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Résumé. 2014 Dans cet article, nous étudions la violation de la parité induite dans les métaux par l’interaction
électrofaible des électrons de conduction avec les noyaux du réseau. Les effets que nous discutons ici mettent en jeu
le même paramètre électrofaible 2014 la charge faible Qw 2014 que la violation de la parité dans les atomes et les varia-
tions avec le numéro atomique suivent également une loi en Z3. Les mécanismes qui fournissent le renforcement
nécessaire pour amener l’asymétrie gauche-droite au niveau de 10-6 à 10-5 sont cependant très différents de ceux
qui opèrent dans les expériences de physique atomique. Ils peuvent être considérés comme des phénomènes coopé-
ratifs à longue portée associés à la délocalisation des électrons de conduction. Les effets de violation de la parité
ne faisant pas intervenir des transitions entre bandes différentes n’apparaissent qu’en présence d’un champ magné-
tique inhomogène. Un exemple intéressant est la modification de l’interaction RKKY entre impuretés magnétiques.
L’observation effective de cet effet, qui constitue un des rares cas de manifestation de la violation de la parité en
régime statique, apparait malheureusement comme une entreprise très difficile. Des conditions expérimentales plus
favorables peuvent être créées en résonance magnétique électronique. La magnétisation oscillante transmise à
travers une plaque métallique est assujettie à une petite rotation autour de la normale à la plaque qui est de l’ordre
d’un milliradian par centimètre. Dans les circonstances où les niveaux de Landau sont bien séparés, la probabilité
de transition à résonance présente une asymétrie gauche-droite de l’ordre de 2 x 10-6 cotg 03B8, où 03B8 est l’angle
entre champ magnétique statique et le champ oscillant. Bien que notre analyse soit de caractère général, les esti-
mations numériques ont été faites dans le cas du césium métallique.

Abstract. 2014 In this paper we study parity violation in metals, induced by the electroweak interaction of the
conduction electrons with the nuclei of the lattice. The effects discussed here involve the same electroweak para-
meter 2014 the weak charge Qw 2014 as in atomic parity violation and the variation with the atomic number also obeys
a Z3 law. The mechanisms which provide the enhancement necessary to bring the left-right asymmetry to the level
of 10-5-10-6 are however very different from the ones which are operating in atomic experiments. They can be
viewed as long-range cooperative phenomena associated with the delocalization of the conduction electrons.
The p.v. effects, not involving interband transitions, only appear when the metal is perturbed by an inhomogeneous
magnetic field. An interesting example is the modification of the RKKY interaction between magnetic impurities.
The actual observation of this effect, which is one of the very few cases of static manifestation of parity violation,
appears unfortunately as a very difficult enterprise. More favourable experimental conditions could be achieved
in magnetic electron spin resonance. The oscillating magnetization transmitted through a metallic slab is subjected
to small rotation around the normal to the slab of about one milliradian per centimeter. Under these circumstances
where the Landau levels are well separated, the spin resonance transition probability exhibits a left-right asymmetry
of the order of 2 x 10-6 cotg 03B8, where 03B8 is the angle between the a.c. and d.c. magnetic fields. Although our analysis
is of general character, all the numerical estimates have been performed for the case of metallic caesium.
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In this paper we give a theoretical analysis of parity
violation phenomena in metals which stem from the
weak interactions of the conduction electrons with
the nuclei of the cristal lattice. Similar parity violation
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effects have been observed in heavy atoms [1] and
particularly in atomic caesium [2] which remains, so
far, the simplest atomic system where an electroweak
interference has been clearly demonstrated. These
experiments have led to a determination of a combi-
nation of electroweak coupling constants, the so

called « weak charge » Qw, not directly accessible to
high-energy experiments; they have also extended the
explored range of momentum transfer towards the
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MeV region [3]. The effects discussed in this paper
involve the same electroweak parameter Qw and they
also benefit from the enhancement known as the Z 3
law in atoms [4], which, by itself, is not sufficient to
bring the left-right asymmetries to a level where a
measurement looks possible. In atoms, the feasibility
gap is bridged by looking at forbidden transitions
where selection rules suppress the normal parity
conserving amplitude, leaving the parity violating a
better chance to be observed. In metals, we have
searched for experimental situations where the enhan-
cement of the p.v. effects could result from cooperative
phenomena. Indeed, because of the delocalization of
conduction electron wave functions, there can appear
long range effective parity violating interactions,
which, under favorable circumstances (very low tem-
perature, high purity samples) lead to left-right
asymmetries in the range 10-6 to 10-4. Although the
weak interaction physics involved in p.v. phenomena
in metals and atoms is basically the same, the physical
mechanisms which are behind the effects having a
chance to be actually observed, are so different that
we feel the rather detailed analysis given in this paper
justified. This paper having an exploratory character,
we have, to describe the conduction electron physics,
used simple models which should nevertheless apply
reasonably well to alkali metals. The numerical
evaluations have been performed for metallic caesium
which is clearly favoured by the Z 3 law.

