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Résumé. 2014 Nous montrons qu’il existe deux régimes très différents en température pour les pro-
blèmes du type voyageur de commerce, et que l’approximation recuite est correcte dans le régime
de haute température. Nous introduisons des modèles de liaisons aléatoires et obtenons des bomes
inférieure et supérieure pour leur énergie libre, dans le régime basse température. Nous présentons
un modèle soluble, qui possède une transition de phase rappelant fortement la transition verre de spin.

Abstract 2014 We show that two very different temperature regimes exist for problems of the travelling
salesman type, and that the annealed approximation is valid for the high-temperature regime. Ran-
dom-link models are introduced, for which upper and lower bounds on the free energy are obtained
in the low-temperature regime. A soluble model is presented, which possesses a phase transition
strongly reminiscent of the spin-glass transition.
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1. Introduction.

The travelling salesman problem [1, 2] consists in finding the shortest closed path through N
given points and is a standard example of hard combinatorial optimization problems : the
number of possible tours is finite but it increases very rapidly with the size N, and known algo-
rithms which find the optimal tour in all cases need a time which increases exponentially with
N [2]. In similar problems encountered in practical situations, e.g., in computer engineering,
N is large and the time necessary to find the best solution becomes prohibitive. One then looks
for algorithms which give a near-optimal solution in practically all situations in an acceptable
time.
For several years, S. Kirkpatrick has advocated the use of statistical mechanics tools for

the study of such problems [3]. A breakthrough in this area came with the adaptation to opti-
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mization problems of the probabilistic Metropolis algorithm used in Monte-Carlo methods [4].
This approach introduces a « temperature» and a « partition function » in a way that closely
follows the introduction of the canonical ensemble in statistical mechanics. The energy of a
configuration corresponds to the length of a tour, the phase space is the space of all possible tours,
the ground state corresponds to the optimal tour. The Monte-Carlo moves are given by Lin’s
two-bond rearrangements [5], and a suitable cooling procedure is followed to reach a tour of
near-optimal length. This allows the system to escape trapping in a metastable state which is
a local minimum for two-bond transformations (two-opt state).

In order to take full advantage of this method, it is necessary to study the connection between
optimization problems and statistical mechanics in greater detail. In particular, it is important
to know whether a phase transition occurs when the temperature is lowered, and to elucidate
the structure of the phase space. This structure has been recently studied by Kirkpatrick and
Toulouse [6], who have emphasized the deep analogy with spin glasses. More generally, some
of the powerful methods of modem statistical mechanics may provide new insights and results
in an area of considerable practical interest, e.g., in computer wiring and in electronic circuit
design [3, 7]. . 

- .’

In the present Letter, we study some properties of the partition function for models of the
travelling salesman type. There exist two very different regimes in temperature for these models,
where the thermodynamic quantities (e.g., the average length of a tour) scale differently with N.
Exact results can be obtained in the high-temperature regime, but the most interesting regime
is the low-temperature one. There the problem can be formulated in terms of statistical mechanics
and is very reminiscent of spin glasses.
We exhibit a particular model which we can solve exactly. We obtain the free energy at all

temperatures, hence the exact asymptotic behaviour of the optimal length, and we show that
there is a phase transition in the low-temperature regime.

2. Statistical mechanics formulation.

We introduce a generalized travelling salesman problem (T.S.P.) where one is given N points
i = 1,..., N, and a matrix of distances lij between them. The problem is to find the « tour.» P
of the shortest length Lp, where P is any permutation of N objects and

with P(N + 1 ) = P(l).

In the most studied T.S.P. (random-point problem), the positions of the points x~ are chosen
at random independently in some portion of a D-dimensional space, and lij = lji = ~/(x~ 2013 Xj)2.
In the following we shall also study another version (the random-link problem) where the lengths
lij = lji are independent random variables, with a distribution p(l). This is an equally interesting
model, which is technically somewhat simpler since one can neglect the triangular correlations
introduced by Euclidean distances. The case where p(l) is constant for 0  I ~ 1 has been
studied by Kirkpatrick and Toulouse [6].

