapes in a single chain, provided one can choose arbitrarily the interaction potentials 
between pairs of monomers. A Hebbian learning rule inspired from the one used in 
memory neural networks [l] can then provide the appropriate pair interactions for a 
proper memorization. The actual shape adopted by the polymer at low temperatures 
will depend on the initial conditions: in the best situation the polymer will relax to 
the nearest (in some sense) shape which has been memorized in the pair potential. 
This idea of memorization is basically identical to the one which has been introduced 
by Hopfield [2] for neural networks. The basic difference is in the nature of the device: 
here the analogue of a configuration of neurons is a configuration of the polymer. The 
memorized patterns are some special polymer configurations (shapes), and the memory 
is contained in the pair-interaction potentials. 

More specifically, let us consider a polymer chain of N monomers in a D- 
dimensional space. In a given configuration of the chain, the position of monomer 

g On leave from Landau Institute, Moscow. 
11 On leave from Universiti di Roma 'La Sapienza'. 
(I Unite propre du CNRS, associee i I'Ecale Normale Supenemre et B I'Universitb de Pans Sud. 
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number T ( T E  1,. . . , N )  is called x,. We neglect the interactions with the solvent and 
describe the chain by the Hamiltonian 

N N 

H =  1 g(x,-X-+i)+ 1 Vw(IXT-~rl) (1) 
7 = l  - ,?=I 

where g represents the 'linear memory', which could be taken for instance as g(x) = x2, 
and V, is what we call the pair potential, the interaction between each pair of monomers 
U, T which are not neighbours along the chain. Given p shapes x: ( p  E 1,. . . , p) which 
one wants to memorize, it may he possible, if p is not too large, to find a set of pair 
potentials V,(r) such that all the shapes will be (meta-) stable configurations of the 
Hamiltonian H. This very interesting problem has been introduced and discussed by 
Sasai and Wolynes [3], who call the resulting Hamiltonian an associative memory 
Hamiltonian for protein folding. Here we formulate it in somewhat more general terms, 
especially because we do not restrict the space of interactions as interactions between 
a small number of monomer types (for instance hydrophobic and hydrophillic), so 
that we have potentially more possibilities for the application of these systems in 
pattern recognition. Although we have been able to perform the computation only in 
two extreme cases where D is equal to one or infinity, we would like to briefly present 
a simple lattice version of the general Sasai-Wolynes problem and write down some 
hypothetical form of the pair potential. We are interested in globular polymers. One 
could use a short-range pair potential with excluded volume effect together with a 
short-range attraction. After discretizing the problem on a lattice, it looks reasonable 
to try to memorize one shape x: by strengthening the attraction between monomers T 
and U (lowering V,(I)) whenever monomers U and T are lattice neighbours in the 
shape x,,. If interference effects are not too severe, the memorization of several shapes 
might then he obtained by a kind of Hebbian rule like 

VAO) = vo V,(1) = -v, - v: 1 s(lx:-x", 1) V,,(r)=O r > l  (2) 
& 

where Vo, V,, V: are positive constants. It would be quite interesting to see (perhaps 
through some numerical simulations) if such a system (or one with longer-range 
interactions) could memorize some shapes in two or three dimensions. In this paper 
we shall not say anything about this general problem. We shall study analytically two 
extreme versions of this problem. 

( I )  The infinite-dimensional case: each monomer is then the neighbour of every 
other monomer. A configuration is a permutation of all the sites, and the learning rule 
2 has to be adapted to this case. This problem, which will be analysed in the next 
section, presents many similarities to the memorization in neural networks [ 11, except 
that the basic configurations are permutations. 

(2) The one-dimensional case: if the self-avoidance is not strict, the problem of 
memorizing one shape in one dimension is not trivial. In section 3 we shall study a 
'directed' version of this problem. 

