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Résumé. 2014 Nous étudions numériquement des polymères dirigés dans un potentiel aléatoire en
1 + 1 dimensions. Nous introduisons deux copies du polymère, couplées par une interaction
thermodynamique locale. Nous montrons que le système est instable sous l’effet d’une répulsion
arbitrairement faible entre les deux copies. Ceci suggère une similitude avec une phase verre de
spin, avec plusieurs « vallées », où les différences d’énergie libre entre vallées croissent comme
t03C9, où t est la longueur du polymère et 03C9 est probablement égal à 1/3. L’effet d’un champ
électrique transverse est étudié en détails et on démontre l’existence pour la susceptibilité
correspondante d’importantes fluctuations d’un échantillon à l’autre. Les résultats des simulations
sont comparés à des calculs analytiques utilisant la représentation de ce problème en termes de
mécanique quantique et l’Ansatz de Bethe.

Abstract. 2014 We study numerically directed polymers in a random potential in 1 + 1 dimensions.
We introduce two copies of the polymer, coupled through a thermodynamic local interaction. We
show that the system is unstable versus an arbitrary weak repulsion of the two copies. This
suggests a similarity with a spin glass phase, with several « valleys », where the typical differences
of the free energies of the valleys grow like t03C9, where t is the length of the polymer and
03C9 is probably equal to 1/3. The effect of a transverse electric field is studied in details showing the
existence of strong fluctuations from sample to sample in the corresponding susceptibility. The
results of the simulations are compared to analytic computations using the quantum mechanical
formulation of the problem and the Bethe Ansatz.
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1. Introduction.

The study of directed polymers in a random potential is an active research topic which is
important in several respects [1-6]. Besides the polymers themselves it is related to interface
fluctuations and pinning [2], spin glasses [3], crystal growth [4], the random stirred Burgers
equation in fluid dynamics [5], and quantum mechanics in a time-dependent random potential
[6]. In this paper we shall be particularly interested in its relation with spin glasses, since this
system might well constitute a kind of « baby spin glass » problem. This relation with spin
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glasses was particularly emphasized by Derrida and Spohn [3]. Solving the mean field theory
of the polymer problem, i.e. the problem of polymers on the Cayley tree, they found a rather
simple spin glass structure. This system has a low temperature phase with broken ergodicity
and many pure states, where the overlaps between different states (the fraction of common
monomer positions) vanish. This behaviour is exactly identical to the random energy model
[7] which has been shown to be a kind of simplest spin glass model [8], displaying most of the
properties of the Sherrington-Kirkpatrick model [9]. For finite dimensional random directed
polymers in d + 1 dimensions the situation is somewhat less clear. A phase transition has been
shown to exist for d :&#x3E; 2 [10] and is found numerically for d = 2 [11] but the nature of the low
temperature phase has been explored only through 1/ d expansions [12].
Here we want to study this problem starting from the other end, i.e. in 1 + 1 dimensions.

The problem is easily formulated : in a two dimensional « space time » with coordinates
(x, T ) we consider all oriented walks x(T ), T E [0, t] ] with x(O) = 0, and x(t) = y. The
partition function of this system at temperature T = 1/ f3 is :

where we have added to the usual Wiener measure for random walks an extra space time

dependent random potential V (x, T). We want to study the case where the potential is of the
white noise type with local correlations (throughout this paper a bar denotes the average over
various samples and ( ) denotes the thermal averages) :

(A simpler model with nonlocal correlations can be analysed in great details [13].)
The total partition function for walks originating at (0, 0) is :

The thermodynamics of the problem is given by the quenched free energy :

and another interesting quantity is the probability density of the position of the end point :