In section 1 we give a description of the p.v. electron-
nucleus interaction within the Bloch wave function
formalism. We show, provided one neglects interband
transitions, that the p.v. interaction can be replaced
by an effective coupling having the very simple form :
aa. k, where a is the spin of the electron and k its Bloch
momentum. The coefficient a which crucially depends
on the conduction electron wave function in the

vicinity of the nucleus, has been computed in the case
of caesium using the Wigner-Seitz « cellular &#x3E;&#x3E; method.
The observable effects produced by the aa.k

coupling appear in the presence of an inhomogeneous
magnetic field B(r). In section 2 we show, using a
SU(2) gauge transformation, that the static magnetic
susceptibility tensor Xij(r, r’) acquires an antisym-
metric p.v. term :

where xo(r, r’) is the normal scalar susceptibility and

1 - 1 a basic - length parameter which gives
am 

g p g

the typical size of the long range p.v. effects for conduc-
tion electrons (m* is the effective mass of the valence
electron). For caesium, lpov. is found to be equal to
11 m. A direct consequence of the new term in XiJ{r, r’)
is a modification of the indirect exchange interaction
between magnetic impurities. The RKKY coupling
m. m’ fRKKy(r - r’) gets a long range p.v. part :

The length dp.V, being very large compared to the
oscillation length of the function fRKKY(r) the actual
observation of this static manifestation of parity
violation is going to be a very difficult enterprise.
A more favourable situation is encountered in

magnetic spin resonance. In these circumstances where
the diffusion motion of the electron is not affected by
the static magnetic field Bo, a formula similar to one
written above holds for the oscillating magnetic
susceptibility Xij(r, r’, co). As a consequence, the trans-
mitted magnetization M(L) through a metallic slab
of size L is modified to

where n is a unit vector normal to the slab.
In sections 3 and 4 we study the effects of the

aa.k coupling in a situation where the Landau levels
are well defined, the electron collision relaxation
time i being large compared with the cyclotron period.
We first treat the simple case where the skin depth
is large compared with the cyclotron radius. (In
practice these conditions could be fulfilled only in
semiconductors where a reliable evaluation of lp.v.
would require elaborate computational methods which
go far beyond the scope of this paper.) The mixing
of the Landau levels produced by the aa-k coupling
leads to an electroweak interference between the spin
resonance and the cyclotron resonance, which we
compute using the dipolar approximation. In this
rather ideal situation, the left-right asymmetry is
found to be of the order of À/lpovo where A is the wave-
length of the resonant radio frequency field.

Section 4 is devoted to studying the influence of the
Landau levels p.v. mixings on the conduction elec-
tron spin resonance; we properly take into account
the complications due to the anomalous skin effect.
With the help of a semi-classical method we are able
to free ourselves from the dipolar approximation,
here totally unjustified. The dominant p.v. mechanism
can be viewed as an interference between magnetic
multipole moments of different polarity, the role of
electric amplitudes being negligible. The left-right
asymmetry involves the pseudo scalar n.(Bo A B)
where B is r.f. magnetic field and its magnitude is

given, up to a factor of order one, by the ratio
rc

2 2013 where r,, is the cyclotron radius.p.v.

1. Parity violating effective potential for the conduction
electrons of an alkali metal.

The weak interaction between a conduction electron
and a nucleus of the crystal lattice is described, within
the standard Weinberg-Salam model [5], by the

exchange of a heavy neutral vector boson Z °. It is well
known [4] that the resulting dominant parity violating
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interaction can be described in the non relativistic
limit by the potential :

N and Z are respectively the numbers of neutrons and
protons inside the nucleus and Ow is the Weinberg
angle. We have kept only the term that is independent
of the nuclear spin, since this term dominates for

sufficiently heavy elements [4, 3].
In this section we would like to study the effect of

Vp , on the properties of the conduction bands of a
metal. The parity violating electron nucleus interac-
tion

where the sum £ runs over all the nuclei of the lattice,
Ri

is invariant under the translation group of the lattice.
The motion of the valence electron in the presence of
this potential can still be described by a Bloch wave :

The wave vector k is taken inside the first Brillouin
zone. The function u(k, r), for a given k, is invariant
under the translation group of the lattice. The energy
bands in the presence of the parity violating interac-
tions B.v.(r) are given by the following eigenvalue
equation :

U(r) is the periodic potential describing the interaction
of the valence electron with the lattice ions. In the

present paper we are interested in the motion of Bloch
electrons within a band and we ignore the effect of
F on interband transitions. The quantity of interest
will then be the modification of the band energy
A&#x26;,,-v-(k) by the parity violating potential. To first
order in GF, AsP-v-(k) is given by :

In the above expression, un(k, r) are the Bloch wave
Junctions associated with the unperturbed Hamilto-

nian Ho = 1 (- iV + k)2 + U r . They are assu-2me 
( ) ( ) y

med to be normalized to the number of valence
electrons inside one Wigner-Seitz primitive cell. The
potential U(r) is assumed to be invariant upon space
reflexion. If, for a given k, the energy level s,,(k) has
no other degeneracies than the one associated with the
spin angular momentum, we have the equalities :

and up to a phase factor

From the above relation it follows that DEn’"’(k) is an
odd function of k

In order to evaluate AsP-v-, in the case of an alkali
metal, we shall use the cellular Wigner-Seitz method
[6], together with an expansion of u,,(k, r) in power
of the wave number k :

In the Wigner-Seitz cellular method, one proceeds by
making the two following approximations :

i) the Wigner-Seitz primitive polyhedron is repla-
ced by a sphere of radius rs of the same volume;

ii) the potential inside the sphere is replaced by the
atomic potential, which outside the ion core reduces
to V(r) = - e2/r.
For the band of lowest energy the functions u(O)(r)

and u(i)(r) are spherically symmetric (we have drop-
ped the band index n). The Wigner-Seitz boundary
conditions reduce to :