Before proceeding we would like to mention previous works which are related to 
the present one in some aspects. De Gennes [4] has studied the memorization of one 
shape by imprinting it in some external substrate. The memory is then encoded in an 
external potential which acts on the polymer, while here we study the case where the 
memory is encoded in the pair potentials. The problem of random heteropolymers on 
the fully connected lattice has been considered by Garel and Orland [8], but they have 
not addressed the question of shape memorization. 
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2. ‘Shapes’ on the fully connected lattice and permutations 

It is a common procedure in statistical mechanics, in order to gain some insight into 
difficult problems, to define toy models solvable by mean-field technique. A general 
situation is that problems that are very difficult when formulated in finite-dimensional 
spaces simplify in the ‘infinite-dimensional space limit’, to be understood as a space 
where all points are the same distance from each other. 

Here we want to study the memorization of folded sequences in such a space. We 
consider N points, labelled by i, i = 1,. . . , N and chains of N ‘monomers’ labelled 
by T, T =  1,. . . , N that completely fill the space. A given sequence in space, specified 
by the position of all monomers T = T ( i ) ,  can be identified with a permutation r of 
indices i. For each permutation T we define a permutation matrix SE 

T ( T )  = i 
otherwise 

sp= 

that verifies 

1 s;: = 1 s;, = 1. 
T 

(3) 

(4) 

Given two permutations r, T’ we can define the overlap as the number of sites where 
?i( 7) = %”( T) 

Our aim is to store, by means of a Hamiltonian function of the variables S;,, a given 
set of p permutations, represented by the matrices kc, p = 1,. . . , p chosen at random, 
independently, and with uniform probability out of the N! possibilities. It looks natural 
in this context to use a Hamiltonian of the kind 

and to take as coupling matrix J $  a Hebbian form similar to the one introduced by 
Hopfield [Z] for memory networks:t 

This gives 

A few comments are in order: 
In Ising systems, where the dynamical variables take the values S, = + I ,  the terms 

of the kind A.$’: are irrelevant in the Hamiltonian. Here they are present and contribute 
to H with a term -$A XeXj,  Si&:. 

t It is interesting to note that a Hamiltonian similar to (6) has been considered in [51 lo study the travelling 
salesman problem. The same problem is formulated in terms of Potts variables in [6] and [7]. 



6634 V S Dotsenko e! a1 

The constant A in H has to scale with N in such a way that the entropy and the 
energy will be of the same order [lo]. As the number of states is N!, the entropy is - N In N and the correct choice for A is (choosing a scale for the energy) A = In NI N; 
accordingly the free energy ‘density’ will be written as 

T 
N In N 

In Z, F =  -- (9) 

It could be possible to take into account the linear structure of the chain introducing 
an interaction between monomers occupying adjacent places along the chain, of the 
kind B Z,,K‘,S,,S,,+, . If B is taken of the same order of magnitude as A, such a term 
is irrelevant in the thermodynamical limit. We leave for future investigation the study 
of the role of this kind of term when B is scaled in such a way as to give rise to a 
relevant term. 

The coupling matrix we introduced in (6) and (7) depends on the positions ( i ,  j) 
of the monomers in the space. This cannot be avoided in a non-trivial model in an 
infinite-dimensional space, where constraint (4) holds. 

In the next subsection we will study the memorization of a single sequence &,. In 
that case we can always choose c,, = S,, by a gauge (Mattis) transform of the kind 

sa, + SdT, (10) JY”-  J,“’“‘“’ 

We obtain in this way 

In section 2.3 we will study the more complicated case of p D 1 patterns, where the 
replica trick is needed to average over the random patterns. 

