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Résumé. 2014 Nous proposons et analysons une solution symétrique dans les répliques des problèmes de voyageurs
de commerce à liens indépendants. Elle fournit des estimations analytiques raisonnables pour les quantités thermo-
dynamiques comme la longueur du chemin le plus court.

Abstract. 2014 We propose and analyse a replica symmetric solution for random link travelling salesman problems.
This gives reasonable analytical estimates for thermodynamic quantities such as the length of the shortest path.
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1. Introduction.

In trying to understand the theory of spin glasses,
a number of methods and concepts have been deve-
loped which seem to have possible applications
beyond statistical mechanics, particularly in the field
of combinatorial optimization.

It was soon realized [1] and demonstrated [2] that
the determination of the ground state of an infinite
range spin glass is an NP complete problem. As this
is probably the NP complete problem which has been
most studied by physicists, let us briefly recall the
kind of results that can be obtained in this case. The
infinite range Ising spin glass is a set of N spins
as = ± 1 interacting through random couplings Jig
which are independent Gaussian random variables
with Jij = 0 and J3 = 1 /N. The J’s are quenched
variables given once for all (a given sample, Le. a set
of J’s, is an instance of the problem), and the problem
consists in finding the ground state configuration of
the spins, that is the one which minimizes the Hamil-
tonian

NP completeness means that there is no known

algorithm which can solve every instance of this

problem in a time growing less than a power of N,
and it is unlikely that such an algorithm can be

found [3]. A good heuristic (an algorithm which
provides an approximate solution) is the simulated

annealing method which consists in sampling the
configurations with a Boltzmann-Gibbs probability
e- MIT with the Monte Carlo method, and smoothly
decreasing the temperature [4]. This is a general and
powerful approach for many complex optimization
problems [4-7].
On the other hand some kind of analytical infor-

mation is also available. The ground state energy
density E/N (minimum of HIN) converges to a

certain value Eo for large N, independently of the
sample (1).
The replica method allows one to prove that there

is a phase transition in this system at the critical
temperature T, = 1. Below T, there is a breaking
of ergodicity and one needs replica symmetry breaking.
A scheme for such a breaking was proposed in [8],
which allows us to compute Eo precisely

This kind of prediction is essentially probabilistic
(for large N the value of E/N for a given sample is a
Gaussian random variable of mean Eo and width

but it can be of direct interest,

for instance for testing heuristics.
Although other relevant information can be obtain-

ed from the replica solution of this model (e.g the

(1) This property of cc self averageness » is obtained with
the replica method and well established numerically, but has
not yet been demonstrated rigorously.
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ultrametric topology of the space of equilibrium states
below Tc [9] and the correlations of the spin values
in these states [10]), no algorithm has been found yet
which can use these informations in order to speed
the search for the ground state. Naturally the simulated
annealing algorithm is the one which takes the

greatest advantage of the analytical results of thermo-
dynamics : once one knows the critical temperature T,
(or a freezing temperature in the case where there is no
sharp phase transition), one must perform a very slow
annealing around T,,, while the regions far above T c
(where the system thermalizes rapidly) or far below T,
(where the system is frozen) can be swept more
rapidly.

In this paper we want to show how the replica
method can be used generally to get the same kind of
information as described above on other NP complete
problems. We have chosen to apply it to the travelling
salesman problem mainly for aesthetic reasons (it is
among the easiest NP complete problems to state, and
probably the most studied), and also because some
numerical data were previously available. It is also
a problem rather far from the spin-glass one. This will
exemplify one power of the replica method : the fact
that no a priori knowledge of the nature of the order
and of the order parameter is required

This method has already been used to predict the
ground state energy in the matching problem [ 11 ]
(a polynomial problem) and in the bipartitioning of
infinitely connected random graphs which was shown
to be equivalent to the S.K. [12].

In section 2 we describe the problem and its sta-
tistical mechanics representation.