This problem can be handled through numerical simulations, where transfer matrix

techniques enable an exact computation of Z(x, t) for systems of sizes up to several thousands
time steps [14]. It can also be studied analytically through a mapping to the quantum
mechanical problem of which (1) is a path integral representation and through the use of the
replica method [6]. Many efforts have already been devoted to this study ; it is expected that
this system does not have a phase transition and is always in its low temperature phase.
Furthermore the typical extension of the walk, characterized by :
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is known to scale as (x2)  t2 JI where several arguments, both numerical [2, 14, 1] ] and

analytical [5, 6, 15], indicate that the exponent v is equal to 2/3.
Our aim is to study the nature of this phase, and especially to try to analyse if it shares some

aspects of a spin glass phase. The approach will be mostly numerical. In the next section we
analyse a system of two copies of the polymer coupled through a repulsive local interaction.
We also study the effect of weak transverse electric field, coupled to the endpoint position of
the polymer. Section 3 draws some comparison with some analytic Ansatz for Z(x, t ) recently
proposed by Parisi [15]. Section 4 contains some speculations on the physical nature of this
phase as it might be guessed from the preceeding numerical simulations.

2. Numerical simulations.

In the mean field theory of spin glasses, a standard method to characterize the spin glass phase
is to compute the distribution of overlaps P (q ) [16, 9]. To compute P (q ) for one given
sample we introduce two identical copies x( T ) and y( T) of the system (with the same
realization of the potential) which are uncoupled, and compute the distribution of

Numerically it is easier to compute the first few moments of P (q) ; we find that

Tfi) goes to a finite and nonzero limit qo (which depends on the temperature) when
t --+ oo, but the second connected moment (q 2) - (q) 2 seems to go to zero in the large time
limit, suggesting a trivial P (q) function : P (q) &#x26; (q - q 0).
However it is well known that a system can have several pure states and a trivial

q function [17, 18]. This happens typically when the free energy differences between the
states grow like t’’, with 0  y  1, in the limit of large volumes. (To get a nontrivial
P (q) one needs y = 0.) Recently Parisi and Virasoro [ 18] have pointed out that the existence
of several states and of replica symmetry breaking effects in spin glasses should be analysed
through the reactivity to a thermodynamic coupling of several copies of the system. This kind
of approach has already been used in the numerical study of three dimensional spin glasses
[22]. Specifically we introduce two identical copies of the system, which are coupled through a
delta function potential of strength e. The Hamiltonian we consider is therefore :

(for E &#x3E; 0 the coupling between the two copies is attractive while for E  0 it is repulsive). The
averaged free energy is

and the overlap between the two copies is :

We have computed numerically the average overlap q (E) for various values of
e using a transfer matrix method. We use a discretized version of (1) where the points lie on a
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two dimensional grid (x, t ) E Z x N and the partition function for pairs of polymers coupled
as in (8) arriving at points x, y at time t, satisfies the recursion relation :

In order to compute q we introduce the partition function Z(x, y, q, t ) which sums over
pairs of paths arriving respectively at the points x and y, with a fixed overlap q. The first

00 

moment in q of Z, Y(X, y, t) = E qZ{x, y, q, t ) satisfies :

Eventually one gets :

Equations (11), (12) have been iterated with gaussian local potential of mean 0 and
variance 1. Most of the simulations were carried out at 13 = 7, and some of them at
,8 = 10. The sizes ranged up to t = 255. The results are as follows (see Fig. 1) : for
E 0 there are very little finite size effects and nothing spectacular happens, in the sense that
lim qt( E ) is a smooth function q(e). (For 13 = 7, q(O) - 0.87.) For £  0 (repulsive
t-+oo

interaction) the overlap q t ( £) decreases. But there is a strong finite size effect : the decrease is
much sharper for large systems. In fact the data for qt(£) can be plotted with the scaling form
qt(£) = q (--t 1 - Figure 1 b shows this scaling form, with w = 1/3. This value has been
chosen because of some arguments which will be exposed in the last section. From the
numerical data of qt(£) one cannot determine w with high precision, but it is found to be in
the range 0.2-0.4. There are still some finite size effects at t = 255 which make it difficult to

give a much more precise determination of w.
From this scaling we find that :

Therefore the free energy F 2 ( B) is nonanalytic at E = 0. This shows that this phase has a
nontrivial structure with the coexistence of several pure states. It has recently been proposed
that such an effect could be present [15], this will be discussed in the next section. We shall
expand on a possible interpretation of these results in the last section.

