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Résumé. 2014 Nous montrons que la solution symétrique dans les répliques du problème d’appariement
(bipartite ou pas) dans lequel les distances sont des variables aléatoires indépendantes est stable. Nous

calculons les fluctuations et obtenons les corrections d’ordre 1/N pour la longueur de l’appariement optimal
dans un échantillon générique.

Abstract. 2014 We show that the replica symmetric solution of the matching problem (bipartite or not) with
independent random distances is stable. We compute the fluctuations and get the O (1/N) corrections to the
length of the optimal matching in a generic sample.
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1. Introduction.

It has been recognized recently that the analytic
methods developed in the study of the mean field
theory of spin glasses [1] can be applied to some
problems with finite range interactions : optimization
problems [2] such as the random link matching [3, 4]
and travelling salesman problem [5, 10, 11] or the
bipartitioning of random graphs with finite

valence [7], or more conventional statistical physics
problems such as randomly diluted magnets [6-8].

Tentative solutions to these problems have been
proposed within the assumption of replica symme-
try [3, 5-7]. Even within this simple hypothesis these
problems require the introduction of an infinite set
of order parameters. The reason for this is easily
understood from the cavity method [1, 9]. Because
of the finite range of the interactions, the distribution
of local fields is no longer a Gaussian (as is the case
when the fields due to an infinity of neighbours add
up), but a complicated function, the description of
which requires an infinity of parameters (e.g. all the
moments of the distribution).

In this type of situation the only attempt to study
the stability of the replica symmetric solution, so far,
has been performed in the case of diluted spin

glasses, in an expansion near the paramagnetic-spin
glass transition temperature, where only the first two
order parameters are relevant [8].

In this note we study the stability of the replica
symmetric solution in the matching problem
(whether bipartite or not) in which the distances are
independent random variables [3]. Specializing for
definiteness to the case in which these variables are

uniformly distributed on the interval [0, 1] (this will
be called hereafter the case of « flat distances »), we
demonstrate that the replica symmetric solution is
stable in both cases (matching and assignment -
also called bipartite matching), at any temperature,
and therefore taking all the order parameters into
account.

The stability can be studied either with the replica
method or with the cavity method. We shall use the
former and provide the generalization of the De
Almeida-Thouless computation [12] to finite range
problems. We have chosen this presentation because
the replica method enables one to compute the
finite N corrections to the free energy in a very
efficient and compact way.

In the next section we present the formalism for
studying the stability in the replica method. The
presentation is done on the example of the matching.
In the case of flat independent distances we prove
the stability at any temperature and we compute the
0(11N) corrections to the ground state energy
(= length of the optimal matching).
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In section 3 we perform the stability analysis for
the problem of assignment (bipartite matching). The
motivation for this study is that there exist extremely
powerful algorithms for this problem [13, 14], so

that we obtained good numerical data [4] to which
our predictions can be confronted. The study of
stability is more subtle than in the matching because
of the existence of a continuous symmetry (in replica
space) which induces a number of Goldstone modes.
Taking care of them we show the stability and
compute the 0(1/N) corrections to the optimal
assignment in the case of flat distances. The

result (52) fits the numerical data.

Section 4 contains a summary and some remarks.

2. The matching problem.

In the matching problem one is given 2 N points
i = 1,..., 2 N and the set of distances di, = dji - We
suppose that the d’s are identically distributed inde-
pendent random variables and for definiteness we
shall often specialize to the case of flat distances
where the d’s are uniformly distributed on the

interval [0, 1]. (This is the r = 0 case of [3] ; any
other reasonable distribution can be studied as

well [3].) A configuration C is a set of N links which
connect pairwise all the points. Its energy E(C) is
the total length of the links. One introduces a

partition function :

where the scaling of the inverse temperature j3 with
N has been chosen in order to ensure the existence

of a good thermodynamic limit at fixed j3 [10].
In [3] we used the replica method to compute the

n’th power of the partition function. There appears,
as natural order parameters, a set of 2n - 1 variables

6a a2 * * * ap 
where 1 -- at az ’-- ... -- ap n and 1 --

p = n. In order to lighten the notations we shall
sometimes use a single index a = 1, ..., 2 n _ 1 to
denote the set of numbers p ; at, a2, ..., ap. The

corresponding value of p will be denoted p (a ). The
result of [3] is :

where :

and is a function of the temperature which
depends on the distribution of couplings [3, 10]. For
flat distances gp = 1/ (pf3 ). The last term in (2) was
omitted in [3] since it gives an 0 (1/ N) correction to
the free energy. The L ’ 