In section 3 we propose a replica symmetric solution
and analyse it. It is the most technical part of this
paper and can be skipped by the reader who does not
appreciate the beauty of replica computations.
The results are presented and discussed in section 4.

2. Statistical mechanics of the travelling salesman
problem

The travelling salesman problem (TSP) is the following.
Given N points and the distances dij between any two
of them, find the shortest tour, i.e. closed connected

path, that goes through all the points.
A popular family of TSP’s is the one where dip’s

are Euclidean distances between points distributed
randomly in a square. The resulting correlations
between the distances allow for very powerful heuristics
(for instance a combination of simulated annealing
and « divide and conqueer » strategies [4-6]), but

they are difficult to take into account in the replica
method. 

,

In the more general case the dij represent compli-
cated costs which do not possess Euclidean correla-
tions. We shall study a family in which good numerical
results are far more difficult to achieve than in the
Euclidean case, the one where dij’s are independent

random variables with the same distribution p(d)
[7-13] (we keep to the symmetric case dij = dji). In
this case the low temperature properties, and parti-
cularly the length of the shortest tour, depend only
on the behaviour of p(d) at small d If :

the nearest neighbour of any point i is at a distance
- 

1

d-N r + 1 and one can show [ 13] that the length
_ 

1

of the shortest tour is of order N x N r+ 1. A tricky
case is r = 0 in which the best known upper bound
on the shortest tour is of the order of Log N. This
case has also been extensively studied numerically
by Kirkpatrick and Toulouse [7], and for these reasons
our numerical results in the next sections will be given
in this case. We predict a finite length of the shortest
path, and not a Log N growth.

In order to extract from the tours those

which contribute, it was shown in [13] that the parti-
tion function which is naturally introduced in the
statistical mechanics description of optimization pro-
blems must be of the form :

where P is an inverse « temperature ». The energy
density times the

average length of the tours at the temperature T =1 /B.
The whole difficulty of the TSP lies in the fact that

the sum in (2.2) is over tours, i.e. closed connected

paths. This constraint of connectivity is highly non-
local and difficult to implement with local variables.
We use a procedure that has been invented in the
theory of polymers [14] and introduce on each site i
an m-component spin Si of fixed length Sf = m.
As was shown by Orland [ 15], one is then led to study
a generalized partition function :

which reduces to ZTSP in the limit m -+ 0, y -+ oo [15J :

as can be shown using the special simplifications of
integrals over s in the limit m -+ 0, summarized by
the formula :
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As we explained in the introduction, extensive

thermodynamic quantities such as the free energy

F = - 1 Log Zysp are self averaging, which means

that F/N goes for N --* oo towards a limit which is
sample independent. Hence we shall try to compute

the average Log Zpsp, using the replica method which
consists in computing ZnTSP and using :

From (2.4) one must compute Z" which is equal to :

where we have introduced, on each site 4 n replicas of the original spin variable : Sa, a = 1, ..., n.
Because of the statistical independence of the di?s and of the introduction of replicas, the averages over

each dij decouple in (2.7) and using : 
’

where :

one finds :

where the a’s, going from one to n, are replica indices while the a’s, going from one to m, characterize the various
spin components. A crucial remark is that in (2. 0) the terms where at least two replica indices are equal lead
to vanishing contributions in the limit of the TSP (2.4) (which must be taken before the n -+ 0 limit) as is shown
in appendix I. A Gaussian transformation decouples the various sites in (2 .10), leading to :

where z is the one-site partition function :

In principle, formulae (2.11) and (2.12) give the free energy of the TSP in the large N limit through a saddle
point evaluation of the integral in (2.11). However it is well known from the theory of spin glasses that this
saddle point is not easy to find in the limit n -+ o. Furthermore there are two other complications here : the
appearance of all the order parameters Qa, Qab’ ..., Q I.... (similar to the case of the matching [11]), and the presence
of a polymeric index a going from one to m, where m -+ 0. We shall propose and analyse a solution of these
saddle point equations in the next section.