Besides the coupling between two copies, another kind of perturbation one can add to the
pure system is a field conjugate to the endpoint position x(t) of the polymer. This is useful in
order to study the distribution P (x, t ) defined (5). This field h adds a term - hx (t) to the
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Fig. 1 - a) Average overlap between two copies of the polymer in the same realization of the

potential, coupled through a local potential of strength e, versus E (-- negative corresponds to a
repulsion). Polymers of different lengths are represented by different symbols. The lengths studied are
t = 31 (cross), 63 (diamond), 127 (octogon), 255 (square). The number of samples studied to perform
the average is respectively, for each of the sizes : 1 000, 200, 200, 200. The inverse temperature is

f3 = 7. b) Same data plotted versus the variable et2/3 .

energy of the system. It is like a transverse uniform electric field acting on the charged head
(endpoint) of the polymer. In the mean field theory (on the tree) it is easy to see that there
exists a critical (de Almeida Thouless like) line Tc(h) such that for T «-- Tc(h) the system is in
its glassy phase. The equation for Tc(h) is identical to that found in the REM - simplest spin
glass [7, 8]. In one dimension one does not expect such an effect, but we will see that
interesting behaviour takes place in the limit of small values of the field. As we have seen the
typical lateral extension scales like (x) ’" t JI, with v - 2/3 ; furthermore the previous results
on coupled systems suggest that the free energy of relevant fluctuations scales like

t6j, with say i - 1/3. As a consequence it is natural to scale this field like h = htP in such a way
that htP tJl ’" tW, i.e. p = cd - v ’" - 1/3. Plotting (X) /t2/3as a function of ht1/3, we find a linear
behaviour which is reasonable since it corresponds to a linear response W - aht for small
h. This linear behaviour in h and t is proven in appendix 1 [25]. The surprise comes from the
study of each individual sample. In figure 2 we plot (x) / t2/3 and ( X2&#x3E; _ X&#x3E; 2)/t versus
ht 1/3 for one sample, with /3 = 7 and t = 1 023. We see that the behaviour is much richer.
Inside some intervals of h the extension (x) /t2/3 is nearly constant, and it jumps suddenly to
some other plateau at some critical values of h, which fluctuate from sample to sample. The
susceptibility «x2) - (x)2)/t is basically zero inside the plateaux, and possesses high peaks
at the critical values of h ; when averaging over samples these high peaks dominate the
average leading to «X2) - (x) 2) ’" t. The width of the peaks scale as t - a and the height like
t1 + a in order to ensure this linear behaviour in t for the average susceptibility. As we shall see
it is reasonable to assume, and consistent with our simulations that a - ci - 1 /3.
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Fig. 2 - a) Rescaled average position of the endpoint of the polymer, X&#x3E; /t2/3, , versus a rescaled

transverse electric field, h = ht 1/3 . The data is from one single sample of length t = 1 023, at inverse
temperature 8 = 7. b) Rescaled susceptibility ( X2&#x3E; _ (x) 2) /t, versus the rescaled field, for the same
sample.

This analysis of the response to a field is interesting since it gives information to what
happens in zero field. Concerning the susceptibility X = (X2&#x3E; (X&#x3E; 2@ we expect that for
almost every sample (i.e. with a probability going to one when t 00), Ylt will be zero, but
occasionally (with a probability t- cd), there will exist a sample where h = 0 is a critical value of
h, and therefore X ’" t 1 + cd, , so that the average susceptibility y is linear in t when
t --+ oo. In order to check this, and to compute the typical susceptibility (which must be quite
different from the average one), we have computed numerically the values of (x 2&#x3E; _ (X&#x3E; 2 for
several thousands of samples with sizes ranging from t = 31 to 1 023. Letting aside the tail of
the distribution corresponding to rare samples (on which the statistics in naturally poor), we
have found that the typical susceptibility scales like t2 IL, where 1£ is in the range 0-0.2. In

figure 3 we plot the probability that X Ito.22 be less than c, for various sizes t. For c not too

large this probability is independent of t. Of course when c becomes large the finite size effects
become important. From figure 3 we conjecture that the limit when t --+ o0 of the probability