2.1. 7he one-pattem case 

In the one-pattern case the partition function can be written in a closed form for any 
value of N. The partition function can be written as 

We expand in high-temperature series, compute the sum over the Ss, and re-sum the 
expansion: 

= k = O  : b k (  r) ( N -  k ) ! =  /omdfe- ‘ ( t+ t )N 

where 5 = eBm In - 1, and w e  have used X{s,,,lS,,,< ,... S j k , i k = ( N - k ) ! .  
!n this way for any N we obtain 

In the limit N + 00, Z can be evaluated by taking the saddle point on m and 1. The 
saddle point m = 0 always exists and gives Z = N! and F = - T In Z/ N In N = - T. 
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Let us now study the possibility m # 0. Such a solution exists when the saddle point 
value o f f  (that dominates the integral) is such that 

In this case the saddle-point equation for m gives m = 1 and (15) reads t < NO. In the 
opposite case, t > NO, the assumption m # 0 is inconsistent and has to be rejected; so 
we find that the solution m = 1 exists for T <  1. The free energy of the m = 1 solution 
is F = -4 and corresponds to the minimum when T < 1. The free energy of the model 
as a function of the temperature is given in figure 1. We note the peculiar structure of 
the model, which in the low-temperature phase is dominated by the ground state and 
has entropy S = 0, and in the high-temperature phase is dominated by the entropy that 
attains its maximum value S = N In N, the energy being zero. So in the region T <  1, 
there is coexistence of two phases, one fully correlated with the pattern, the other fully 
ergodic among the configurations which have zero overlap with the pattern. Exactly 
the same results would be obtained by  taking, instead of permutation matrices, N-states 
Potts variables. This means that one of the two constraints in (4) is irrelevant. This is 
a consequence of the fact that we can neglect finite terms with respect to In N. We 
think that this still holds in the case of the memorization of p patterns where we will 
hypothesize it in order to solve the model. 

b 0 2  Q L  06 0 8  IQ 1 2  1 L  

\ 

Figure 1. me free energy as a function of the temperature: the full line corresponds to 
the minimum ofthe freeenergy, while the broken lines are the freeenergies ofthe metastable 
states. As explained in the text the solution m = O  exists for all T and minimizes the free 
energy for T > i .  The solution m = 1 exists for 0 4  T S  1 and minimizes the free energy for 
r<i. 

2.2. Memorization of p permutations 

In  this section we study the memorization of p random permutations. The terminology 
and the technique we use are borrowed from spin glasses and neural networks theory. 
In  particular we will be interested in the spin glass and the retrieval phases of the 
system and in the determination of the limit of capacity. We solve the model neglecting 
one of the constraints (4) of the matrices S,,, namely the various rows of the S,, will 
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be considered as N-states Potts variablest. This should be a valid approximation 
provided one can neglect quantities which are finite with respect to In N. We stress, 
however, that the validity of this approximation depends on the particular couplings 
we choose. It is very easy to  find examples of coupling matrices for which in a 
Hamiltonian (6) permutation matrices and Potts variables have a very different ground 
state and different thermodynamics. 

The maximum number of patterns stored in the system is found to scale as N3/ln N. 
This scaling can be understood from a simple argument of information theory. The 
number of 'synapses' in the network is N4, and the information content per pattern 
is In N! - N In N. Assuming finite information storable per synapse we get the men- 
tioned scaling by just dividing the two numbers. To study the thermodynamical 
properties of the model in the case of the storing of p patterns, we use the replica trick 
to average the free energy over the random patterns, following closely the AGS study 
of the Hopfield model [ 1,111. We will study the retrieval phase with a single condensed 
overlap and the spin-glass frozen phase (without any condensed overlap). 

The thermodynamics of the system has a peculiarity that deserves some attention. 
Due to the scaling of the entropy as N In N we will see that the 'decoupling of the 
sites' usual in mean-field theories will not lead us to a single-variable partition function, 
but to a partition function of a system with N possible states, similar to the random 
energy model [12]. In this way we will find two macroscopic problems nested one into 
LlLC ULllCil Llldl call " U L l l  LCdU L" a prasc L l d l l ~ l U V I I .  