The function u(O)(r) is the regular solution of the
s-wave radial atomic Schr6dinger equation, satisfying
the above boundary condition. The corresponding
eigenvalue Eo is the minimum of the conduction band.
Bardeen has shown [7] that the function u(l)(r) is
obtained by adding to - u(O)(r) the regular solution
of the p-wave radial wave equation corresponding
to the energy Eo :

Xm (m = ± 1/2) is a two-component Pauli spinor.
u(O)(r) is normalized to unity in the Wigner-Seitz
sphere. In order to satisfy the condition u(1)(rs) = 0
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the p-wave radial wave equation is normalized in such
a way that :

Using the above expressions for u(O)(r) and u(1)(r),
we find the parity violating energy shift LlBP. v .(k) to
be :

with

The quantity a has a structure very similar to the
matrix element of Vpe’ between atomic nSI/2 and n’PI/2
states : 

’

We expect that AgP-1- will follow the same Z 3 law
which has been established in reference [4].
As in parity violation phenomena in heavy atoms

the relativistic corrections are of particular importance.
The Wigner-Seitz cellular method can be easily exten-
ded to the relativistic case. It can be easily shown that
the relativistic correcting factor Kr to be applied to the
formula giving a is practically identical to the one
involved in atomic physics calculation which is

thorougly discussed in references [4] and [8].
We have performed an explicit computation of a

in the case of caesium using the numerical values of
u(O)(r) and u(1 )(r) tabulated in reference [9]. In order to
extrapolate the data to r = 0 we have used a represen-
tation of the regular radial wave function R,(r) given
in reference [4] which is accurate in the region

with

C is a small parameter (C = 0.11 for atomic caesium)
which is proportional to the electrostatic potential
of the core electrons near the nucleus.
We have obtained in this way :

It leads to the value of a :

(ao is the Bohr radius).
In the case of atomic caesium, the (nearly model

independent) relativistic factor K, is found to be

We arrive at the final expression of a :

It is of interest to compare this result with the one we
would obtain using plane waves normalized to one
in the Wigner-Seitz cell volume :

From the value ofrs used in reference [9] rs = 5.735 ao
we get

As expected, there is first a considerable enhancement
factor, of about 105, which comes from the steep
increase of the electronic density near the nucleus.
The second striking fact is the change of signs whose
origin can be traced back to the Wigner-Seitz boun-
dary condition and to the difference between the num-
bers of nodes of the s and p radial functions appearing
in the Bloch wave functions. Using the asymptotic
formulae for the radial wave functions given in
reference [4], it is possible to obtain a closed formula
for a in the limiting case where the two following
conditions are simultaneously satisfies Eo rs I  1
and rs &#x3E; 1 (Eo and r. are in atomic units) :

where Zg = 8 rs and J-lp(E) and Jls(E) are the inter-
polated quantum defects for p and s valence states
respectively. This formula is unfortunately of no

practical use for the caesium conduction band since
its conditions of validity are clearly not fulfilled. We
may note however that the Z 3 law is apparent and
that the change of signs with respect to the free electron
case occurs if the quantum defect of s and p-waves
are sufficiently close so that I Jls(O) - ,up(0) I  0.5,
a condition which is satisfied in the case of caesium :

I Jls(O) - J-lp(O) I 0.48.
After computing the p.v. energy shift AsP-’-(k) given

in formulae (8-9), in the following we shall use the
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approximation that consists in ignoring the subtleties
of the wave function near the nucleus, and describing
the conduction electrons as an electron gas in a

uniformly distributed positive background that ensures
the electrical neutrality. The Hamiltonian describing
this system, including the p.v. interaction, is then :

a is the constant given in (8-9), m* is the effective mass
of the electrons and V(ri - rj) is the electron-electron
interaction potential.
We study in the following, within this simple model,

the new effects associated with the p.v. term aa.k.
Before proceeding to the more complicated cases

discussed in the next sections, let us explain what
happens in a uniform external magnetic field

Bo = Bo u.,. Due to the p.v. coupling, one expects a
nonzero value of  kz z. Working to lowest order in a
(which is certainly a very good approximation), one
finds effectively that kz ) = - am*  a,, &#x3E; : there
exists a longitudinal mean momentum proportional
to the Pauli magnetization. However there is no con-
vection current associated with this effect : the proper
definition of the current operator j is :

so that one finds : -.

This result confirms and explains a calculation of
Vilenkin [10] in the relativistic case : there is no

longitudinal current induced by the weak interactions
in a uniform magnetic field. In the next section we
discuss the case of a non uniform field.

2. Modification of the susceptibility in a non uniform
magnetic field.

In this section we study the magnetization of the metal
in the linear response to a small magnetic field. We
first give the general formula which applies in the
presence of parity violation, and then we specialize in
two interesting cases :
- linear response to a small static field, and the

subsequent modification of the interaction law of two
magnetic impurities in a metal;
- in the presence of a strong static field Bo, linear

response to a radiofrequency field, i.e. the modification
of conduction electron spin resonance, in a situation
where the effect of Bo on the orbital motion can be
neglected. This condition is fulfilled when the period
of the cyclotron motion is much larger than the
diffusion relaxation timer of the conduction electrons.