00

that ( (x 2&#x3E; _ (X&#x3E; 2)/t2 y is a function P (y), with P ( y ) dy = 1. The fact that
0

X is dominated by rare events corresponds to a tail of P at large y, which will behave like
P (y) - y - P, p = (5 - 3 (4 - 3 J.L). A more precise determination of » is difficult

Y - lm

because of large fluctuations in Log (,y). Actually when plotting the distribution of

Log (X ), we find a peak of the distribution which is independent of t, which would indicate
that » - 0. But the tail of the distribution at large values of Log (X ) increases slightly with t,
resulting in the effective growth of exp (Log (X)) like t 0.22 . Much more statistics and larger
sizes will be needed to give an accurate value of », but in any case it is much smaller than 0.5,
which is the important fact in the above discussion.
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Fig. 3 - Probability that the rescaled susceptibility (X2) - (x) 2)/tO.22 be less than a given constant
c, versus c. The data was taken at inverse temperature f3 = 7, in zero field. The sizes are

t = 127, 255, 511, 1 023. The number of samples studied to compute the probability is respectively, for
each size : 8 000, 4 000, 2 000, 1 000.

3. Comparison with the analysis through the replica method.

As is well known, in order to compute the free energy F ( t ) and the averaged probability
density of the endpoint P (x, t), defined in (4), (5), one can use the replica method and the
quantum mechanical representation [6, 19]. Starting from the partition function Z(x, t)
defined in (1) let us introduce :

then we have :

and :

On the other hand, performing explicitly the integration on the random potential in (15), we
find for Z(xl, ..., x n’ t) = Z(xl, - - -, X n, t ) exp (- {3 2 nt (0)/2) a path integral representation
which shows that Z satisfies the following Schrôdinger equation (1) :

(1) Here we use the continuous formulation which is more compact. A precise meaning can be given
to all quantities by going to a discretized version of the model, similar to the one used in (11)-(12). Then
the infinite constant 8 (0) which appears in the definition of Z gets regularized. This constant leads to a
term behaving like - c’/ T in the free energy density.



1838

with the limit condition Î(xl, ..., je n’ t = 0) = n 8 (x,,). Therefore Z is the Green’s function
a = 1

of a system of n particles interacting through an attractive 6 function potential. This suggests
to write

where f/Ja(Xb ..., x n) are eigenstates of the n body Hamiltonian (18), and Ea are the

corresponding energies. For t large (19) should be dominated by the ground state (2), which is
at least for n integer and nonzero the Bethe Ansatz wave function :

This fact has been used by Kardar to show that the fluctuations of free energies from sample
to sample scale as :

which in turn implies through an indirect argument that v = 2/3.
In order to obtain P (x, t ) directly, we need to compute the asymptotic Green’s function at

large times and therefore to sum over low lying states in (19). A natural suggestion would be
to sum over the continuous excitation spectrum corresponding to the centre of mass motion :

The corresponding distribution of endpoint positions, P (x, t), is computed in the appendix 2.
For any non zero n and any positive time, we can compute (see the appendix 2) the typical
drift :

unfortunately the result is :