We will assume a single condensed overlap with, say, pattern number one, that 
can be reduced to t:,= 6,, by a gauge transformation, as explained in the previous 
section, Indicating with a bar the average over the random patterns we can write 

V S Dotsenko et a1 

&L^ - .t ."-.t . , .L ^^^L^.L , - - A  I- -L--- .---- :.:-- 

n 

dm" =I !! J2=//3N In N 

where m' is the overiap of the system wiih pattern one. i n  appendix A we show how 
to compute the average over the 5 s  expanding in series the exponential to the leading 
order in N In N. It turns out that  terms in p2, i.e. of the order P In' N/NZ, have to 
be considered. Re-exponentiating we obtain, to that order, 

where we have introduced a = P I n  N/N', which is kept finite when N + m .  
Introducing by means of a Hubbard-Stratonovich transformation the usual overlap 

order parameters Q o b = ( l / N )  XjT (SP,S!,), and evaluating Z" by saddle point on Q.,b 

t q-states Potts neural networks have been considered in [lS-17]. Here we study a different problem where 
the number of Potls states, N, is equal to the number of units. 
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and m., we get 

11 Qih 
2 a c b  

where SP stands for ‘saddle point’. At this point we crucially use the ‘Potts hypothesis’ 
and decouple the rows of the matrix S,, writing the sum over {S(,}  in as the Nth 
power of the ‘single-site’ partition function 5 :  

We notice en passant that exactly the same expression would be obtained from a 
spin-glass Hamiltonian 

where J T  and Ki, are independent Gaussian variables of zero mean and variances 
respectively 

a In N 9 (J7”2=- and ( K ? J = q a  In N. 2 N  

This shows that the spin-glass phase of this problem will be that of a glass of N-states 
row varmvies. iviure geneiai onuiaea iur Inc vanidnoes V] J s anu A~~ icau IO B phase 
diagram similar to those we find, and will not be discussed. 

As announced, the I that comes out from the decoupling of the rows of the matrix 
Si, can be thought as a partition function of a system of N states with an energy of 
order In N. As such the decoupled system can still undergo a phase transition. More 
precisely, in order to find the saddle point of (18). we need to proceed in two steps: 

( I )  For a fixed set of properly chosen Qoh and ma (which we shall call external 
parameters), one must compute the free energy of the reduced problem: 

n-I_--~--:.L?.. .,.-. .... 1 P . _ & I  : ._... .‘. r T - . _ I  r, ,..,A- 

(2) One must find the saddle point on Qoh, m, of the function 

The unusual problem here is that 4 itself is not necessarily an analytic function of 
Qub, since it is the free energy of a problem which has an infinite number of degrees 
of freedom (in the N + m limit). 

To solve problem 1 we can either use the replica trick, with Parisi’s ansatz, or we 
can assume the Parisi ansatz only for the external parameters, continue analytically 6 
to n = 0, and evaluate it by a direct probabilistic technique. Let US discuss the computa- 
tion with replicas. (In appendix B we show how to use the alternative method.) 
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Introducing the matrix qob = Z, SZS!, whose elements can take the values zero or 
one, we can write C as 

The sum over {qub) will be evaluated by the ‘saddle point’. We will strict our variational 
space to matrices IQab) and {qub} of the Parisi form [9]. Due to the fact that qab can 
only take on values 0 and 1, the most general Parisi ansatz for it is a one-step replica 
symmetry breaking (RSB) matrix, parametrized in terms of the single breaking parameter 
y ,  such that qnb is equal to 1 inside diagonal blocks of side y ,  and zero outside. The 
_ ~ ~ _ r  eroiin of renlica ~ . ~ ~ ~ ~ -  nermutationc that ...... ~ . . ~  leave 5 invariant coincides with the group C. of 
invariance of the matrix Qab. O n  the other hand, self-consistently one finds that Qab 

is given by the mean over all the different (equivalent by symmetry) saddle points q:,‘ 
of (24) 

It is clear that all the relevant saddle points in (25) differ by a relative permutation of 
G; so 

The most general Parisi matrix that can solve the self-consistency equation (26) is 
two-steps RSB with parameters Q2, Q , ,  Q,, and x2, x,, in standard notations: 