(The opposite situation, where the Landau levels are
well defined, will be studied in the next two sections.)

a) General formalism.
Let us first study the general case where the system is in
a magnetic field B. In the effective mass approximation,
the parity violating Hamiltonian is obtained from (15)
by the gauge invariance prescription :

where ki and ri are conjugate variables. He-cp and H,,-, stand for the Hamiltonians describing the electron-
phonon and electron-impurity interactions. We shall not write them down explicitly but assume that they are
spin-independent. Throughout this paper, we shall neglect terms of order a2, which is certainly legitimate in view
of the weakness of the p.v. effects. The Hamiltonian can then be rewritten in the form :

This suggests to perform a canonical transformation on H : H’ = WHW -1 where the unitary operator W is
given, up to corrections of order a2, by :

One gets the following expression for H’ :
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This new form of the Hamiltonian makes the
discussion particularly transparent : the only p.v.
effect is in the spin coupling, and the magnitude of
parity violation will be given conveniently by a

characteristic length Ipovo’ defined by :

(In the standard electroweak model Qw  0, so that,
for caesium a &#x3E; 0.)
From the expression of a given in (13), one can

m*
estimate L., in the case of caesium : taking m* - 0.73,m

one gets :

The relative order of magnitude of p.v. effects in
metals will in general be given by the ratio of a typical
interatomic length to Ipovo’ In order to get a feeling of
the smallness of the effects we are looking for, we quote
the value of the ratio of the Bohr radius ao to Ipovo’ in
caesium again :

Let us study the modification of the magnetic
susceptibility. In general, the average magnetization
in the zero temperature limit is given by :

where the non-local susceptibility Xij is

with

(’P 0 is the ground state of H). The Hamiltonian H is
split into two terms : H = Ho + HP.V., where the p.c.
Hamiltonian Ho includes the electron-electron, elec-
tron-phonon and electron-impurity interactions toge-
ther with the magneti coupling with a static uniform
magnetic field Bo. Ho the only explicitly spin
dependent interaction is assumed to be the coupling
of the spin magnetic moment with Bo.

Performing the unitary transformation W we get :

In this section we shall ignore the effects associated
with 

When there are no well defined cyclotron orbits, AHP.V.
plays the role of a very small random magnetic field.

Performing the unitary transformation W on the
expression (22) giving xi and setting AHP.,. = 0,
we get the following expression for the parity violating
magnetization :

where we have set r = (xl ux + x2 uy + x3 uz) and
gijk stands for the completely antisymmetric third-
order tensor.

b) Modification of the RKKY interaction law.
We first consider the case in which there is no uniform
field Bo, and we study the response to a small statics
field B(r). We keep to the approximation of neglecting
the spin dependent interaction, so that xi is diagonal
in spin indices :

where n is the correlation function of the electron

density. In the static limit, we get from (24) :

where XN is the « normal » susceptibility in metals
computed in the absence of p.v. terms. Let us quote
the explicit form of XN(r), corresponding to the free
electron gas approximation :

There is an alternative form for M which exhibits

clearly the absence of effect in a uniform field : perfor-
ming an integration by parts in (25), one gets :

where Xpovo is the p.v. susceptibility, related to XN by :

We have found that the weak interactions are

responsible for a new p.v. term in the magnetic
susceptibility. Furthermore, this modification is very
small (see (20)), and will appear only in strongly
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inhomogeneous magnetic fields. A situation where
such fields are created is the case where there are

magnetic impurities in the metal.
The indirect exchange coupling of nuclear magnetic

moments by conduction electrons has been worked
out by Ruderman and Kittel [11]. The p.v. term in
the susceptibility (19) gives a new contribution to this
coupling. Assuming that the contact part of the hyper-
fine interaction is dominant, we find that the inter-
action energy between an impurity of magnetic mo-
ment m located at r = 0 and an impurity of magnetic
moment m’ located at r is :

A is a negative constant, proportional to the square
of the hyperfine structure splitting.
Formula (29) is very simple and aesthetic. It gives an

example of a rare situation : parity violation in a static
(time independent) configuration. Furthermore, the
p.v. interaction in (29) is long-ranged, due to the
delocalization of the conduction electrons, although
the weak interactions that create it are essentially of
zero range on atomic scales.
An interesting problem in which the new term in

(29) might be relevant is the indirect coupling between
4f electrons in rare earth metals. It has been shown

by De Gennes [12] that these interactions are correctly
described by a formula a la Ruderman-Kittel. In this
case one has a periodic array of magnetic moments
interacting via a Hamiltonian similar to (29) (but with
a value for Ip.v. different from that computed in (19)
of course).

In the rare earths of the yttrium series, which have a
hexagonal closed-packed structure, it is found expe-
rimentally that the stable spin configurations at low
temperature are helicoidal : all the ions lying in a
plane orthogonal to the c-axis have parallel magnetic
moments, lying in the plane also, and the angle between
the magnetic moments in two neighbouring planes is q.
This can be understood from the oscillating nature of
the RKKY interactions : forgetting for a while the
p.v. term, the energy of a helicoidal configuration
defined by an angle (p is

(where gi - gj = pq when i and j are in planes at
distance pd from each other). It has been found [12]
that Ho has a minimum at T = ± 9*, where cp* -# 0.

It has been suggested [13] that the effect of the p.v.
term is to lower the energy of one of these two helices

(the left-handed one), the difference of energy-being
of the order of 100 Hz. In order to get such a prediction
one has to compute the value of Ipov. for each individual
case (for instance for dysprosium). As we have seen
before, the naive estimation cannot be expected to give
a right result, and for instance the sign of Ipovo cannot

be obtained from a crude approximation. (In fact,
if we took the same sign as the one we found in caesium,
we would find, using the arguments of [13], that the
right-handed helix is more stable.)

