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We apply the quenched Eguchi-Kawai reduction procedure to N-component spin models. We 
first recover the equivalence of the O(N) symmetric Heisenberg model with the spherical model at 
large N, and we extend it to the case where a quenched random external field is present. When the 
random field has a gaussian distribution, we show that Griffiths singularities disappear as N ~ o0. 

1. Introduction 

Field theories with symmetry group O ( N )  (or U ( N )  . . . .  ) become quite simple 
when N becomes large. This large-N limit (and 1 / N  expansion) has been extensively 
studied in spin models and in matrix models. In the first case, where the fields 
belong to an N-dimensional representation of the group, one can generally solve the 
model for N ~ o0. As for the second case, where the fields are in an N2-dimensional 

representation, there are also many  simplifications when N gets large, although an 
exact solution is still generally out of reach. Last year, an important  step was taken 
in this direction: starting from the original idea of Eguchi and Kawai [1], it has been 
shown that, in the large-N limit, gauge theories can be reduced to one space-time 
point, provided one uses quenched momentum variables [2-4]. 

This reduction can also be applied to spin systems. It  has been recently used in 
this case by Goldschmidt [5] who introduces replicas to perform the quenched 
average over the momenta  in the reduced model. We shall see that this integration 
over momenta  is not needed, so that one can avoid the introduction of replicas and 
the usual intricacies associated with them. 

Furthermore, we can make a special choice of quenched momenta  such that the 
reduced theory (which is a model involving only one N-component  spin) be 
equivalent to a theory of N spins having, each, only one component  at each point of 
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a d-dimensional lattice. We then have to study the usual thermodynamic limit of this 
last model. 

An interesting problem to which this reduction technique can be applied is the 
problem of Heisenberg spins in an external random field. This is one of the simplest 
statistical mechanics system with randomness, and it exhibits striking effects: it is 
generally believed that the critical behavior of a spin system in a random field in d 
dimensions is the same as that of the pure system in ( d - 2 )  dimensions [6-9]. 
However, as has been emphasized by Parisi [10], the general validity of this result is 
somewhat obscured by the existence of Griffiths singularities. From the work of 
Griffiths on the randomly diluted Ising system [11], one expects that there will 
appear, in a random system in d dimensions, essential singularities in physical 
quantities at and below the critical temperature of the pure d-dimensional system. 
The intuitive explanation of these singularities in a diluted system is the following: 
given a region of space as large as one wants, there exist configurations (which 
appear with very small probabilities) such that this region is impurity free, and 
develops a spontaneous magnetization. These very large impurity free clusters give 
rise to singularities in the free energy. 

The large-N limit is a simple non-perturbative approximation scheme where one 
can try to understand these singularities. Using the quenched reduction technique, 
one finds that the large-N limit of the classical Heisenberg model in a random field 
is equivalent to the spherical model in a random field. In this spherical model, we 
show that, when the probability distribution of the random magnetic field is 
gaussian, Griffiths singularities do not appear. This result is confirmed by mean-field 
theory arguments, which indicate that these singularities vanish exponentially when 
N --+ oo for N component spin systems in a gaussian random field. 

In sect. 2, we explain the quenched reduction in  spin systems, with special 
emphasis on a special choice of momenta which allows us to recover the known 
results. This procedure is then applied to spin systems in a random field. 

Sect. 3 is devoted to an analysis of Griffiths singularities: it is first shown that 
they are absent in the spherical model in a random field; we then study the 
mean-field theory arguments of Parisi and extend them to N-component spins. 

These results are summarized in sect. 4. 

2. Large-N reduction for spin models 

The aim of this section is to show that the large-N limit of a d-dimensional spin 
system can be most easily analyzed by means of the following two-steps procedure: 
reduction to one space-time point, followed by a mapping of this reduced model 
(one N-component spin) onto a model of one-component spins on a d-dimensional 
lattice. The first step is not very surprising since it is well-known that for large N, the 
functional integral is generally dominated by the contribution of a uniform saddle- 
point. As for the second step, its meaning can be somehow clarified by quoting the 
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result in a simple case: when applied to the classical Heisenberg model, it leads to a 
system of N one-component spins S~ at each site of a d-dimensional lattice with the 
global constraint E~S 2 = N. So we recover the fact that the large-N limit of the 
Heisenberg model is the spherical model [12,13]. What we shall see in the following 
is that this kind of equivalence exists in more general models, and that it remains 
valid in the presence of a random magnetic field. The proof we shall give here relies 
on the identification of the dominant diagrams in the perturbative expansions of the 
original model and of the reduced one. It can be carried out both in the high-temper- 
ature phase and in the low-temperature phase, showing that both models are truly 
equivalent. Let us also mention that another derivation can be obtained from the 
stochastic quantization method [17], which allows to incorporate the random field in 
a simple way. 