and cannot be continued to n = 0 in a straightforward way (an attempt of such a continuation
can be found in [23]). Actually the result (24), which is derived exactly from the assumed
Green’s function (22), imposes a relation between the time t and the number n of replicas : for
n small, one needs tn3:&#x3E; 1. The existence of a crossover regime where t --+ 00, n -+ 0, and
tn 3 _ l@ suggests that there should be some relevant excited states of the Hamiltonian (18),
with an excitation energy of order n 3, which will contribute to (19) in the limit of
n - 0. The existence of such states hs been pointed out recently by Parisi [15]. He considered
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a state built of two groups of n /2 particles, where the wave function inside each group is of the
Bethe type (20), while the center of masses of each group are widely separated. For n small
the excitation energy of such a state is indeed of order n 3. This state is also the relevant one
when one uses two copies of the polymer with repulsive interactions. The n /2 replicas of the
first copy build one group and the n /2 replicas of the second copy build the second group. As
the center of masses of the groups need to be widely separated in order to have an eigenstate
of the n-body Hamiltonian, this explains the fact (14) that the overlap between the copies
vanishes in the case of repulsive interaction.

Clearly, to get the correct asymptotic form of the Green’s function, we need to include in
(19) such excited states. So far we have not succeeded in getting an explicit expression for

P(x, t ) from this resummation. On the other hand, Parisi has recently proposed a simple
Ansatz for the Green’s function [15], which takes the following form :

This predicts :

with :

Furthermore, the joint probability for arriving at positions xl, ..., X k is found in this Ansatz
equal to :

Therefore to each sample there should correspond a realization of the random potential

-   j (d4/ dy) dy
0 (x) drawn with the measure e - 26 1 2 f (dO/ dy)dy , and the corresponding probability density of
x for this given sample should be given by formula (27).

Actually one can change variables in (27) : defining x by x = xt2/3 and cÎJ (.î) = 0 ( x) t1/3, one
gets :

1 fA 2and 4 has the same distribution, e - 2 (d4&#x3E;/dy)dy , as the original /J. The distribution (29)
implies that, at large times, Je gets trapped into the minimum of the function Sê/2 + 4 (x),
where $ (Je) is nothing but a random walk in x space. It is amusing to notice (3) that this model
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has been introduced as a toy model for the study of random field problems, and the relations
like M - t 4/3 and (X2) - (x) 2 ’" t can be deduced exactly from the rigorous analysis of this
toy model performed in [20, 21].
We have tried to test Parisi’s Ansatz further by comparing (29) with numerical results. First

of all we argued in the previous section that the typical value of (x2) - (x) 2 is

t2 p" IL "" 0.0-0.2 rather than t. Simulations of (29) favour a scaling of (.xl) - (x) 2 ""

t4/3 - 29 ’ 
with g in the range 0-0.16. (Again there are large fluctuations in the distribution of

t4/3 - 2 F

Log (X ), similar to the case of the polymer problem.) This is compatible with the equality
fi = IL, but the uncertainties on the values of these two exponents are too large for this to be
fully conclusive. We have also computed Z(x, t ) for several hundreds of samples of sizes
between 63 and 2 047. Figure 4a contains a plot of [Log (Z(x, t ) ) - Log (Z(0, t»] It 1/3
versus x/t2/3 = x. According to both Ansâtze (22) and (29) this should behave like
ct.xl. (The c’ comes from the discretization procedure.) This is precisely what is found : for
large times the data points sit on a parabola for 1 Sc 1 «-- 5. (Of course for larger values of
(X the finite size effects are much more important.) Figure 4b contains a plot of

([Log Z(x, t) - Log Z(0, t )]2_ [Log Z(x, t) - Log Z(0, t )’2 / (,8 tl/3i versus x. From

Parisi’s Ansatz (29) this should behave like c’l Sc 1 This behaviour is obtained for small values
of 1 Sc 1 ( 1 Sc 1 -- 2 ), but it saturates for larger values of Ixl. This saturation becomes more
apparent when increasing the size of the system (the data in Fig. 4b correspond to sizes 511
and 1 023 for which the finite size effects in the range 1 Sc 5 become quite small with respect
to the fluctuations).

Therefore the Ansatz (29) seems to be an approximation which may be valid only at
relatively small values of 1 xl. .