Before going to this analysis, let us explain how other quantities, besides the thermodynamic functions,
can be deduced from the saddle point values of the Q’s.

An interesting information is the average distribution P(q) of overlaps between the relevant tours at a given
temperature. We define the overlap qt,t, between two tours t and t’ as their number of common bonds, divided
by N [7]. The characteristic function g(y) of P(q) is defined as :
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In order to compute g(y) within the present field - theoretical approach, we follow the same method as in spin
glasses [ 16J and introduce two copies of a given instance - two travelling salesmen who must visit the same set
of cities. This can be done by using two copies Si and Si of the m component spins, with some suitable link auxi-
liary variables which count their number of common links. The denominator Zip in (2.13) can be obtained with
the replica method by introducing n - 2 independent other replicas of the system : they contribute a factor
Znp 2 which gives the correct result for n -+ 0. This whole computation is described in some detail in Appendix II.
The final result for P(q) is :

where the Qal".ap takes its saddle point value I his result is very similar to that already found in the matching
problem, the only difference being the presence of vector spin indices.

Here also, one can define generalized overlaps between k &#x3E; 2 tours as 1 /N times the number of bonds
common to all of them. Their distribution p(k)(q) is then :

where the is the sum over all choices of the indices ak+ 1, ..., ap, each of them being distinct from
f

all the others and from the ai, ..., ak.

Finally let us also describe the computation of the distribution of lengths of the links. This strictly follows
the computation of the matching [11], and we include it here for completeness. The important links are those of

- 1

length - N " 1, and the distribution P(L) is defined as :

where 2: denotes the sum over all the N links (4 j) which belong to the tour t. In order to compute the mth
(i,j)et t

moment M," of P(L) we introduce a modified TSP partition function defined as :

so that :

The 2,,(a) can be computed from a generalized function similar to Z in (2.3), with a simple modification of the
--- 

-

weight of each link, from

The corresponding one-link integral in (2.8) is changed into : 
’

So the introduction of the extra weighting proportional to a can be simply absorbed into a change of gp in
(2 11) into
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From (2 .18) and (2. 20), we get :

from which one obtains the distribution of lengths P(L) :

3. The solution within a replica symmetric ansatz

As the full set of saddle point equations is complicated, we have made some hypotheses, compatible with these
equations, on the type of saddle point we look for.

As for the replica indices we make the assumption of replica symmetry :

independently of the values of the a’s.
The spin component indices a must be treated differently since the symmetry in this space is a rotational

symmetry instead of the permutation symmetry of the replicas. The problem is more similar to that of vector spin
glasses, but in the limit where the dimensionality m of the spin goes to zero. We thus make the simple hypothesis
of a spontaneous breaking of the rotational symmetry (for large values of y) with :

where u is a given vector which we normalize to u2 = 1. (3.1) and (3.2) are two strong hypotheses. We shall
postpone their discussion to the next section and first compute the free energy of the TSP within this ansatz.

First of all let us notice that the ne term necessary to insure the convergence of (2 .11 ) in the TSP limit
appears in Z" from the integrals over the Q’s. Because of the spontaneous breakdown of the rotational symmetry
there is a Goldstone mode associated with arbitrary independent rotations in each replica :

where 3li, ..., 1. are rotation matrices in the m dimensional space of the vectors Sa. As the surface of an m-
dimensional unit sphere vanishes linearly with m for m - 0, the integrals over Q’s in (2 .11) are proportional
to m" for small m.. ,

One must now compute the one-site partition function :

where the £’ means that all the indices must be different from each other. In the TSP limit (2.4) we must pick
up the term of order y" in z and take its limits m -+ 0 and then n, -+ 0. In Appendix III we show that the result
is (F2) :

From (2.11) and (3. 5) we have the free energy of the TSP :

(’) Dz is a Gaussian integration measure and He are Hermite polynomials. These quantities are defined precisely in
the appendix
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where the Q’s satisfy the saddle point equations :

One can introduce a generating function

equation for g :

and from (3 . 7) one gets the following integral

This equation is rather similar to that found in the
matching problem [II], apart from the complications
due to Hermite polynomials and imaginary terms.
Unfortunately the behaviour of the Kernel :

for large values of the arguments is more complex and
we have not been able to find out the correct asympto-
tic behaviours of g.