In order to keep the notation simple, we shall consider the case of the ([~[:)z 
theory. ~(x~) is an N component complex vector field* sitting at the nodes of a 
hypercubic d-dimensional lattice E of size 9L = L d. (We choose the units such that 
the lattice spacing be equal to one.) The partition function is 

{½~(/,~j N 

Z (B, Nl=f®,l, exp E ( ~ ' ) * a ( X i ) * a ( X j ) " [ - q ) * a ( X j ) * a ( X i ) )  
) a = l  

-mZ/,~, a Iq~ (xl)I z - g  ~i(~lq~a(Xi)l , (1) 

where the interaction E(i, j)is between nearest neighbours. 
The corresponding reduced model is given by [3-5] 

ZR(B,N, Pa)=f d'l'exp ½B E (2cosV2)lq',,IZ-mZEl*,,I2- I'/'al 2 , 
l.~1 a 

(2) 

where we have introduced N momenta Pa = (P2 . . . . .  P f )  which must be integrated 
over the Brillouin zone [0, 2rr] a. The result is then the following: the free energy per 
site of the original problem (1) is equal, in the large-N limit, to the quenched free 
energy of the model reduced to one site (2), that is: 

lim 1 N--,= f I- I d"Po ~._, -~ logZ~(fl, N) - J a ~-~ "21°gZR(B'N'Pa)" (3) 

* We use here a complex field for notational convenience. It is easily seen that the argument can be 
applied for real fields as well. We give the general result in (9)-(11). 
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A simple way to prove this equivalence (3) is to notice that the diagrammatic 
expansion of the quenched reduced model gives back, exactly, the bubble diagrams 
that dominate in the diagrammatic expansion of the original model, with the same 
weight and the same momentum integrations. But this equivalence goes beyond 
perturbation theory since both theories verify the same whole set of Schwinger-Dyson 
equations for large N* (This is easily seen by using the well-known factorization 
properties of correlation functions at large N). All these results are analogous to 
what is found in gauge theories where the reduced system reproduces the planar 
diagrams [3-5]. 

However, it is not necessary to integrate over the quenched momenta in (3) [4]. In 
fact, one can choose, instead, specific values of the Pa which densely and uniformly 
cover the Brillouin zone in the large-N limit. The reason for this is that the function 
log ZR( fl, N, Pa) is symmetric under any permutation of the P~. Therefore, it is 
equal to the average over permutations (log ZR(fl, N, P~))pema- But for large N this 
average tends to the statistical average of P~ uniformly distributed in the Brillouin 
zone, precisely used in (3). Hence one simply gets: 

lira 1 N)  N~oo ~z-~ oo "~ log Z~  (fl, log Z R (/3, N, Pa), (4) 

provided the Pa are chosen so as to cover, densely and uniformly, the Brillouin zone 
as N ~ oo. In fact, in this simple case of spin systems, this prescription (4) is even 
better than the original one (3) since it remains valid for diagrams with more than N 
loops. 

We shall now make use of this possibility of choosing the momenta, to obtain a 
mapping of the internal degrees of freedom onto points in momentum space: we 
shall map the N-component model reduced to one point, as given in (2), onto a 
one-component model on a d-dimensional lattice with N sites. Then the large-N limit 
will just be the thermodynamic limit for this last model. We may suppose that N is 
of the form: N = (L ' )  d. Then we can choose to characterize each value of the vector 
indices " 'a" by a point on a hypercubic lattice ~' of size (L ' )  d and a lattice spacing 
equal to one, namely: 

a = (a 1, a 2 . . . . .  ad) ,  (5) 

the a i being integer numbers such that 0 < ai < L ' - 1 .  Our choice of Pa is the 
following: 

a# 
P~ = P~l,a2 ...... ,,) = 2~ L ; -  1 " (6) 

This choice is obviously of the form required for the validity of (4), since we have 