I ( a / x 2 )  = I ( b / x J  
l ( a l x , )  = U b / x , )  J ( a l x 2 )  + I(b/xd (27) 
otherwise. 

where I ( x )  is the integer part of  x. However we shall see hereafter that the saddle-point 
solution is always a ‘one-step breaking’ matrix with Q2 = Q1 and x2 = x, = x.  It is easier 
to start with such a matrix, and then to show that the most general two-step breaking 
collapses onto a one-step breaking matrix on the saddle point. Let us thus suppose 
that Q has a one-step breaking form with parameters Q,, Qo, x, and m, = m for all a. 

method on the matrix qvbr that is on the breaking parameter y.  This internal problem 
is actually some elaboration of the random-energy model [12], where one considers 
non-integer moments of the partition function. Indeed let us go back to (19) and write 
explicitly 5 for a one-step RSB Qab: 

Thp free energy + (Qo, Q; , X) ofthe i n ! e ~ ~ !  prob!em can be ~ o m p ~ t ~ d  hy a sadd!e-Point 
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where the index g (going from 1 to n / x )  labels the various blocks of x replicas 
appearing in the matrix. By a Hubbard-Stratonovich transformation, and performing 
the sum over the S:, we get 

where D exp(-y2/2)dy/v% and we have set y=Jap ' (4+Qn) and S =  + ap ( 9 ,  - Qn). This representation allows us to derive the results on 4 without resorting 

Let us consider here the replica point of view. We analyse separately the cases 

Let us first assume m f 0. In this case two saddle points in 5 are possible: 
(1) gab = 1 for all ab  and (Z,S:) = 1 for all a :  

*- 11.- -n..l:̂ n ...-.t...A n" :" "I. :- n 
,U L L L C  lqm*'7 L I I C L ' I Y " ,  a1 ,U Jl lUW,,  LLL ayyG,,",x D. 

m#Oand  m=O. 

n In Npm + In Nap2 
a c b  

(2) q o h  is one-step RSB with breaking parameter y ;  (I,S",=O: 

where we have used Z , , ,  rIa<b S(q . ,  -I, S:Sh) = N"'y. 
If saddle point (1) dominates, the assumption m # 0 is consistent and leads to 

m = l  QOh=l  Wab (32) 

(33)  
while if saddle point (2) dominates, the hypothesis m f 0 is inconsistent. In fact, it 
would lead to m = 0. To determine the range of existence of the solution m = 1, we 
have to study when saddle point ( 1 )  dominates, for m and Qab of the form (32) .  The 
saddle point (1) gives for 4 

with a free energy 
F =  -?  

13a 
8T 

+,= -1+- (34) 

while saddle point (2) gives 

if a > 8 /13T2  
+ 2 =  nsyci min - - p 2 a - ( 1 - y )  Y l 3  ) = {;3:/8T-& i f a<8 /13T2  (35) (' 8 

the saddle point (1) dominates, and consequently the solution m = 1 exists for 

a < &  T < $  
a < $ T ( l -  T )  $ < T < 1  

leading to a 'capacity' a, =& Note that differently from other models (e.g. the Hopfield 
model) here when retrieval is possible, it is always perfect. 
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As we will see this solution does not correspond in all the region of existence to 

Let us now study the case of no condensed overlap, m = 0. Let us write the variational 
the absolute minimum of the free energy. 

free energy as a function of Q , ,  Qo, x, y: 

... ILL 1 -: L.. 
W l l l l  qJ ?gvt.r, "y 

1 9  4 
~8 2 

- P + = - - - a P 2 ( l  - ~ ) - - ~ ~ ( y - ~ ) Q ~ ( l - ~ ) + e ( ~ - ~ ) [ Q , ( l - x ) + Q o ( x - y ) l } .  