Furthermore, there is a very simple argument which
shows that the shift in energy between the two helices
is in fact much smaller than expected : it is only a
second-order term in d/p V. Taking into account the
p.v. term in the sum (30), the energy of a helicoidal
configuration becomes :

where we have just separated the sum over all the spins
in a given plane, then summing over all the planes.
Hence one has the general formula :

Up to first order in d/lp,V., the only effect is that the
stable configurations correspond to angles ± (p* +
d/lp,V., but they have the same energy. Thus the result
we get is that the effect of parity violation in these rare
earth elements with helicoidal structure is to change
slightly the pitch of the helix depending on whether
the helix is right handed or left handed. This difference
of the pitches is 2 d/lp,V 10 - 10 to 10 - 11, its precise
value and its sign must be computed in each case from
the structure of the wave function of conduction
electrons.

c) Electron spin resonance : transmission resonance.

The general formula (24) can be applied to the problem
of conduction electron spin resonance whenever the
cyclotron orbits are not well defined (that is for

OJc i  1, where (Uc is the cyclotron pulsation and i the
electron relaxation time). In the theoretical model
developed by Dyson [14] and extended by Lampe and
Platzman [15], the phenomena of spin diffusion out
of the skin into which the radiofrequency field pene-
trates, lead to a non-local susceptibility with a range
6mag much larger than the skin depth 6. Consequently,
in equation (24), the second term can be neglected,
being of the order of 6/bmag relative to the first. Let us
consider a metallic slab of thickness L - bmag, and
choose the y axis along the unit vector n normal to the
surfaces. Equation (24) reduces to :

Due to the phenomena of electron spin diffusion, the
radiofrequency power is «transmitted through the
slab. For y = L + 0+ the r.f. magnetic field BT
can be shown to be equal to the magnetization for



1590

y = L + 0- times the surface impedance Zo [15].
The effect of parity violation is just to rotate BT
around the normal n of a small angle § given by :

where VF is the Fermi velocity, T the electron spin-
lattice relaxation time, and 1" the transport mean free
time. Under « realistic conditions &#x3E;&#x3E; this angle reaches
values of the order of 10 - 4 to 10 - 5 radians.

3. Parity violating mixing of the Landau levels. Inter-
ference between the conduction electron spin resonance
and the cyclotron resonance, in the dipolar approxima-
tion.

In the presence of a strong static uniform magnetic
field, (Bo = Bo uj, the dynamics of conduction elec-
trons can reach a new regime, corresponding to the
condition wrr &#x3E;&#x3E; 1, where OJc/2 1t is the cyclotron
frequency and r is the collision time. Indeed, when this
condition is fulfilled, the Landau levels are well defined
and separated. (We shall also suppose in the following
that OJs 1" &#x3E; 1, so that the splitting of each Landau level
into two spin sublevels is effective.) We shall work
in the approximation of independent electrons, the
energy levels of one electron being given by :

with

In this section we study the effects of the p.v. poten-
tial in this simple picture. It turns out that, although
the canonical transformation is helpful for the physical
understanding of the problem, as seen in the preceding
section, the calculations are somewhat simpler in
the original formulation. So we start from the Hamil-
tonian :

and to be precise we shall use the Landau gauge :

The energy level En,kz,e is degenerate with correspon-
ding eigenfunctions :

where On(u) is the wave function of the nth level of the

harmonic oscillator with frequency OJc, and X(s) is a
Pauli spinor.
The effect of Vp.v. is twofold :
- it shifts each energy level E,,,k.,,, by a quantity

aEkz ; 
’

- it mixes the neighbouring levels of opposite
spins and parities, according to the formula :

One immediate consequence of this mixing is the
possibility of an interference between cyclotron and
spin resonances : a transverse radiofrequency electric
field can induce a transition between the two pertur-
bed spin sublevels, leading to a resonant absorption
of r.f. energy at frequency OJs. This transition ampli-
tude will in general interference with the normal

amplitude due to the transverse r.f. magnetic field

(see Fig. 1).

Fig. 1. - Coupling between the cyclotron and electron spin
resonance induced by the effective a6. k parity violating
interaction.

In the following we compute this interference and
describe its signature. Since the frequencies involved
are typically of order 1011 Hz, in an ordinary metal
such as those we are considering in this paper, the
(anomalous) skin effect and the resulting anisotropy
play a major role as we shall see in the following.
However, in order to give a clearer description of the
phenomena, we first describe this interference in the
simplest case of dipolar approximation, that is

neglecting the spatial variation of the r.f. fields. This
dipolar approximation would be valid in semicon-
ductors, but there it is far from evident that the simple
form (8) for the matrix elements of the p.v. potential
holds, and one must carry through the whole analysis
of section 1 with a detailed description of the wave
functions of electrons and holes in the semiconductor
one is studying. In this paper we shall carry on within
the simplest scheme of a quasi free electron gas, with
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the Hamiltonian given in (35), a model which should
apply fairly well to alkali metals.
Within the dipolar approximation, we write the r.f.

field as E = E eiwt ux, B = Be"’ uy ; the interaction
Hamiltonian linear in this field is :

with

~ 

Let I n, kx, kz, e &#x3E; be the eigenstates of the static
Hamiltonian in the presence of the p.v. potential
(treated in first-order perturbation theory). We need

the transition amplitude from I n, k.,, k,,, - &#x3E; to

I n, k.,, k,, + &#x3E;. First of all we notice that the corres-
ponding resonance frequency is shifted from its value
without p.v. interaction : Ws, to the value cos + 2 akz.
But due to the symmetry k_, -+ - kz, this only leads
to a broadening of the resonance signal of order a2,
and hence totally negligible. The resonance at fre-

quency Ws is associated with the amplitude :