* Of course, we keep to Green functions which axe invariant under the symmetry group (here O(2N)). 
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just divided the Brillouin zone into (L ' )  d identical cubes, each one containing one of 
the P,. We can now consider the P: as wave vectors associated with the lattice E', 
hence the indices a label these wave vectors. Let us identify q~a as Fourier transforms 
of a new field ~ sitting at the nodes ri of the lattice E': 

1 e_ie .,,41a. (7) 

In the expression (2) of the reduced partition function Zlt, we perform a change of 
variables from 4,a to ~; the result is: 

'~~ ( z,<(a,,v)---fr-i d,~(r,)exp ~,8<~ (<~"(r,),~(~.) +<~*(,~),~(r,)) 

_m2 l~. lti~(r/)[z .~( i~, " ]~(r/)]2) 2, (8) 

and the summation ]~u,J) is the sum over nearest neighbours. We have obtained the 
following result: the free energy per degree of freedom of the initial (g/N)(14,12)2 
model is equal, in the large-N limit, to the free energy per site of a system of 
one-component field ~, with a delocalized potential ( g / N ) ( E  i I~(ri)12). 

As this derivation relies only on the quenched Eguchi-Kawai reduction with the 
special choice of momenta (6), it can be generalized to other models. For instance let 
us consider the general class of models that were studied by Halpern [14] with a 
saddle-point method: 

z~(fl)=fI-I®4,<,expa=, 2fli, i v'j 4~,<'+j ' - N  . V +,"+f , (9) 

where v? is an arbitrary (translation invariant) interaction, and V an arbitrary 
potential. The corresponding reduced partition function is: 

N 

. . , , , ,  ) -- s <.oo o.,.o °.oo)), (lO) 

and with the choice (6) for the momenta, it can be mapped onto a model on a 
N = (L ' )  d lattice: 

N 

(11) 
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In the large-N limit one finds: 

lira 1 1 N)N~oo 1 ~--,oo ~ og Z~(f l ,  ~ l o g  ZR(fl ) . (12) 

This shows the equivalence of the three problems: 
the N ( ~  oo)-component model with a local, O(N) invariant potential 

~iV([g/N]~id~ 2) in the thermodynamic limit (9); 
the N ( ~  oo)-component model, with potential V, reduced on one lattice site, with 

quenched momenta (10); 
the one-component model with delocalized potential V([g/N]Ei62), in the ther- 

modynamic limit (11). 
Finally, let us notice that it is very easy to solve these models starting from the one 

component form (11), by defining an auxiliary field × =  El62. After a trivial 
calculation one obtains the usual gap equations of this model (see [14, 5]). It must 
however be emphasized that, although this method allows easy computation of the 
leading behavior for N ~ oo, it does not give, as it stands, the 1/N corrections. 

To end this section, we point out that the quenched reduction can also be applied 
to a spin system in a random field. This will imply that the large-N limit of the 
Heisenberg model in a random, spherically symmetric, field, is nothing but the 
spherical model in a random field. For definiteness, we shall stay in the framework 
of the (1~12) 2 theory*.  Let us suppose that this system is placed in a magnetic field 
h(xi) which is a quenched random field variable with a probability distribution 
d# [h]. The relevant quantity is then the average of the free energy over the field 
configurations: 

F_-nm 1 ~-.oo ~ f  dt~[hllogZ~[h]. (13 t 

We shall only study the simple problem where the magnetic field has a gaussian 
distribution: 

dtt[h]=I~Ii [d(S'hi(crw,~-N/2exp(-l~i ,hi,2)]. (141 

In this case one can derive a diagrammatic expansion for if: the diagrams for ff are 
the usual connected vacuum graphs of the (I,1,12) 2 theory, with "w insertions" on 
certain propagators: one has two types of propagators: 

normal propagator: a p b 1 

• ,  o(plSO , 

w insertion: a p b 1 1 
" _ _  8o : ' . . . .  ¢ o ( p ) W  . ,  

"From now on, the field is considered as real. 
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and the only constraint on the position of the insertion is that, if one cuts the 
diagram along the crosses, one still has a connected diagram. Since the insertions are 
diagonal in internal space, the dominant diagrams in the large-N limit are still 
bubble chains, with a certain number of w insertions subject to the above-stated rule. 