(38) 
In this case the order of optimization of the various parameters does not matter, 

Variations with respect to Q , ,  Qo lead to 

(39) 
1-Y Q,  = e(y-x)  - 
1-x 

that substituted into (37) give 

Note that 

so the minimum is attained in all situations for y = x. Further minimization with respect 
to y gives 

It is easy to see that the retrieval state is the absolute minimum of F in the region 

Note that for zero temperature, the solution m = 1 is the state of minimal free energy 
for a <A and continues to exist as a metastable state for a <$. The spin-glass phase 
of the model is a one-step RSB with Qaa = qab for all ab. This means that for the various 
indices i of the variables Sp,, the replicas are all oriented in the same way, i.e. X, (S?,S?,) 
is zero or 1 independently of i. The structure of the states is similar to that of the REM 
model. The free energy is dominated by several non-overlapping states (uncorrelated 
with the f:), having zero entropy. The phase diagram of the model is displayed in 
figure 2. 
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Figure 2. Phase diagram in the plane (a, T). P denotes a paramagnetic phase, sc the spin 
glass phase, R the retrieval phase. Below the curve that starts at the point T=O, a =A= 
0.154, the retrieval phase coexists with either the paramagnetic or the spin-glass phase. 
Below the broken curve the retrieval phase is the global minimum of the free energy. 

3. One-dimensional oriented polymers 

Consider the one-dimensional problem, in which one maps N different monomers 
onto a chain of N sites i with nearest neighbour interactions: 

N N  

H =  -1 1 S;S:L:JT,y. (46) 

C ' = S .  I ,I. (47) 

J , , ,  C C B  = S,,,,+i (48) 

which differs from the general rule (2) because we consider an oriented chain in which 
the order of the monomers is fixed: the monomer T at the site i interacts with the 
monomer r f l  at the site i + l  but it does not interact with the same monomer at 
the site i - 1 .  The reason why we consider this oriented problem will be discussed 
at the end of this section. The energy corresponds to a certain cost whenever a link 
between monomers T and r +  1 is broken, but this cost is independent of the distance 
between the monomers: the interaction is short-range. A different one-dimensional 
problem has been studied by Derrida et al [14 ] .  The partition function is 

i C i '  

Since the pattem 5: to be stored as a ground state can be taken arbitrarily, let us take 

For the interactions let us choose 

The ground-state configuration of the system is obviously the diagonal matrix 
S:  = 8,. Since the energy (46) ,  is gained due to neighbouring 1s along the diagonal 
direction, a general way of creating excitations is to produce k 'breaks' among the N 
lines of the diagonal matrix at lines m,, . . . , m,. This breaks the matrix into k + 1 
rectangular blocks of sizes m,N, ( m , - m , ) N , .  . . , ( N - m , ) N .  Any excited state with 
energy k - N is obtained by a permutation of the k + 1 blocks, such that any pair of 
adjacent blocks is broken (see figure 3). 

Therefore the partition function can be written as follows: 
N-l 

Z =  1 exp[p(log N ) ( N - l - k ) l C k - , P k  (50) 
k - 0  
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1 0  0 0 0 0 0 ... 0 

0 1 0 0 0 0 0  . . .  0 

- - - - - - - - - 

0 0 1 0 0 0 0 ’  . . .  0 

0 0 0 I O  0 0 . . .  0 

0 0 0 0 1 0  0 . . .  0 

0 0 0 0 0 1 0  . . .  0 

- - - - - - - - - 

0 0 0 0 0 0 1 . . .  0 
. , . . . . . . . . . . . . . . , . . . . . . .  . .  