Let us briefly recall how the T.S.P. can be formulated as a statistical mechanics problem :
- a configuration is a permutation P of the N points. (Actually there are (N - 1) !/2 configu-

rations since the starting point and the direction of a tour are irrelevant.)
- the energy of configuration P is its length Lp
- the partition function Z is naturally defined as

where P = 1/r is the inverse temperature
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- for a given matrix { lij }, we are interested in the behaviour of the average tour length L
as a function of temperature :

and in the length L.in of the optimal tour, which is the zero temperature limit of the free energy :

- the entropy S is defined, as usual, from the derivative of the free energy F = - T In Z :

An important question which we shall discuss in the following is the way L(T) scales with N,
when N -~ oo. In the random-point model, one usually chooses the N points in a cube of fixed
volume V = a’ of a D-dimensional space. One expects a priori two regimes of temperature :
- at high temperature (regime ?), one can forget about the Boltzmann weights in (2), any

permutation is equally probable, hence L ~ Na.
- at low temperature (regime C), the average length L of the tours should be of the order

of N times the average distance between two neighbouring cities :

(Rigorous bounds for L.i. with a N l-l/D behaviour have been given by Beardwood et al. [1].)
A similar scaling can be recovered in the independent-link model, provided the short-distance

behaviour of the distribution p(l) is p(1) ~ lD-1. For this reason, we shall consider the family
of independent-link T.S.P. with distributions

with results which map on the D-dimensional random-point model (as far as the scaling in N
is concerned) through the identification r ~ D - 1.

In the following we shall make clear what is meant by high and low temperature in this discus-
sion, and why the behaviour of L(T) is so different in the regimes JC and L.

3. The annealed approximation.
It is well known in the statistical mechanics of disordered systems that extensive thermodynamic
quantities (free energy, internal energy, ...) are « self-averaging », which means that they have
a fixed (sample independent) limiting behaviour in the thermodynamic limit (’). This behaviour
can then be obtained by taking the so-called « quenched » average of the free energy F over the

(1) The self-averageness of for instance the average length L(T) in T.S.P.’s is not obvious, but there are
strong indications that this property holds at least in the C regime of the random-point models :
- the self averageness of Lmin is proven in [1J;
L(T) is extensive since the C regime can be studied by working at a fixed density of points p = N/V, while

taking N -+ oo.
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disorder (here the values of the matrix elements lij), which we denote by  F ). The minimal
length (whose self-averageness was proven in [1]) is thus obtained as

As Z itself is, in general not self-averaging, the quenched average  In Z ) is different from
the « annealed » one In  Z ~, and much harder to compute [8]. The annealed average is some-
times used as an approximation which is often rather crude. It has been recently observed by
Bonomi and Lutton [9] and by Kirkpatrick [10] that the two averages give very similar numerical
results for the random-point T.S.P. in two dimensions, except at very low temperatures. This
interesting fact was one of the motivations of the present work : it will be explained in the following
in the independent-link model, showing the usefulness of the annealed approximation.

In the independent-link model, the annealed partition function is :

The integral over lij gives the same result for any permutation P, so :

where g(P) is the characteristic function of p(l). This yields the annealed free energy

and the annealed average length

Already from equation (11), one can obtain a number of indications which will be shown to
hold for the real, quenched quantities in the next two sections :
- any finite temperature (T fixed when N -~ oo) lies in the « JC regime » defined before,

where L(T) scales like N. In this whole regime the free energy is completely dominated by the
. 

TN 
N

entropic term - TN In 2013, it is not extensive.p 
e’

- there is a regime of very low temperatures where entropy and energy have the same scaling
inBN, in this annealed approximation : one must have ~(~) ~ N -1. Taking for definiteness
the links Iii distributed according to pr(1) defined in (7), we get gr(P) = (1 + ~)-(r+1). The low
temperature regime is # = ~N i~~r+ 1) (~ fixed independently of N). It does correspond to the
C regime defined before, where the average length and the entropy both scale as N 1-1/(r+ 1).