The  same diagrammatic expansion, with the same rule for w insertions, is obtained 
from the following reduced model: 

ZR(h, eD=f d'l'exp ½B E (2cosPa~)(q~a) 2 

- m 2 ~ a  (q~a)2 -- ~ ( ~ a ) )  + hadPa , (15) 

where h a is just the N-component field on one site, with the gaussian distribution: 

dpg [h] = d'N)h (~rw)-~V/2exp( - h 2 / w )  (16) 

and the average over h is quenched, which means that the reduced mean free energy 
is 

FR = / 'd~R[h]/ 'I-I  ddpa~logZR(h, Pa)" 
a a a (2~')" 

(17) 

The result is exactly analogous to the case where there is no random field. Here 
also, the result is valid to all orders in the perturbative expansions, both in the 
high-temperature and in the low-temperature phases: 

l f f ( f l ,  N ) N - ' ~  1 - -~ FR ( fl, N ) . (18) 

We can then choose the momenta Pa as in (6) to get a one-component model, with a 
delocalized potential (E,(~i)2) 2, in a random fidd. The generalization to other 
rotation invariant potentials is straightforward. 

3. Spherical model in a random field and Griffiths singularities 

As we have seen before, the large-N limit of the classical Heisenberg model in a 
random field is thermodynamically equivalent to the spherical model in a random 
field. For this reason, we shall first study this spherical model where we find that 
Griffiths singularities do not appear. This suggests that these singularities vanish for 
N large. Then we shall show that our result can be simply understood in the 
mean-field theory approximation. 
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The spherical model is a simple model exhibiting a second-order phase transition 
that can be solved in any dimension [12], and as such has been much studied. In the 
presence of an external random field, the first evidence of the shift of critical 
dimensionality d ---, d - 2 was found by Lacour-Gayet and Toulouse [6] in a problem 
which is formally equivalent to the spherical model: the ideal gas Bose condensation. 
Recently the random field spherical model has been studied by Pastur [15] and by 
Hornreich and Schuster [16]. In fact the authors of ref. [16] started from the large-N 
Heisenberg model, using the replica trick and a saddle-point method. This involves 
the assumption that the saddle-point is symmetric in replica space. As it is not clear 
to us whether this method may hide eventual Griffiths singularities, we shall avoid 
the introduction of replicas. 

The partition function of the spherical model in a random field is: 

Zs [h ,$ ]  =f~ql-fI_l dq, qexp ½/~ E v(q)'l'2q + BEhqq'q , (19) 
- q ~ l  q 

where q are momenta on the d-dimension lattice, q~q are the Fourier transforms of 
field variables and o(q) is the Fourier transform of the interaction potential. The 
integration volume is restricted to the hypersphere S: 

E%2=N. (20) 
q 

Although our argument can be used directly on (19), it is easier to study rather the 
"mean spherical model", where the constraint (20) is implemented on average only. 
Therefore one introduces a chemical potential ~,, and the partition function is: 

ZMs[h,~.,[3]=~-~-Nf q~ 1 depqexp ½fl~qO(q)e~2+flY'~hq~q-h(~.,q~2q-N) q 

(21) 

where Arc is a normalization constant, and the chemical potential h is chosen such 
that: 

alog Z~s[h,  h,/3] 
O. (22) 

The relation between the spherical model and the mean spherical model is exactly 
analogous to that which exists between the canonical and the grand canonical 
ensembles in statistical mechanics. So one expects that the two models are equivalent 
in the thermodynamic limit, at least at the points where no phase transition occurs. 
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The fact that this result holds in the presence of a random field has been shown by 
Pastur [15], We also notice that, with formulae (21)-(22), the analogy of our problem 
with the ideal gas Bose condensation studied in [6] and described here with a grand 
canonical ensemble, is clear. 

Let us now state the main problem: the chemical potential computed from (22) is 
a function of 13 and of the field configuration h: ~ = 7~0[h, fl], and the averaged free 
energy that one wants to compute is: 

F---lim l f d#[h]logZMs[h,?~o[h,/3],fl]. 
N-'-* oo 

(23) 

Of course, it is difficult in (23) to keep track of the h dependence of )~0, since this is 
given by an implicit equation (22). The authors of refs. [6,15] therefore introduce a 
mean chemical potential which verifies (22) only on average. We shall briefly 
describe a method which allows us to do the true average as defined in eqs. (22), 
(23). 