0 0 0 0 0 0 0 . . .  1 

I 

t 
3 

3 

2 

‘ I  .o 0 0 0 0 0 . . _  0 

0 .1 0 0 0 0 0 . _ .  0 

- - - - - - - - - 

0 0 0 0 0 0 1 . . .  0 
. . . . . . . . . . . . . . . . , . . . , . . . . . . 
- - - - - - - - - 

0 0 0 1 0  0 0 ... 0 

0 0 0 0 I O  0 . . .  0 

0 0 0 0 . 0  1 a ... 0 

- -  _ - - - _ - -  

0 0 l o  0 0 0 ... 0 

\ a  0 0 0 0 0 0 ... 1 )  

Figure 3. An excitation with energy k - N.  k+ I blocks are permuted in such a way that 
any pair of adjacent blocks is broken. 

where Ck = N!/ k!( N - k)! is the number of positions of k ‘breaks’ among N lines, 
and Pk is the number of permutations of ( k +  I )  elements, such that no pair among 
them remains to be nearest neighbours. 

One can easily derive the recursion equation for Pk 
I- 1 

Pk=(k+ l ) ! -  CLPI (51) 
I=o 

where Po- 1. The solution of the above equation is (appendix C )  

or in the integral form 

Using the above equation for the partition function one gets 

(54) 

To leading order in N In N this gives 

2 = exp(0N log N) 

2 = exp( N log N )  
P > l  

0 < 1 .  

For the order parameter 

1 d  
N log N d p  

- log z 1 N  

N I., m =--c (s:s::,’) = 
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one gets 

m = [  1 
if T < l  

0 if T>1 (57) 

The obtained result shows that the behaviour of the one-dimensional oriented 
system is similar to that of the infinite-dimensional model with the only difference 
being that at low temperatures there is only one state in the system which has perfect 

problem of storing P patterns in one dimension does not exist. It can be easily checked 
that there are barrierless transitions between any two arbitrary patterns, and therefore 
if one stores more than one pattern, the ground state of the system will have equal 
overlaps with all of these patterns. For the same reason the unoriented one-dimensional 
chain, in which one changes (48) to I,,,= ST,,,+,+ S,.,,_, is less interesting: there are 
two ground-state configurations which are symmetric, and the energy barrier between 
them is finite (equal to 1). 
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4. Conclusion 

It is strange that the two extreme systems that we have studied (and which are quite 

as the retrieval of one pattern is concerned. The main difference of course is that in 
the one-dimensional model one can store only one pattern, while the maximal number 
of stored patterns for 'polymers' on the fully connected lattice is &N'/ln(N). It is not 
clear to us which features of the solution will remain for a finite-dimensional polymer, 
where the linear constraint becomes crucial. In view of the above it seems reasonable 
to conjecture that one should use relatively long-range interactions in order to be able 
to memorize many shapes. 

Perhaps one of the most interesting aspects of this work is the method that has 
been used to study the statistical mechanics of permutations. We have shown explicitly 
in one case (the one-pattern case) that one can safely replace the permutation matrices 
by N-state Potts variables. Even with this replacement the mean-field theory is non- 
trivial (in the case of the storage of many patterns). The reason is that even a single 
Potts variable can be in one of N states, and one takes N + 00. Therefore the Boltzmann 
sum for one variable in an external field is non-trivial: it already corresponds in some 
sense to a problem with an infinite number of degrees of freedom, and in particular 
it can exhibit phase transitions. We think that this is inherent to having as basic 
configurations the permutations, and this effect could show up in other problems where 
this is the case. 
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Appendix A 

The average over the patterns 

where y = ( p  log N ) / N ,  can be represented as follows: 
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Here ((. . .)) denote the averaging over the matrices fi7. Expanding in powers of y<< 1 
one gets the leading contribution 

V S Dotsenko et a1 

(A31 
Here the subscripts 1,. . . , 4  stand for i l T , .  . . . , i4T,. 