1 
means a sum over p, q

" y

from 1 to nand al -- ... - ap, bl  ’.’ - bq, such
that the a’s and the b’s are all different from each
other. 6a u y is the corresponding variable

The leading term in (2) is obtained by the saddle
point method. A solution Q’-P- for the saddle point
equations :

was given in [3] within the hypothesis of replica
symmetry :

independently of the values of ai ... ap.
In order to study the stability we introduce the

fluctuations of the Q’s around their saddle point
values :

and expand the action S[Q] in powers of Q up to
second order. The replica symmetric saddle

point (5) will be stable if and only if the quadratic
form in the Q has only nonnegative eigenvalues in
the n - 0 limit [12]. if this is the case one can rewrite
(2) as :

where FS’P’ is the saddle point contribution to the
free energy, already computed in [3], AF’ 1 is the

0 (1/N ) contribution coming from the last term in
(2) : 1

and AF 2 is the contribution from the Gaussian

fluctuations around the saddle point :
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Knowing the saddle point solution Q’-P- [3], the

evaluation of OF 1 is an exercice of combinatorics
and computation of integrals which we sketch in the
appendix. The result is :

In order to compute the fluctuations (9) we follow
the strategy of [12] and diagonalize the quadratic
form inside subspaces of increasing size. We must
find the 2n - 1 eigenvectors 0. and eigenvalues A
which satisfy :

(It turns out that the last term in (9) always gives a
zero contribution when n --+ 0, as is seen by inspec-
tion in each of the families of eigenmodes studied
below.)
We begin with the longitudinal modes :

satisfy the set of equations:

where the r functions cancel the terms where p or
p + q are larger than n. Taking the n - 0 limit in

(13), we find an infinite set of eigenvalues/eigenvec-
tors which are those of the infinite dimensional
matrix M(l), the first element of an infinite family of
matrices M(k) which will be useful in the following,
defined as :

(In order to obtain M(I) from (13), we have shifted p
and b 1 and multiplied each matrix element by
B/ gq , 1 / gp 11, which does not change the spectrum).
We will show hereafter that in general the eigen-
values in the k’-th family will be those of the matrix
M (k).

After the longitudinal modes we introduce a

family of modes in which one replica is distinguished,
let us say replica 1 (see [12]). Thus :

Orthogonalization of this vector with the longitudinal
eigenvector gives :

Therefore in the limit n - 0 we have dP = ep and the
spectrum is the same as in the previous case. On the
whole we have found so far that in the n -+ 0 limit all
the eigenvalues of M(l) belong to the spectrum of
fluctuations, each with a degeneracy equal to n (the
number of ways one can choose the distinguished
replica).

Let us turn to the second family of transverse
modes, which has two distinguished replicas, say 1
and 2. They have Qa = 0 and, for p &#x3E; 2 :

Orthogonalization with respect to the previous eigen-
vectors gives in the n -+ 0 the limit :

Using (11), (17) and (18) one finds, after shifting the
indices p and q by two, that the eigenvalues of this
second family are nothing but those of the matrix
M(2). The degeneracy of this second family is [12] :

We shall not write down in detail the generaliza-

tion to the k’-th transverse family which has k
distinguished replicas. Let us just mention the form
of the eigenvectors :

and the generalization of (18) obtained from or-
thogonalization with respect to previous families :
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Plugging this into (11), one finds that the spectrum
in the k’-th family is nothing but that of M (k)- Its
degeneracy is :

Stability of the replica symmetric solution is

equivalent to having all the eigenvalues of all the
matrices M(k) (k = 1, ...,(0) nonnegative, and it this
solution is stable, the contribution of the fluctuations
to the 0 (1/N ) correction is :

At this stage we have taken care of the specific
problems of diagonalizing 0 x 0 matrices, and we
have reduced the problem to the evaluation of the
spectra of all the matrices M(k) defined in (14),
k = 1, ...,oo - an infinite set of infinite dimensional
matrices. We shall now use the special properties of
the replica symmetric solution of the matching
problem [3]. As was noticed in [3], the Q’-P- by
themselves are not very good order parameters (for
the flat distances case they are not even well defined
at low temperatures), and it is more convenient to
introduce the order parameter function [3] :

Using the saddle point equations (4) which read :

the matrix M(k) can be written as :

Now it is natural to change bases : if /p is an

eigenvector of M(k) with eigenvalue A, the function :

is an eigenvalue of the operator M(k) with the same

eigenvalue, and reciprocally. M(k) is defined as :