Using (38) to (41), one easily finds :

The ratio of the p.v. to the normal amplitude is

where A is the wavelength of the r.f. field. This result
is quite impressive and shows why this situation is
much more interesting for the detection of parity
violation than those we studied in section 2 : the
typical length to be compared with Ipovo here turns out
to be A (that is, a few centimeters), instead of the
interatomic scale that appeared previously. This result
can be understood in the following way : the parity

mixing amplitude Y is of order Y - 2 1 (a)c - vc co.) lp.,,.P
where Vc is the classical cyclotron velocity. To get p
the parity mixing amplitude T has to be multiplied
b the ratio E’ E ere 

- 

-Vby the ratIo M ’" B - where r c = - IS the cyclo-1 B 
" 

WC 
tron radius which multiplied by e gives the typical
size of the electric dipole in a cyclotron resonance.

Finally there is an extra factor 1 which accounts for
n

the compensation between the two terms appearing
in the right-hand side of (42).
What is the signature of parity violation in the

interference we are studying here ? It is as usual
associated with the existence of a pseudoscalar - time
reversal invariant - quantity, which in this case turns

out to be Bo. (E A B). As one sees immediately, when
this quantity changes signs, the relative signs of the
p.v. and the normal amplitudes also change, resulting
in an asymmetry in the absorption rate, of relative
magnitude

We won’t try at this stage to give a precise estimate
of the left-right asymmetry AR.L.- As we have previously
noticed, this calculation, based on the dipolar approxi-
mation, cannot be valid in a metal, since the scale of
variation of the r.f. field is not given by the wavelength A
but rather by the penetration length 6 of the anoma-
lous skin effect, which, under realistic conditions, is
much smaller than the cyclotron radius r,. Further-

more, the ratio I EICB I for the radiofrequency field
inside a metal is approximately given by 61A  1, so
that the left-right asymmetry associated with a

E1 x MI interference suffers from a considerable

suppression :

In the next section we shall study possible parity
violation effects in electron magnetic-resonance expe-
riments performed on high purity metallic samples
placed in a large magnetic field in order to get well
separated Landau levels. The dominant parity vio-
lation will turn out to be associated with M1 x M2,
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M2 x M3,... interferences rather than with E1 x M,
ones. The typical order of magnitude of the p.v.
effects will be given by the ratio

4. Parity violation in conduction electron spin reso-
nance in metals.

We shall discuss the parity violation in a metal in the
following configuration : the static magnetic field

Bo is parallel to the surface of the metal, which is
taken as the plane y = 0, the metallic matter is lying
in the half space y &#x3E; 0. (The z axis is taken along Bo.)
Inside the metal we shall keep only the dominant
part of the radio-frequency field, namely the tangential
component of the magnetic field BT. We shall also
neglect the space variation of BT in the x and z direc-
tions and write BT as

Since we are dealing with an experimental situation
where the cyclotron radius rc is much larger than the
skin depth 6, the effect of the metal surface on the
motion of the valence electron cannot be ignored.
In the usual treatment of conductivity, the effect of the
surface is accounted for by replacing the half-space
metallic medium by an infinite medium with an

electro-magnetic field symmetric with respect to the
plane y = 0. It turns out that this method is not
convenient for our purpose, which is to look for a
violation of space reflexion symmetry. So we shall
work with a half-space medium and make simplifying
assumptions concerning the metal surface. We shall
assume that this surface coincides with a crystallo-
graphic plane and is relatively free of impurities.
As a further assumption, the effect of the surface upon
the motion of the valence electron will be described

by a static potential V(y) having a step function
shape : 

We shall neglect the distortion of the energy bands
near the surface and use the effective mass approxi-
mation even in the vicinity of the surface. In absence
of r.f. held, the Hamiltonian in Landau gauge (Eq. (36))
takes the following form :

The eigenfunctions of H can be factorized as follows :

( x(8 ) is a Pauli spin function.)

The wave function 4’n(Y) obeys the one-dimensional
Schr6dinger equation :

The effective potential flJ( y) is given by :

where OJc is the cyclotron frequency :

and yo is given by :

The reduced energies 8,, are related to the total energies
En by :

Since the Fermi energy EF is much larger than the
cyclotron frequency, we are in the large quantum
number limit and a semi-classical approximation is

adequate. Classically &#x26;,, is nothing but the kinetic
energy associated with cyclotron circular motion.
It is convenient to introduce the classical cyclotron
radius r. as :

Two cases have to be considered :

i) yo &#x3E; rc (Fig. 2a) : . the classical motion is purely
harmonic, the electron does not « feel » the metal
surface and the classical frequency mi is just the

cyclotron frequency (o,,;
ii) - rc  yo  rc (Fig. 2b) : the electron bounces

upon the metal surface before it reaches the classical

turning point of the harmonic motion. The motion
classical frequency wl is now larger than the cyclotron
frequency and is given by

For Yo  - rc, no classical motion is possible.
It is convenient to rewrite the effective parity

violating interaction in terms of the parameters of the
one-dimensional harmonic motion (1) :
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Fig. 2. - Effective potential for conduction electrons in a
strong static field near the metal surface.