In this situation it was impossible to solve the inte-
gral equation (3. 8) by a simple iterative method : we
have used a different method to compute zn, which
consisted in a high-temperature expansion of the order
parameters.
We shall present the formalism needed to build

up this expansion in the general case where gp =
(pB)-(r+1), and we shall restrict our numerical com-
putation to the case, r = 0. We note :

In (3.7) we rescale À. -+ A and introduce the va-’l T2Qi
riables :

which satisfy the following equations :

The energy density is expressed in terms of these
variables as :

Clearly in the high temperature lhnit fl « 1 the
function A(z, A) can be approximated by 1, and one
gets :

In order to compute the high temperature expan-
sion of 2 PE up to the order bN, one expands each
Xi ( 1  i  N) up to the order bN+l-i. This can be
systematically done from (3.12 to 3.14) by first

expanding the function A(z, A) to order bN, then per-
forming the integrals (3.12, 3.13) to establish the set
of (N + 1) equations between the X¡’s, and finally
solving these equations iteratively.
We have carried out this expansion numerically

in the cases = 0 up to the order N = 20. The coeffi-

cients ak of the series

are given in the first column of the table.
Although the ak are rational numbers we have

represented them on the computer as floating point
numbers. In the actual computation we have done,
quadruple precision ( ~ 30 significant digit) has been
used ; from various checks we know that the error due
to rounding increases exponentially with k and only
the first 10 digits of a19 are correct. This accuracy is far
enough for our aims; the whole computation takes a
few minutes of Vax 8600. From the expansion of the
Q’s one can compute other interesting quantities but
let us first show in the case of energy how one can use
this high temperature expansion to obtain the low
temperature properties of the system. It is convenient
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to perform the following manipulations. We first put
aside the first two terms and write :

We then rescale p by a factor 51/3 and Borel transform
this series, introducing :

So that :

a 5k/3
The coefficients ak 5k/3 = bk are given in the second

column of the table. The alternance of three plus signs
with three minus signs indicates the presence of

complex singularities in u in the three directions

( - 1)1/3 . This suggests to change variables from u
to x, where

By trial and error, we have found that - 1 is a goodo
choice in the sense that the series expansion of the
function

converges rather well inside the unit circle. The coeffi-
cients ck are given in the third column of the table.
The ground state energy (length of the shortest tour)

is :

which can be evaluated directly from (3.23). However
the successive approximants to f (1) obtained by adding
new terms to its series expansion still have some
oscillations. A better method is to compute from
(3.19)-(3.21) the function E(P) at finite temperature.
It turns out the the series is very convergent for P  2
(the relative fluctuations in the values of E(fJ) obtained
from successive orders from 10 to 20 are less than 1 %),
and the value of temperature T = 0.5 is below the

freezing region, so that E(T) can be interpolated safely
to T = 0.

4. Results and discussion

In this section we present the results obtained within
the replica symmetric solution described above. As
has been explained in section 3, the high temperature
expansion allows for a very precise computation of the

Fig. 1. - Average length L as a function of the temperature
T, for r = 0. Note that, from (2. 2), T is 1 IN times the « usual »
temperature. In the upper left comer (with the upper left
scale), the entropy S divided by T, as a function of T. The
error bars indicate the fluctuations in the values of S/T
obtained from successive orders in the high temperature
expansion, between the 10th and the 20th order. These
fluctuations are negligible (less than 1 %) in L(T) for T &#x3E; 0.5.

function E(T) (average length of the tours found at a
given temperature) for T &#x3E; 0.5. The result is plotted
in figure 1. We have also computed in the same regime
the entropy

where E is the function introduced in (3 .19).