M(k) is now a well defined operator : G is the saddle
point order parameter function which can be com-
puted at any temperature and for any distribution of
the distances [3]. We have diagonalized M(k) in the
case of flat distances, following a simple procedure :
firstly we restrict the interval of variation of x and y
from the whole plane to a square such that

A (k) (X, y ) is very small outside the square. Then we
discretize A (k) on P equidistant points in each
direction x and y. We are left with the diagonaliza-
tion of a P x P matrix. It turns out that the relevant

properties of the spectrum of M(k) are reasonably
independent of the cut-offs and of the number of
points P (for P - 30 to 90), at least for temperatures
T &#x3E; 0.3. When one augments P, the new eigenvalues
accumulate around A = 1, as they should since

A (k) is a regular operator. We have computed the
spectra of Ñf.(k) for k between 1 and 12, and found all
eigenvalues were nonnegative. The value of the
minimal eigenvalue for each k and T between 0 and
0.7, is plotted in figure 1.
The values of det (Ñf.(k» are also very stable with

respect to the discretization procedure of Ñf.(k). They
share with the minimal eigenvalues a property which
can be already seen in figure 1 : For k even and k
odd separately (k::-- 2), det A (k) is a function of

T Log k at low enough temperatures (T -- 0.7 ). This
is seen on figure 2 where the crosses are the values of
det k(k) , as functions of T Log k for k , 2 : they fall
onto universal curves, f + (T Log k ) for k even and
f- (T Log k ) for k odd. Using (21), this property
will allow us to compute the value OF (2) at zero
temperature (,B --i. oo ). In this special limit the sums
over k in (22) (performed separately on k even and k
odd) can be converted into an integral, and we find
(leaving aside the term k = 1 which does not contri-
bute in the limit T..... 0) :
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Fig. 1. 
- Plot of the minimal eigenvalue of the the matrix

Mk" ) (stability matrix in the k-th family) as a function of
temperature for k = 1 to 12. k odd : figure la ; k even :
figure 1b.

In order to compute these integrals, we have fitted
the universal functions f+ and f- by smooth func-
tions ; the curves in figure 2 are plots of the func-
tions :

(there are some rather large errors bars for the fit of
f- , especially at small values of u, but these have
small effects on the value of AFb. The result for
åF 2 is :

where the error is a subjective estimate of the

Fig. 2. - Values of the determinants det M(k, ’) defined in
(27) and (39) plotted versus T Log k, for k = 2 to 12.

Figure 2a contains det M (k, -) k even (denoted by +) and
det M (k, +) k odd (denoted by x). Figure 2b contains
det M (k, +) k even (+ ), det M(k, - ) k odd (x ). The lines
are the fits (29).

uncertainties of the fit so that our final result for the

length of the optimal matching is :

It would be interesting to confront this result with
numerical simulations. We have done such a con-
frontation in another case, the assignment problem.

3. The assignment problem.

The problem of assignment (bipartite matching) is of
interest since there exist particularly efficient al-

gorithms to solve it. In this case one is given two
sets - A and B - of N points and one must find the
shortest set of N links which connect, pairwise, the
points of A with the points of B. Taking, as before,
the distances between the points in A and in B as
independent random variables, and applying the
same techniques as for the matching [3], we get,
instead of (2) :
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where :

where the conventions are the same as in (2), and z is
the one-site partition function defined in (3). As
before the leading term can be evaluated by a saddle
point method. There exists a replica symmetric
saddle point at :

and the XS’p’ satisfy saddle point equations which are
very similar to the QS’p’ of the matching. In fact one
gets, for flat distances :

so that the ground state energy of the bipartite
matching is twice that of the matching [3].
As before, the 0(1/N ) corrections to the free

energy contain two terms. The AF 1 coming from the
last term in (32) is computed exactly as for the

matching, and one gets :

Let us now compute the fluctuation term åP2.
Expanding as before the action to quadratic order
around the saddle point, we find :

with :

Comparing with (9) (in (37) we have dropped the
irrelevant disconnected contribution - last term of

(9)), and using the relation (5) between the saddle
point values of the order parameter in the matching
and the assignment, we see that we are left with

nearly the same stability condition as before : the
eigenvalues of M (k, E) defined by :

(where A (k) is defined in (25)) must be nonnegative
for any E = ± 1 and any k = 1, 2, ..., oo. (The case

E = + 1 is the case we studied in Sect. 2.) If this
condition is satisfied :

However we run into a problem because M(l, -1)
has a zero mode, corresponding to the eigenfunction