Fig. 4 - a) - (LogZ(x, t ) - LogZ(0, t))/({3t1/3) versus x= X/t2/3. Data taken at inverse tempera-
ture {3 = 7, in zero field. From top to bottom, the curves correspond to polymers of lengths
t = 63, 127, 255, 511, 1 023. The number of samples studied range between 200 to 1 000. The full curve
is the best quadratic fit to the experimental data of t = 1 023, given by : 0.0039 + 0.014 x +
0.418 . b) Fluctuations, ([Log Z(x, t) - Log Z(0, 1)]2 - [Log Z(x, t) - Log Z(0, t )]2) /({3[1/3)2 ver-
sus x. 1 000 samples of sizes 511 and 1 023, at /3 = 7, in zero field.
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4. Some conjectures on the physical interprétation of the numerical results.

One of the main results of the previous sections is the instability of the polymer system with
respect to an arbitrarily small repulsion between copies. This indicates the existence of several
pure states in this system. Here we shall not attempt to give a precise mathematical definition
of these pure states, but we shall use this notion in a phenomenological way (4). A state
should correspond to a bunch of locally favoured paths, separated from the other states by
free energy barriers. (The existence of families of local optimal paths has also been

conjectured by Zhang [24], on the basis of an analysis of the fist excited path.) We thus
conjecture that there exist such states ; the state « has a free energy Fa which scales as :

where F is the free energy density which is the same for all states and the state dependent
corrections scale as tw. (Such a picture is known to exist in mean field, with ci = 0.) The
Gibbs measure should then be decomposed into the contributions of the states ; for any
observable 0 :

Let us first show how this can explain the results obtained when coupling two copies. In the
limit of a small coupling, the average overlap between the copies can be written as :

where :

The crossover regime is found when et - tW, i.e. £,..., êtW - 1. Such a crossover was precisely
found in the simulations of section 2, and these gave an exponent J in the range 0.2-0.4. The
assumption that i = 1/3 which we have used in this paper is the simplest one since the sample
to sample fluctuations of the free energy are known to scale with the exponent
w = 1/3 and we are just making the reasonable assumption that w = i (another argument
indicating that J = 2 v - 1 will be given in the next paragraph). However a more precise
direct determination of ci would be welcome. It is worth exploring further how the above
equation (32) can account for the data of figure 1. This equation holds for one given sample.
For ê --+ 0 the sum over states is dominated by the ground state, say a = 0, with

f o = 0 by a proper choice of normalizations. In this limit the overlap q (é) tends towards the
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self-overlap of the state, qoo. When ê is negative (repulsive interaction) and large enough, the
overlap will jump to qo,, where y is the state such that 1 ê 1 (qoo - qo,) - f , is maximal

(assuming that the self overlap of the states are all equal, otherwise the pair of states which
dominates (32) might not contain the lowest state). Therefore when ê decreases we expect for
q(ê) a discontinuous curve, with jumps taking place whenever the gain in free energy from
the two copies of the polymer taking paths which have smaller overlap compensates for the
loss from at least one polymer taking an excited path. Such a discontinuous curve is found
when simulating one sample (although the plateaux are not really constant, which might
signal more subtle effects). But the curve in figure 1 was obtained by averaging over many
samples, and as the values of the f y at least fluctuate from one sample to another, the average
gives back the continuous curve of figure 1 b. The nonzero slope of the curve at

6 - 0- tells that there is a finite probability of having an arbitrarily small gap between the first
excited pure state and the fundamental one. It is difficult to extract more information from

this curve without some further assumption on the overlaps of the states. We shall not expand
here on the various possibilities. Let us just mention a simple possibility, which is the one
which takes place in the mean field theory, and in expansions around the mean field for large
dimensions [12] : if the overlaps can just take two values, with qaa - q and qay = 0,
a :0 y, then the curve q ( é ) of figure 1 b is simply related to the distribution Il(I1I) of the gap
free energy (rescaled difference between the free energy of the first excited state and the free
energy of the lowest lying pure state Af = (FI - F 0) / t¿j) :