It turns out that S(T)/T is nearly constant in the low
temperature range, with a value of the order of
0.33 ± 05 (see Fig. 1), the estimate of the error being
quite subjective.
This suggests that the specific heat

grows linearly at low temperature and so the energy
should start quadratically :

This allows to interpolate the curve E(T) down to
T = 0. The ground state energy is :

where the estimation of the error is again subjective.
When the temperature tends to zero the entropy

converges to a value near to 0 (e.g. 0 ± 0.03), but it
is of course impossible to state whether S(0) is exactly
zero or not. 

We have also computed the distribution of overlap
between the tours from formula (2.14). Within the
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Table I. - Results for r = 0. ak is the coefficients of fJk-t in the high temperature expansion of 2 PE bk = ak 5k/3k ! 
is the coefficient after rescaling and Borel transforming. Ck are the coefficients of the new series (3.23) obtained
from 2 Ê(P) after the change of variable (3 . 22). dk is the coefficient of pk + 1 in the high temperature expansion of2 q..

replica symmetric ansatz P(q) is a delta function at a
value qo equal to

The high temperature expansion of the Qp’s described
in section 3 gives a high temperature expansion of qo,
for r = 0 :

The coefficients d. are given in the fourth column of
the table. Assuming that the analytic structure of
qo(#) is essentially the same as that of E(p). We have
performed on the series qo(fJ) exactly the same mani-
pulations as those we did on E(p) in section 3. Again
the curve qo(7) can be obtained precisely for

T = 1 &#x3E; 0.6 and is plotted in figure 2. We have

interpolated qo(7) linearly at low temperatures,
using the property

which is suggested by the following argument. Keeping
r = 0, the distribution of lengths of the links in the

Fig. 2. - The overlap qo between relevant tours at tempe-
rature T (see (4.5)). The curve for T &#x3E; 0.6 is obtained from
the high temperature expansion, and then extrapolated
linearly.

relevant tours, P(L), (2.22) reduces in our replica
symmetric case to

so that
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the first term is equal to one (this can be used as a
check of the high temperature expansion of the Qp’s),
so qo starts linearly from one at low temperatures if
P(L = 0) 0 0.

Let us now compare these results with existing
numerical data. The prediction (4.3) for the length
of the shortest path seems to be in rather good agree-
ment with the result of Kirkpatrick and Toulouse [7].
Indeed from their figure 1 one can plot the length
versus 1/N. This is done in figure 3. If one discards the
data for N &#x3E; 48 in which presumably the ground state
has not been found, one finds a nearly linear curve
which extrapolates at N = oo to E - 2.09. As for the
temperature dependence of the length it exhibits

Fig. 3. - Plot of the optimal tour length obtained by
Kirkpatrick and Toulouse [7] versus 1/N.

typical features, such as the rather narrow freezing
region around T - 0.9, which are also found nume-
rically in [7]. Unfortunately the lack of statistics of
[7] in the interesting low temperature range prevents
from a really quantitative comparison.
From the theoretical point of view, we want to

emphasize that we made two strong hypotheses on the
solution Qai;;;ap of the saddle point equations. The
first one is the spontaneous breaking of the rotational
symmetry. This seems rather reasonable although
we have neglected in this process some potential
transverse freezing which is known to occur in vector
spin glasses [17].
The second one is the approximation of replica

symmetry. This may well be wrong if there is a breaking
of ergodicity in this problem. As it stands it is very
difficult to study the stability of our solution [18],
so the simplest thing one could do would be to ana-
lyse precisely the relaxation times and the shape of
P(q) in this system with a Monte Carlo at finite

temperature.
The length of the ground state is known to be rather

well approximated by the replica symmetric ansatz
(in the S.K. model it predicts an energy which is too
low by 5 %). This might explain the success of [4-3],
but clearly more precise numerical data and some
theoretical predictions for the case of broken replica
symmetry will be welcome.
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Appendix I.