If one takes the classical limit, the expression for
Vp.v. can be written in terms of the velocity (v, vy)
of the circular motion :

Before turning to a more detailed computation, let us
briefly explain qualitatively the effect of Vp.v. which,
in this case, turns out to be equivalent to a small
rotation of the static magnetic field Bo around the
normal to the metal surface.
The electrons interact with the radiation field in a

region of depth 6. Let us first consider the electronic
states associated with the classical trajectories corres-
ponding to case i) (Yo&#x3E; rc). When one averages over
the electrons which can interact with the r.f. field, one
clearly sees in figure 3 that the average velocity is
non-zero and positive. For trajectories corresponding
to the case ii) (I Yo I  r c), the average value of vx in the
skin depth is also non-zero but could be negative when
Yo  0 (see the trajectory labelled ii) of Fig. 3). So,
at first sight, it looks as if the contributions to  Vx &#x3E;
coming from the two kinds of states could compensate.
In fact, the compensation is strongly suppressed due
to the presence in the thermal average of an important
factor, namely, the level density of the states which is

given in the semi-classical limit, b Y 1  1 . Conse-" 

W, co,

Fig. 3. - Classical cyclotron motion of conduction electrons
near the metal surface.

quently, the relative weight of state ii) associated with
the trajectory drawn on figure 3 is just the ratio of the
circular arc AB to the whole circumference. To con-

clude, when one performs the thermal average over the
electrons which can participate in the transition
induced by the radio-frequency field, the average
velocity Vx &#x3E; is non-zero (and positive), thus we
can write :

The effect of the parity violating interaction can be
simulated by a small static field 6BP-v- along the x axis :

Introducing the unit vector n normal to the metal
surface (n = uy), we rewrite bBgovo in such a way that its
polar vector behaviour under space reflexion is
manifest :

The electronic spin flip probability in the presence of
parity violation is proportional to the quantity :

From the above expression we extract the following
estimate of the left-right asymmetry :

The more detailed treatment we are going to describe
leads to a result which is, somewhat accidentally, very
close to the above qualitative estimate.
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Under the action of the effective parity violation
interaction V p.v.’ the states n, kx, kz, B &#x3E; get mixed to
states with different cyclotron quantum numbers and
opposite spins - s :

We shall compute the energy differences En - EN, and
the matrix element of the one-electron operator 0,
 03A6n- 10 I 4&#x3E;" &#x3E; using semi-classical formulae which
are valid in the limit where I n - n’  (n + n’)

where Oc(t) is the classical quantity at the time t
associated with the operator 6 and Ti = 2 n/mi 1 is
the classical period.

Let us write the classical motion for the y coordinate
in the case - rc yo  rC :

The matrix elements

needed for the evaluation of (60) are then given by :

We immediately get the following expression for the
Landau states perturbed by the p.v. interaction :

When yo &#x3E; rr we have a pure cyclotron motion and
the 4&#x3E;n are harmonic oscillator wave functions. The
semi-classical result is identical to the exact one. The

state n, e &#x3E; is mixed only to the state n + ~, - E )
and the mixing amplitude can be obtained by taking
the limit WI &#x3E; Wc in (64) :

In order to compute the transition amplitudes
between the spin perturbed levels, we need the matrix
elements of the r.f. magnetic field BT(y) between arbi-
trary quantized cyclotron states 0,, :

We shall assume that the y dependence of BT(y) is
exponential. It is shown in the appendix that, in the
case of anomalous skin effect with 6/rC « 1, the r.f.
field BT(y) is still dominated by an exponential term :

After straightforward calculations and using changes
of variables, we arrive at the following expressions for
Bn, n :

where the integrals Rq and 7q are given by :

These integrals have been computed numerically.
(When v # 0 and # 1, asymptotic expansions valid
when w = KrC &#x3E; 1 can be easily derived.)

In the above computation, we have treated electro-
nic states as stationary states. Even at very low tem-
perature, the Landau states have finite lifetimes, due
to the collisions with the metal impurities. We shall
assume here that the collision relaxation time z is
much larger than the cyclotron period, i.e. : Wr i &#x3E; 1.
In other words, the width of the Landau level H /i is
assumed to be small compared to the energy level
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separation. Furthermore, we shall not attempt to

compute the full resonance line shape in presence of
p.v. but instead an asymmetry parameter AL.R, invol-
ving the transition probabilities for the electron spin
transition sz = - 1/2 --&#x3E; Sz = 1/2. To be precise, we
are going to evaluate, for a resonant r.f. field (m = Ws)’
the transition probability = - 1/2 -&#x3E; Sz = 1/2)
after a finite time interval At = t - to, small compared
both with the collision relaxation time i and with the

spin relaxation time T. The system will be assumed
to be in thermal equilibrium at the initial time to.
The transition probability averaged over the electronic
states which participate in the transition is given, to
lowest order in the radiation field, by :

where dv is the number of occupied levels which can
be excited by the spin flip transition sZ,- = - 1/2 -
Sz = 1 /2.
In the zero-temperature limit, these levels are the

ones around the Fermi level, and one has :

Depending on the value of kE, 6 takes values between 0
and EF, and hence rC lies between 0 and

(see (53)). We shall parametrize this variation of 6
(and rj through the variable

kx is related to the centre of the classical trajectory
by yo = k,,I I e I Bo. As we have seen before, one must
consider the two cases I yo I  rc and yo &#x3E; rc sepa-
rately. We shall introduce besides p another dimen-
sionless variable q :

With these changes of variables, we get :