4. Fluctuations of the partition function.

The annealed average is usually a good approximation at high temperatures where Z does not
fluctuate much. In orde~ to see whether this is the case here, we compute ( Z2 &#x3E; in the indepen-
dent-link model :
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One can always renumber the N cities so that the permutation P reduces to the identity L The
integral depends on P’ only through the overlap Q between P’ and I, defined as the number of
links common to I and P’. This gives :

where ~(6) is the probability that the overlap between two permutations of N objects be Q.
Equation (14) can be written as

I

To calculate TN(Q), first note that the probability that a tbur goes through a given link is
2/(N - 1). For Q finite and N -+ oo, it is reasonable to expect that the Q links common to the
two permutations are independent in which case one has :

This Poisson distribution can be derived rigorously by a detailed study of the moments
Q’. 5..N(Q) dQ [11].
The summation in (15) may be performed using 5,,,,(Q) and yields

provided the dominant terms in the sum are found for Q finite. The maximum term is for
Q * - 2 g(2 P)/g(P)2, which is finite if # is finite. So equation (18) holds for any given finite tem-
perature (Je regime). If on the contrary the temperature is scaled with N in such a way that g(P)
is of the order of N -1 (~, regime), then Q * is of the order of N and formula (18) is no longer valid.

Equation (18) implies that the fluctuations of Z from sample to sample are extremely small
in the JC regime. To make this statement clear, let us assume that In Z has a Gaussian distribution
(a very reasonable assumption in view of its self-averageness and its extensivity). From (18)
we obtain the relative fluctuations of In Z

Equation (19) implies that the annealed approximation gives in fact the exact result for the free
energy and for the average tour length in the whole JC regime. This result justifies the numerical
findings of Kirkpatrick [10], Bonomi and Lutton [9], at least for the independent-link model.
The calculation of  Z2 &#x3E; in the C regime is more difficult. Nonetheless we show in the next

section, using different methods, that the annealed approximation is still useful in this region.

5. Low-temperature regime : bounds on the optimal length.
We will obtain in the C regime both lower and upper bounds on the free energy and the optimal
length in the random-link problem. The lower bounds are derived from the annealed free energy,
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following a method already used for spin glasses [8]. The upper bounds follow from the study
of a restricted class of paths.
The entropy S(T) defined in (5) must be positive for all T, since the inequality In Z &#x3E; - j8L~

implies

The average free energy is therefore a decreasing function of T. In addition, one has the convexity
inequality  In Z ~  In  Z ), hence

where T* is the temperature where Fann has a maximum (see Fig. 1), ie., where the annealed
entropy S ann vanishes.
Combining these results with (4) one fmds

The above derivation applies to any problem of the travelling salesman type. For the family
of random-link problems introduced above, there is indeed a temperature T * where Sann vanishes,
and it lies in the C regime :

This gives

A simple upper bound for L.i. can be obtained using an adaptation of the « greedy » algo-
rithm [12] to the random-link problem. Select an arbitrary origin i, choose as first link the smallest
lij among the (N - 1) possibilities, as second link the smallest ~, and so on. The length Lgr
of the tour so constructed is an upper bound :

Fig. 1. - The free energy F as a function of the temperature T in the C regime. The dashed curve is the
annealed free energy Fnn, the dotted curve is the lower bound on F obtained from Fann.
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where the ai are independent random variables with a common distribution p(a). The average
value of the minimum of p variables is given by

where G(x) = fo x p(a) do is the integrated density, and one findsJo 
~ ~

For the densities p,(x), we obtain for N -~ oo the bound

for r &#x3E; 0. For r = 0 (i.e., a constant density for small distances) the bound on ( Lmin &#x3E; is of
the order of In N.