We start from the partition function ZMS in (21). The integral over the field ¢~q is 
unconstrained, so it is just a gaussian integral that is done easily and gives: 

eh N N 1 /3 hq - ½ l o g  ( 2 4 )  
ZMS = ~-N exp Y'~ 2 2X - fly(q) -2--~ " 

I_q=l 

Let us notice that, in order for ZMs tO be defined, the chemical potential ~ must be 
in the range Re X > ½/3max v(q), which gives, for nearest neighbour interactions: 
Re h > ½fly(O) = fld. We define z = h/fl, and rescale the potential by ½ such that 
v ( q ) =  d E~=I COS q~,. We get: 

W[h, z]-  lOgZMs---- ~'_,(/3z--110g2/3--Xlog(z--o(q))+x/3-- hzq } , (25) 
q z - v ( q )  

where we have dropped an arbitrary constant. The constraint equation (22) is 
OW/Oz = 0, which defines the chemical potential z = zo[h ]. (Hereafter, we shall not 
write downthe  dependence on/3 explicitly.) 

In order to compute the free energy in (23), we need W[h, z0[h]], which we will 
write as 

w [  h, Zo[ h ]] = dz W[ h, z ]8 ( z  - Zo[ h ]) 
Ud 

o~ .{ 02W 
(26) 
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In deriving (26), we have used the fact that the equation OW/Oz = 0 has only one 
solution z0[h ]. On the form (26), one can do the average over h: We shall as before 
keep to fields with a gaussian distribution: 

N 

d /~ th ]=  I I  [(vrw)-l/2exp{-h~/w}]. 
q = l  

(27) 

From (26), we obtain the following average free energy: 

1~ f i f =  lira -~ dz da  
N-"~ oo 

× 

d"q ( 1 
Nf ~12[z-o(q)]2 )1 t -[z-v(q)]3( 1 +¼wflia/[z-v(q)] z) 

) 
[ z - v( q')] (1 + Jw~ia/I z - v( q')] ~) 

1 1 ] × e x p ( N / 7 : - - ~  ~ , .  ;3 
[ (2¢t) 2 z - v(q") 

- ½1og[l + ¼wflia/[ z - v( q")]2] ) } . (28) 

This is a two-dimensional integral which can be computed for N ~ oo by a 
saddle-point method: one must find the saddle-points of the function: 

[ J(et, z )=ia f l - ½ f  ddq 1 _½ log 1 +  
(27r) a z - v ( q )  

w ,o ] 
4 ( z - v ( q ) )  2 " 

(29) 

By writing the stationary equations, one finally finds that the saddle-point must have 
a s = 0, hence z s must be a solution of: 

d"q 1 f 2fl 
= J  (2 ,0a  z~- o(q) 

+ ~awf daq 1 
(2~) ~ [ z ~ - o ( q ) ]  2' 

~=o.  (3o) 
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This allows us to compute the free energy in (28), and one finds 

ff=Bzs-7 log[2B(zs-o(q))]+~Bwf 1 (31) daq 
(2rr) a z s -  v (q ) '  

including the fluctuations around the saddle-point. The equations (30) and (31) 
summarize the results obtained by computing the "true" free energy defined in eqs. 
(22), (23). However these equations are precisely those that can be obtained by using 
the prescription of the average chemical potential [6,15]. So we have found that, in 
this case, the probability distribution of chemical potentials is well-behaved and the 
approximation using an average chemical potential gives the correct result. In 
particular there is no appearance of Griffiths singularities in this problem. From (30) 
and (31) one can obtain all the relevant information on this system. For instance, 
from (30), one immediately finds that the lower critical dimension is 4, for w 
sufficiently small. Indeed, the equation for fl is 

2fl = / l (&)  (32) 
1 - ~wI2(&)' 

where 

i i ( z )=  f ddq 1 ddq 1 
(2~r) a z - v ( q ) '  (2~r) a (z - v(q))  2" 

For d~< 4, I2(z) is divergent at z = d, which means that the saddle-point &(fl) can 
be found from (32) for all/3: there is no phase transition. For d > 4, there is a phase 
transition if and only if w is smaller than 8/I2(z = d). 

More detailed properties of this interesting model, including critical exponents 
and the value of the Edwards-Anderson order parameter, have been studied in the 
literature [6,16], so we shall not develop these points here. 