. Being in the family k = 1, it

has a degeneracy equal to n. This is in fact normal
because the action (33) possesses a symmetry under
rotations in the X, Y plane, in each replica indepen-
dently. Precisely the action is left invariant under the
transformations (X, Y) - (X’, Y’ ), where :

Thus the saddle point (34) is only one point of an n
dimensional orbit of saddle points parameterized
by :

where the X’-P- is that of (34)-(35). The n zero modes
that we have found are the Goldstone modes of this
invariance. In order to compute the fluctuations

correctly, one must compute separately the volume
of the orbit (42) and leave aside the zero modes
corresponding to the motion along the orbit.
We begin by computing the fluctuations, without

the zero mode of M(1, -1). Using the same method of
discretization of the operators that we used for the

matching, we have found that the previous scaling
relation also holds with E 1 in the following
sense. For any k , 2 :

This scaling is shown in figure 2. From (37), (40),
(43) we have for T --+ 0 :
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Instead of having as in the matching (see (22)-(27)) a
sum involving the even terms with the function

f + and the odd terms with f- , all the terms

contribute to both f + and f- . Because of the

alternating signs in (44), the resulting contribution
vanishes in the limit 8 --+ oo :

Finally, in order to complete the computation of
the 0(11N) corrections in this bipartite case, we
still must compute the volume of the hypersurface of
saddle points. This orbit (42) is an n dimensional

hypersurface parameterized by the angles 01, ..., On
in a space of dimension 2 (2" 2013 1). In order to
obtain the volume element dr/dO, ... d e n we intro-
duce the metric :

and dT /d 81... d 0,, is the square root of the deter-
minant of g. It turns out that g has a simple
structure ; all diagonal elements are equal to

go and all non diagonal elements are equal to

gl, with :

The det g is then easily evaluated :

This will give a new contribution AF 3 to the free
energy at order 1 IN :

Using the values (35) of the saddle point numbers
XPS*P- we find for T -+ 0 and for flat distances :

so that:

We have thus found that the replica symmetric
solution to the bipartite matching problem with
independent random distances uniformly distributed

on [0, 1] is stable. Collecting the contributions (36),
(45) and (51), we find that the length of the optimal
configuration, including the first corrections to

0(1/N), is :

In figure 3 we reproduce a plot from [14] giving
the average length of the optimal assignment for
samples with 2 N between 100 and 800. The straight
line is the prediction (52). If fits the data.

Fig. 3. - Numerical results from [14] of the length of the
optimal assignment for samples with a number of points
2 N between 100 and 800 ; the number of samples studied
is roughly 6 000 (2 N = 100), 5 000 (2 N = 150), 5 000
(2 N = 200), 500 (2 N = 800). The straight line is the

numerical prediction (52).

4. Remarks.

We have shown in this paper that the spectrum of
the fluctuations around the replica symmetric solu-
tions to the matching and assignment problems
contains only nonnegative eigenvalues at any tem-
perature. Therefore these solutions are locally
stable. Of course strictly speaking this is not enough
to be able to assert that these are the exact solutions
to the problem : we have found one saddle point
which is stable but it is possible that there will exist
another saddle point. This would imply a first order
phase transition which seems rather unlikely. Also
considering the success of the analytic prediction (52)
it is quite probable that we have found the exact
solutions to these two matching problems.
The formalism which we have developed for the

analysis of the fluctuations allows for the full study
of the stability in systems with a finite connectivity,
and therefore with an infinity of order parameters at
the replica symmetric level, at any temperature. One
is no longer constrained to treat the fluctuations
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around the order parameters of highest order as
perturbations, and finally get back to the

de Almeida-Thouless formalism. We hope that this
will be useful in the future in order to determine the

correct solutions to dilute spin glasses, partitioning
of graphs with a finite valence, or travelling salesman
problem.

Appendix.

We compute the first piece of the 0 (1 IN) correc-
tions to the free energy, AFB which is from (8) :

The saddle point order parameter is [3] :

and for the case of flat distances one has :

So that :

We write k = p + q and perform the sums over k
and p :

By the definition of the order parameter func-
tion (23), this reads :

This formula enables one to compute numerically
the change AF’ at any temperature, using the
solution [3] for G (l ). In the zero temperature limit
one knows that G (I) is a function 6 (1 /,B ) where :

Changing variables in (A.7) as x = e- f3u one gets :

which can be written as :

The evaluation of the integral in (A.10) is not

completely trivial. One method consists in noticing
that :

where :

which is well defined for v - 2. Now for v negative
one can use :

, , I

Taking the second derivative of this expression with
respect to n at n = 0, we get :

which is the announced result (10).
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