In order to obtain an upper bound FB for the free energy, we consider a special family of paths
defined as follows : for each partition of the N points into N/n blobs of n points, we take the path
corresponding to the greedy algorithm inside each blob, and the shortest interblob connections.
All these paths have a length bounded asymptotically by

for Nln finite. The entropy associated with the number of ways of choosing the blobs is

Choosing N/n = e’, we find for each ~ ~ 0 a bound

with T = TN 1/(r+ 1). Our final upper bound is the envelope of this family of curves for integer
values of p = N/n. Combining this with (21) gives a bracket for the quenched free energy in
the C regime :

where

ar is defined in (28) and c, = e *~~). For larger, the upper bound is asymptotically equal to
t In (earl ~’).
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Formula (32) proves that F(T) in the C regime, and hence Lmin, is of the order of N 1- l~tr+ u
for the random-link problem, a scaling form, which agrees with the well known N 1-1~D form
of the random-point problem [1], via the r = D - 1 correspondence. For r = 0, no conclusion
can be reached because the upper bound is of the order of In N, the lower one of the order of 1.
Of course, other classes of tours may be considered to obtain upper bounds on F(T), but the
present choice has the advantage of showing that the dominant term of the quenched free energy
is (2013 f In f) in the high- f range (upper part of the C regime) and is correctly given by the annealed
approximation. This indicates that we have identified the dominant tours in that range.

Let us note that, as far as L~ is concerned, another lower bound can be obtained by consider-
ing the average of the smallest link originating from a point :

This gives

which happens to be in this case slightly better than the annealed bound (24).
A lower bound on Lin can be obtained through the computation of ( Z &#x3E; in any type of

T.S.P. In the case of the random-point problem in a unit hypercube in D dimensions, the bounds
so obtained are not as good as those quoted in the literature [1], except for D -~ oo where we
recover the known form L~ ~ (D/2 7r e)1/2 N 1-1/D.

6. A solvable model of a travelling salesman.

A very interesting model appears when one lets r ~ oo. Then the distribution of lengths pr(l)
is peaked around I N r, which gives a scale of distances. The two bounds we have found for
Lmin coincide, so that

This limiting case is to our knowledge the first example of a random T.S.P. for which the exact
asymptotic behaviour of Li. is known.

Furthermore, the bounds (32) on the free energy in the C regime coincide in this limit, proving
that the quenched free energy is :

This is a striking result since it shows that a phase transition occurs in the C regime at a finite t
Below the critical temperature 7~ = 1 /e, the entropy vanishes and the system is frozen. This
behaviour is strongly reminiscent of Derrida’s « random energy model » [13] and has a similar
origin : the average number of paths of length L =1V 1-1 /(r + 1 )~r + 1) I,
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is exponentially small for I  Ic = e-·I~r+1)~ hence there are no tours in this region. From our
previous result (36), we see that for r -+ oo and I &#x3E; l~, the entropy is indeed given by
S ~ In  J1(’(l) ), meaning that the fluctuations in X(/) can be neglected in that limit.

This similarity gives an analytic basis to the connection between T.S.P. and spin glasses, since
the random energy model has been shown to be the simplest model of a spin glass [14]. We hope
that the present « infinite dimensional » model of a travelling salesman will play a similar role
for optimization problems.

7. Conclusions.

We have clarified the notion that there exist two temperature regimes in the thermodynamic
study of the T.S.P., and we have shown that the difference between the high-T’(Je) regime and
low-T(C) regime is not of the same nature as the distinction between two phases separated by a
transition point : it corresponds to different behaviours with N of the thermodynamic quantities
for large systems. In the JC regime, i.e. finite temperatures in usual units, the free energy is given
by the annealed approximation, it is analytic in T and there is no phase transition.
The interesting temperature regime for the T.S.P. is certainly the C regime, which is also the

most appealing one from a purely statistical mechanics point of view for several reasons : it is
the regime which corresponds to finite temperatures t (in the random-point model) if one takes
the limit N -~ oo keeping the density of points p = N/ V fixed (rather than the volume V fixed),
which is a more physical procedure. The entropy and the energy then balance with the same
scaling as functions of N, giving an extensive free energy F ~ Np-’ .
The analytic approach to the computation of  In Z ) in this regime is not easy, as can be

seen from the fact that a high temperature expansion for 1 / fi small but finite is already non
trivial. However we have shown that this high-T regime is well described by the annealed approxi-
mation. Furthermore we have exhibited a solvable model for which there is a phase transition
at a finite 1. Whether a similar transition occurs in other T.S.P. models, and whether this transi-
tion is of the same nature as the spin glass transition remain challenging open questions.
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