As for the results on the susceptibility (Figs. 2, 3), they can also be accounted for if one
supposes that the susceptibility inside each state scales as 12 IL, J.L  1/2 :

For most samples, the Gibbs average is dominated by the lowest pure state a o and therefore
the full Gibbs susceptibility is equal to X a . However occasionally it may happen that a sample
will have two nearly degenerate pure ground states, with Af - t- w. This will be the case for a
fraction of the samples of order t- £0 ; for such a sample the Gibbs susceptibility must be of
order t2 JI "" t4/3 (assuming that the typical transverse fluctuation for each pure state scales as
t’). These rare samples will therefore dominate the average susceptibility, leading to a Gibbs
susceptibility _ t2 JI - w, which gives the correct scaling demonstrated in appendix 1
(,f - t) if 2 v i = 1.

5. Summary and perspectives.

To summarize in a few words, we have found numerically two main results :
- an infinitesimal (but extensive in the thermodynamic sense) local repulsion between two

identical copies of the polymer system yields an instability ;
- coupling a transverse electric field to the endpoint of the polymer, the corresponding

susceptibility scales as t2 , for generic samples, with li - 0.0-0.2. The sample averaged
susceptibility is dominated by rare events and it has been shown to scale as t.

One possible interpretation of these results would be the existence of several pure states,
such that :
- the typical differences between the free energies of the states differ by terms which grow

with the length of the polymer as tW, with i = 1/3 ;
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- within a given state a the transverse extension scales as (X&#x3E; t2l" and the

susceptibility scales as (x2) a - ( (x) a)2 -- t2 p,.
If this interpretation is correct, the situation is as follows : for almost all samples, there is

one state which dominates the Gibbs average. For exceptional samples (a fraction
- t- 1/3 of all the samples), there are two quasi degenerate states, the free energies of which
differ only by terms of order 1. These samples give the dominant contribution to the average
susceptibility. Nevertheless, for all samples there are several states and the resulting phase is
very similar to a spin glass phase. The major difference is the fact that cd ± 0, while in the
mean field theory of spin glasses and of random directed polymers J = 0. But these states
exist, they have the same free energy density and each of them can be obtained and stabilized
through a quench from high temperatures. From this point of view, it seems that the major
effect of having J &#x3E; 0 is the technical fact that the Gibbs average is generically dominated by
one single state.
The remaining open problems are numerous and fascinating. From the analytical point of

view we have seen that replica symmetry breaking (i.e. the breaking of Bose symmetry) is
necessary to describe the above effects. However a full study of the Green’s function of a
system of zero particles interacting through delta function potential in one dimension is

necessary to solve the problem. Another challenge is of course to try to prove or disprove the
above speculations on the physical nature of this phase. The notion of several coexisting pure
states seems to be quite useful at least from a phenomenological point of view. A precise
mathematical definition of the pure states in this context would be quite important. The
extension of the type of analysis carried out here to higher dimensions would also be
welcome. One interesting effect which one could try to check numerically in 2 + 1 and
3 + 1 dimensions is the existence of an instability line of the de Almeida Thouless type when
coupling the endpoint of the polymer to a transverse electric field.
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Appendix 1.

We prove that the average susceptibility is (X2) - (x)2 -- t. Let us start from the partition
function in the presence of a field h, for one sample with potential V :

Using the change of variables y(,r) = x(,r) + 6hr, this can be rewritten as :
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From which one deduces :

where Î (x, T ) = Y (x - 6 hr, T ). As 9 has the same distribution as V, we get after sample
averaging :

The second derivative of this expression with respect to 6 h is :

This proves the result for the continuous model. It would be interesting to use (Al.3) to
compute the typical susceptibility, but we have not succeeded in doing so.

Appendix 2.