In the mean-field theory approximation the different points decouple and one is 
reduced to the study of a zero-dimensional model. For one-component spins Parisi 
has shown that the Griffiths singularities are present also in this zero-dimensional 
case [10]. For completeness we shall briefly give his argument and generalize it to 
N-component spins. The potential is 

S = ½m2t~. t~ + ~N (t~" #p)2 + h • dp. (33) 

The mean-field solution is the solution ~h which is the minimum of this potential; it 
satisfies the equations: 

~ , ' g  ¢Ph) ~, = - h " .  (m 2 + (34) 

The point m 2 = 0 corresponds to the critical temperature of the pure system. We are 
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interested in the vicinity of this point, that is m 2 negative and small. Let ,h( i ) ,  
i = 1 . . . . .  s be the extrema of the potential, solutions of (34), ordered with increasing 
energy. The true average correlation function is obtained from the absolute mini- 
mum of the potential: 

6 = f [hl,h(1)-*h (1). (35) 
In this case the absolute minimum lies in the region where 

m2N 
*h" *h + - -  > 0, (36) 

g 

and the average correlation function is given by: 

G = f dh e x p ( - h Z / w )  f d*  .20 ( .2  + m2N/g) 

g 2 2g Xg~[(m2q-g*2)cfpa+ha]{det[(m2q'-~* )~ab-b--~a,b]). (37) 

On the other hand, the average correlation function G DR associated with the 
dimensional reduction theory is easily obtained from, for instance, ref. [9]: it is given 
by the same formula as (37), without the 0 function. Hence G D~ is incorrect in the 
case where (34) has several solutions since it computes the sum over the extrema of 
the potential: 

+ g 2 , 2 g  o .  GDR= L d ~ h ( i ) ' * h ( i ) × s i g n ( d e t [ (  m2 ~*h( ))Sab+~*h( i J," (38) 
i=l 

In the case N = 1, one sees from (37) that G D~ misses the singularity at the point 
m 2 = 0 which is present in G because of the 0 function. 

Let us now see what happens for large N: 

, g 2  ' ~ - ' [  _~,2) G=fd**20(*z+m2N)(m2+-N ) t m2+ 

× e x p [ -  1 , 2 ( m 2  + g , 2 ) 2 ] .  (39) 

We rescale the field by writing I*1 --- ~/Nr, which gives 

G=CNfo~drr20(m2+gr2)(m2+3gr2)exp[ - 1-2'-2w" ' '  +gr2)2] 

Xexp((N-1)[½1ogr2+log(m2+gr2)-lr2(gr2+m2)2]). (40) 
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For  N ---, oo, we evaluate this integral by a saddle-point approximation. The result is 
the following: for m 2 slightly negative, there are two possible saddle-points: 

one at r 2 = t(-m2/g)==-r02; 
one which is the solution r 2 of the equation ½w = r2(gr  2 + m2) 2. 

One finds that r 2 > ( - m 2 / g ) ,  and for ( - - m  2) sufficiently small, the dominant 
saddle-point is rl*. This means that the dominant contribution to G around the 
poin t  m 2 --- 0 can be obtained from (40) by forgetting the 0 function: for large N, the 
average correlation function G does not develop any singularity around the critical 
point of the pure theory. In fact, the singular term in (40) vanishes exponentially for 
N ~ oo, relatively to the dominant contribution. 

One point that must be emphasized is that all these results were obtained for the 
problem of a quenched random field with gaussian distribution. It might be possible 
that they do not remain valid for other types of distributions of the random field. 

4. Conclusion 

The study of the large-N limit in matrix models seemed to be, at least technically, 
quite different from what happens in spin systems. The quenched reduction proce- 
dure provides a kind of unified framework for these two types of models. One 
important problem which remains unsolved in the reduction of gauge theories is how 
to incorporate 1 / N  corrections. From this point of view it is interesting to see how 
the reduction works in spin systems: in that case one knows what these corrections 
are by computing fluctuations around the saddle-point. Hence it might be a place 
where one could try to exhibit a modified reduction scheme that would give the 1 / N  
terms correctly. 

On the other hand, large-N reduction in spin systems turns out to be interesting in 
itself. Here we have applied it to random-field problems, and this allowed us to show 
that Griffiths singularities vanish for N ~ oo, at least in the case of an external 
random field which has a gaussian distribution. 

It is a pleasure to thank Nicolas Sourlas for many comments and criticisms, as 
well as for a careful reading of the manuscript. I also gratefully acknowledge 
discussions with B. Den'ida, G. Parisi and G. Toulouse. 

Note added in proof: 

The problem of the spherical model in a random field has also been considered in: 
M. Shwartz, Phys. Lett. 76A (1980) 408. 

* This is true Jal the vicinity of the critical temperature of the pure system, that is for: ( - m 2) < (~gw)1 /3 .  
If ( -  m 2) becomes larger than this critical value, singularities shall develop again. 
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