According to the definition of the matrix E, the product of two matrix elements is 
equal to 1 or 0. If the line and the row numbers of the two elements coincide, then 
the probability lo  have 1 is equal to (N - l)!/ N! = 1/ N. If the row and the line numbers 
ofthe two elements are different then the probability to have 1 is equal to ( N  - 2)!/ N!  = 
l/N(N-1). Therefore 

Since the summation over the indices i and Twill be performed in (3), and we do not 
need higher order in I /  N terms, (4) can be approximated as follows: 

Using (A4) and (A5) one gets for the first term in (A3) a trivial contribution 

For the second term one obtains, using (A5) and (A6), 

i s"?"l"^""' 
1 ~ 2 3 3 3 4 ( ( ~ 1 i 2 t 3 Z J )  -ii5152ijii&354ij 

a,b 1.2.3.4 

Therefore, for the average equation (A3) one gets 

(the constant term coming from (A7) is omitted). 
Rescaling P = aN3/(log N), one finally obtains 
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Appendix B 

In this appendix we calculate 

+= \ flDe,-ln , [ I I ! D q , ( e x p ( l n N P m f m ( y ~ , + S q , ) )  

for generical values of y, 6 and x. 
We recognize in (4) a structure similar to the REM [12]. For S = O  the model is 

actually a REM, while for y=O (4) is the average of a REM partition function to a 
non-integer power x: a problem which has been studied In [!3!; observe that 

is self-averaging with in respect to the realization of the [e ,}  due to the effect of the 
logarithm. As far as the mean over the {E , }  is concerned, only typical configurations 
contribute (i.e. those having a non-vanishing probability in the limit N + m). 

The situation is different in respect to the mean of 

over the {q-}. Clearly if x+O the mean is quenched and only typical configurations 
contribute; conversely if x = 1 the mean is annealed and the rare samples are important. 
In intermediate situations the mean will receive contributions from typical and rare 
samples. Depending on the values of the parameters one contribution can dominate 
the other. 

We can consider in this case the average over the 17,) quenched as well as that over 
the {E , } .  y&,+Sqr can be considered a single quenched Gaussian variable with zero 
mean and variance y2+ S2. The resulting contribution to J, is the free energy of a REM 
at inverse temperature 

(i) The contribution of typical configurations: 

where FR,,(p) is the free energy of the REM at inverse temperature p 

(ii) The contribution of the rare configurations: 
The rare configurations {q,) that contribute are those for which 
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i.e. the largest of the 7,s is bigger than the value it would attain in a typical configur- 
ationt. The probability that a given v,, will be the maximum vM of the N{gr}, is 

V S Dotsenko et ol 

Assuming v r / m >  1 it is easy to get to the leading order 

e-?&l:/2 

4%. 
- ( 8 8 )  

The contribution of these configurations is, summing over U and integrating over 7, 

The integration over v M  can be performed by saddle point, giving 

T l =  x s m  

( B l l )  
x r a r e _ e S i r i I n N / 2 ~ e - r y ~ , = e b 2 x ' l n N / 2 ~  

(2 ),) - KEM(yX). 
7 

The quenched average over the { E , }  is easily done, and gives 

62X 1 
2 x  k,,, =-f- [ -YXFKEM(YX)I.  (BIT) 

!! is easy to see !het typicc! c9nfg.r.tior?. dominate ( Q,,,,,i > $JrJ for 

(813)  
X 

In that case 

yz+ 8 2  
1 f- if-<& 

(814) 
2 

J z  
i f f i s m s - .  

X 

@ = $(tyDical = 

In the complementary region of the plane ( y ,  S ) ,  $J is dominated by rare samples, giving 

It can be shown that the results coincide with those of the replica method described 
in the text. The phase diagram is displayed in figure 4. 

t It Can easily be shown that the maximum between N Gaussian variables {x,) verifies m a x { x , ) / m =  1 
with probability 1 for N-m. 



2.0 

Appendix C 

To solve the equation 

c 

k-1 

I=0 
P h = ( k + l ) ! -  I CiPI 

redefine: Ph = k!$* .  One gets 

Introducing Ak = +k - $h- ,  , from the above equations one obtains 

x-1  1 
A -  A, 

x - ’ -;, C T !  
where A,- 1 ,  or 

AI = 1. 
X I  I- 

1-0 ( k -  I ) !  

One can easily check that the solution of this equation is 

This gives 
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