In this appendix we want to prove that in the TSP limit (m -+ 0 and y -+ oo) for large values of N, the leading
contributions arise from the terms in equation (2 .10) where all replica indices are different.

Indeed for large N we have

where the terms with i = j give a negligible contribution (proportional to 1/N).
It is convenient to evaluate equation (2.10) using a diagrammatic high temperature expansion, i.e. by

expanding the exponential in powers of its argument. The diagrammatical rules are a simple generalization of the
usual rules; we place a «link in replica ak » between sites i and j whenever the term

is present.
The integration over du(Si,a) implies that on each site i, for each replica a, there must be exactly an even

number of identical spin components S"a. Hence the diagrams which contribute have the following properties
for each replica index a, there are only closed paths of « links in replica a » and if in each replica a there are k.
closed paths, the weight of the diagram is

In the limit y - cc, we get a factor y nN only if all the sites in all the replicas will be visited by some path;
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ka must be different from zero for all values of a : the leading contribution (in m) is given when

(in this case a prefactor m" is produced).
Having established these results we can prove the main issue of the appendix. Each time that two replica

indices are equal in the expression (AI.1) (say a1 = a2), there is in the replica a 1 a small closed path between i
and j ; if all the sites in the replica 1 must be visited, we must have k1 &#x3E; 1 and this term does not contribute
in the TSP limit, as stated in the text.

Appendix II.

In this appendix we establish the formula for the distribution of overlaps P(q). For a given sample of the lengths
hr we introduce two systems of m component spins S, and S’, and compute :

where xij are bookkeeping auxiliary link variables which can be chosen for instance as independent random
variables with a distribution P(x) such that :

In the TSP limit one has

Averaging over the x variables with the distribution (All. 2) clearly gives a factor for each link common
I 

to the two tours t and t’, so that

In order to compute the average over the distribution of the lengths in (2.13) with the correct denominator
Z2TSP, one can use as before the replica method After some work one gets for the characteristic function of P(q)
defined in (2.13) :

where Zcij = xij if c = a or b, Zb = 1 otherwise. The averages over the distributions of lij and xij for one link,
using (2. 8), gives :

so that :

Clearly in the first exponential factor the sites can be decoupled by a Gaussian transformation as in (2.10) (2 .11),
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while the second exponential is a term of relative order 1/N which doesn’t change the saddle point values of the
variables. Q " - - -’.va, ... aj, 

Using the saddle point equations to express this second exponential in terms of the Q’s one gets :

from which the formula (2.14) for P(q) follows immediately.

Appendix III.

We compute the one-site partition function in the replica symmetric ansatz, z, given in (3.4). The quantity

£ , Xal ... Xap (where Xa = Sa u) differs from Xa P by terms with equal indices, involving sums of the
01...Op a /
type LX;, LX;’’’’ However from (2.5) the integral over du(Sa) of a quantity involving at least three spins with

a a

the same replica index, a, vanishes in the m - 0 limit. Hence one can forget about the terms £ Xf, k a 3 in

going from
a

We write

where Qp(x) is a polynomial of degree p : Q p = X p + qp, 2 X p - 2 + .... From the recurrence relation

one finds that Qp(X ) is nothing but the Hermite polynomial Hep(X ) [ 19] :

where

The presence of Hermite polynomials is not surprising : indeed the subtraction of terms with the same replica
index leeds to a combinatorial problem which is the same as that of finding the normal product: TP : of a free
field cpo In this case the result is well known

So the partition function z is

We write and we impose these constraints through 6 functions written
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in integral representation

The integral over the S’, in the limit m -+ 0, is

In the TSP limit we are interested in the term of the order of y" of z which is

Having extracted the y" term we can go on and take the limit n -+ 0. One way to do it is to write

where

is a function of A with f(0) = 1, so that
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