We compute the distribution P (x, t ) obtained from the ground state wave function (20),
including the degree of freedom of the center of mass motion. The asymptotic behaviour of
the Green’s function at large times is then approximated by :

(with À == /3 2/2), and we compute :

The average distribution of the end point position, f(x, t), should be obtained eventually
from the n - 0 limit of the previous formula. However because of the problems involved with
this limit we first compute Pn. The normalization constant cn will be obtained from the
condition :

Choosing an ordering of the particles’ positions we get :

where :

Performing the integrations over the variables xt (1 :0 k ) gives :
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where :

In order to compute Sn we first rewrite (with k’ = k - 1 integer) :
. , , 1

From (A2.7) and (A2.8), introducing integral representations of the F functions which remain
at the numerator, we get :

In the integral we change variables from t, u to x, z, where t = xl ( 1 + e’) and 
,

u = t e Z. This gives eventually :

From (A2.6) and (A2.10) we can now compute the final form of Pn. The normalisation
constant is found equal to : cn = r (n) À n - 1/2 1Tn, and :

Clearly the limiting distribution for n --+ 0 is ill-defïned. Actually we can compute the
moments through :

This gives for instance :

From (A2.13), using the fact that ep’(n ) - n - 0 ’r2/6 - Iln2, we find that the distribution
makes sense only for tn3 larger than one (in the limits t --&#x3E; m, n --+ 0).



1846

References

[1] KARDAR M. and ZHANG Y. C., Phys. Rev. Lett. 58 (1987) 2087.
[2] HUSE D. A. and HENLEY C. L., Phys. Rev. Lett. 54 (1985) 2708.
[3] DERRIDA B. and SPOHN H., J. Stat. Phys. 51 (1988) 817.
[4] KARDAR M., PARISI G. and ZHANG Y. C., Phys. Rev. Lett. 56 (1986) 889.
[5] HUSE D. A., HENLEY C. L. and FISHER D. S., Phys. Rev. Lett. 55 (1985) 2924.
[6] KARDAR M., Nucl. Phys. B 290 [FS 20] (1987) 582, and references therein.
[7] DERRIDA B., Phys. Rev. B 24 (1981) 2613.
[8] GROSS D. J. and MÉZARD M., Nucl. Phys. B 240 (1984) 431.
[9] For a review, see MÉZARD M., PARISI G. and VIRASORO M. A., Spin glass theory and beyond

(World Scientific, Singapore) 1987.
[10] IMBRIE J. Z. and SPENCER T., J. Stat. Phys. 52 (1988) 609 ;

COOK J. and DERRIDA B., J. Stat. Phys. 57 (1989) 89.
[11] DERRIDA B. and GOLINELLI O., Saclay preprint SPhT/89-170, to appear in Phys. Rev. A.
[12] COOK J. and DERRIDA B., Europhys. Lett. 10 (1989) 195.
[13] PARISI G., Rome preprint, to appear in the Rendiconti dell’Accademia dei Lincei.
[14] KARDAR M., Phys. Rev. Lett. 55 (1989) 2923.
[15] PARISI G., Rome University, Preprint ROMF2-89/24.
[16] PARISI G., Phys. Rev. Lett. 50 (1983) 1946. 
[17] HUSE D. A. and FISHER D. S., J. Phys. A 20 (1987) L997.
[18] PARISI G. and VIRASORO M. A., J. Phys. France 50 (1989) 3317.
[19] For a recent review, see M. Kardar’s contribution to the 1989 meeting on « New trends in

Magnetism », Recife.
[20] SCHULZ U., VILLAIN J., BRÉZIN E. and ORLAND H., J. Stat. Phys. 51 (1988) 1.

[21] VILLAIN J., SEMERIA B., LANON F. and BILLARD L., J. Phys. C 16 (1983) 2588.
[22] CARACCIOLO S., PARISI G., PATARNELLO S. and SOURLAS N., to appear in Europhys. Lett.

(1990).
[23] BOUCHAUD J. P. and ORLAND H., in preparation. 
[24] ZHANG Y. C., Phys. Rev. Lett. 59 (1987) 2125.

[25] This result has also been proven by D. S. Fisher and D. A. Huse (in preparation).