(Notice that when I yo  rc, f1  1, the value of the
cyclotron energy 9, is most clearly characterized by the
period of the classical motion, that is by the variable
v = OJc/úJI which has been introduced before. In this
case we shall replace d q by n sin (nv) dv, and use the

dn co,
semi-classical formula Wc dB = 2013 == v. )dc 1
Formulae (71) and (75), together with the expres-

sions for the states n, Oz, B &#x3E; given in (64) and the
matrix elements of BT(y) given in (68-70), allow the
computation of the transition probability (T(2013 1 /2 -
1/2). The simple considerations developed previously
suggest the following general form for 5’( - 1/2 --+ 1/2) :

where the dimensionless number a is expected to be
negative and of order one. (Our previous simple esti-

mate gives :It ’" - m 2.9).M* 2.9
It is convenient to write % as the ratio of an elec-

troweak interference term Ipovo (where the electroweak
scale parameter rF/lp.,. has been factorized) by a
reduced parity conserving probability Pp.,,,. :

The quantities Ipovo and Pp.,. are given by a sum of
two terms

The values s = 2 and s = 1 are associated with
cases ii) (I Yo I  rc) and i) (yo &#x3E; rc) respectively.
The explicit formulae giving Ips;,, and PP(s) in terms
of the integrals Rq and Iq read as follows :
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The formulae corresponding to case i) (yo &#x3E; rj are much simpler ; there is no summation upon q,

We : = 1 and the integration upon il can be done explicitly : :

Besides m/m* and lp.,., the asymmetry depends only
on the parameters K and w, which characterize the
penetration of the r.f. magnetic field inside the metal,

and on r - m* 2 EF . 2 Al t h ough the absolute values2FE Fand on rF = 2 EF . Although the absolute valuesm * w2
of Ip.v. and Pp... exhibit substantial variations with
w and the dimensionless parameter KrF, the ratio
r = IP.V.IPP.C. stays around the value - 2.3, with
fluctuations of the order of a few percent, as is appa-
rent in table I.

Let us give a numerical evaluation corresponding
to a typical experimental situation : we shall consider
the case of caesium, withm*/m = 0.7andlp.,’ - 11.2 m,
and assume that the collision time I is sufficiently
large : 0),v r _ 10 (2). It is shown in the appendix
that in this situation K and w are given by

where 6 is the anomalous skin depth. 6 and rF depend
on the wavelength A of the radio-frequency field, and
their values in caesium are :

Choosing A = 3 cm as a typical value for the r.f.

wavelength, we get :

The ratio % computed with the above value is :

The left-right angular asymmetry AL.R.(8) is given by :

Table I. - Transition probabilities Pp.c. and parity violating interference terms Ip.v. for various values of ano-
malous skin effect parameters, KrF cos cp and KrF sin q. To get the left-right asymmetry the numbers in the last
column have to be multiplied by rFIlp.v. cot 0.

(2) With A = 3 cm the assumption Wc 1 - 10 corresponds to a relaxation time i of the order of 1.6 x 10-10 s. Although
values of 1 10 times larger have been achieved for instance with very pure copper samples, it is far from obvious that our
assumed value of r could be obtained with caesium samples.
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Taking A = 3 cm together with the value of lp.v. =11 m
obtained in section 1, we obtain a typical value of the
angular asymmetry :

The order of magnitude of the left-right asymmetry
is comparable to what has been observed in atomic
caesium experiment, where an interference term

between a parity violating electric dipole and an
electric dipole amplitude induced by a static electric
field Eo is measured. The left-right asymmetry is

inversely proportional to Eo. The value chosen for
Eo results from a compromise between the signal to
noise ratio and the magnitude of the left-right asym-
metry which is the relevant parameter for the problem
of systematic errors. A similar adjustment could be
performed here by varying the angle 0.

Appendix. ,

When the condition rF/b &#x3E;&#x3E; 1 is satisfied, the Fourier
transform of the conductivity tensor dij(q, m) is

given by the following asymptotic formulae [16] :

where

To leading order in 1/a, the Maxwell equations in
the metal admit a solution of the form :

with

The solution inside the metal (y &#x3E; 0) can be continued
to the whole space by the relation :

In order to have a non-trivial solution with the correct

boundary condition for = 0, the derivative aEy ay
must have a discontinuity for y = 0

Let us introduce the Fourier transforms of the
fields E, B

The Maxwell equations, written in Fourier space
(with a surface current added in order to account for

the discontinuity of aE read as follows :
ay

From the above equations, one immediately gets :

In the above formula, one can drop the term in collcl
since doing so one introduces a term of the order of

ð 21 À 2 where 6 = VF T - is the anomalous skinBTo 0 (Otto)
depth. It is convenient to rewrite B(q) as :

where

The magnetic field B (y) in coordinate space can be
written as :

/ .. ’1/’1. 1

with

Let us consider first 1 (y) ; the integrand has three
poles which we write as :

with



1598

constant of order unity. If one takes We r = 10 and

Performing a contour integral around the first qua-
drant of the complex plane, one obtains :

We perform a similar operation for J (y) but this time
taking as contour the fourth quadrant. Since the

integrand has no pole inside this contour, we get :

Performing the change of variables u = qbO) ç and a
suitable integration contour deformation, we get the

final formula for B(y) :

Introducing the maximum cyclotron radius rF

corresponding to A = 3 cm, we get the numerical
formula :

the function ç2 ç6 is strongly peaked for the value1 +

Çm 0.89 so that the contribution from

the exponential is expected to be dominant. We have
verified that it is indeed the case, the contribution
from the integral gives a correction of a few percents
which has been neglected in the number quoted in
section 4.
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