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Group Testing with Random Pools:
optimal two-stage algorithms

Marc Mézard, Cristina Toninelli

Abstract—We study Probabilistic Group Testing of a set of N items each of which is defective with probability p. We
focus on the double limit of small defect probability, p ≪ 1, and large number of variables, N ≫ 1 , taking either p → 0

after N → ∞ or p = 1/Nβ with β ∈ (0, 1/2). In both settings the optimal number of tests which are required to identify
with certainty the defectives via a two-stage procedure, T (N, p), is known to scale as Np| log p|. Here we determine the
sharp asymptotic value of T (N, p)/(Np| log p|) and construct a class of two-stage algorithms over which this optimal
value is attained. This is done by choosing a proper bipartite regular graph (of tests and variable nodes) for the first
stage of the detection. Furthermore we prove that this optimal value is also attained on average over a random bipartite
graph where all variables have the same degree, while the tests have Poisson-distributed degrees. Finally, we improve
the existing upper and lower bound for the optimal number of tests in the case p = 1/Nβ with β ∈ [1/2, 1).

Index Terms—Group testing, reconstruction algorithms

✦

1 INTRODUCTION

The aim of Group Testing is to detect an un-
known subset of defective (also referred to as
positive or active) items out of a set of objects
by means of queries (the tests) in the most
efficient way. In other words we are given a
set of objects, O, which contains an unknown
subset of defectives, D, and the task is to
identify D by means of the fewest possible
number of tests. Tests are queries of the form
“Does the pool Q (where Q is a subset of O)
contain at least one positive item?”. This prob-
lem was originally introduced in relation with
efficient mass blood testing [1]. Afterwards, it
has been also applied in a variety of situa-
tions in molecular biology: blood screening for
HIV tests [2], screening of clone libraries [3],
[4], sequencing by hybridization [5], [6], . . . .
Furthermore it has proved relevant for fields
other than biology including quality control in
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product testing [7], searching files in storage
systems [8], data compression [9] and more re-
cently in the context of data gathering in sensor
networks [10]. We refer to [11], [12] for reviews
on the different applications of GT. Here we
will deal with the very much studied gold-
standard case, namely the idealized situation
in which tests are perfect: there can be neither
false positives nor false negatives in the test
answers. It is important to keep in mind for
future work that, however, in many biological
applications one should include the possibility
of errors in the test answers.

Before presenting our results we recall some
standard classifications of GT problems. First of
all a GT problem can be either Combinatorial
or Probabilistic. Combinatorial GT refers to the
situation in which D can be any member of
a predetermined class of sets in O. The task
is here to find the algorithm which requires
the minimal number of tests to determine D
in the worst case. In probabilistic GT we are
given a configuration space S and a probability
distribution µ on S and the set of objects O (and
therefore the corresponding D) is chosen in S
according to µ. In this case the task is to opti-
mize the expected (with respect to µ) number of
tests required to determine D. Furthermore in
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both combinatorial and probabilistic GT there
is an additional classification which concerns
the number of stages, i.e. parallel queries, in
the detection procedure. For one-stage (or fully
non-adaptive) algorithms all tests are speci-
fied in advance: the choice of the pools {Q}
does not depend on the outcome of the tests
(and therefore does not depend on O). For
several biological applications a non-adaptive
procedure would in principle be the best one.
Indeed the test procedure can be destructive
for the objects and repeated tests on the same
sample require more sophisticated techniques.
However the number of tests required by fully
non-adaptive algorithms can be much larger
than for adaptive ones. The best compromise
for most screening procedures [13] is therefore
to consider two-stage algorithms with a first
stage containing a set of predetermined pools
(tested in parallel) and a second stage whose
pools are chosen depending on the outcomes
of the first stage (and therefore on the choice of
O). For Probabilistic GT the only possibility to
detect all defectives with such a procedure is to
choose a trivial two-stage algorithms [13] which
individually tests on the second stage all the
variables which are left undetermined by the
first stage. Here we will consider Probabilistic
Group Testing when µ is Bernoulli product
measure and we will analyze the performance
of two stage algorithms as a function of the
overall number of objects, N , and of the prob-
ability that a chosen object is defective, p. In
particular we will analyze the relevant limit of
small p and large N , which has already been
investigated in ( [13]–[16]). A detailed account
of our new contributions follows.

2 NOTATION AND RESULTS

We consider Probabilistic Group Testing in the
Bernoulli p-scheme: the configuration space is
S = {0, 1}N , namely the set of all vectors
X = (x1, . . . , xN) with xi = {0, 1}, and the
probability measure is Bernoulli product mea-
sure µp with marginal µp(xi = 1) = p, namely
µp(X) =

∏N
i=1 pxi(1 − p)1−xi . For a given choice

of X we say that variable i is (is not) defective
or positive if xi = 1 (xi = 0).

A test of the type “Does pool Q contain at
least a defective?” corresponds here to asking
whether the value of the random variable con-
structed as an OR function among the variables
of the pool equals one or zero. More precisely
we will call “pool a” an N component binary
vector Pa = (c1a, c2a, . . . , cNa) with ci,a ∈ {0, 1}
and we will say that variable i belongs (does
not belong) to pool a if ci,a = 1 (ci,a = 0). With
this notation we will call “test a” the random
variable Ta ∈ {0, 1} with Ta = 0 if ci,axi = 0
for all i = (1, . . . , N), Ta = 1 otherwise. In
other words Ta is the OR function among the
variables that belong to pool a.

For a given choice of the variables, X , and a
set of M pools, {Pa}, a = 1, . . .M , we say that:
(a) variable i is a sure zero if there exists at
least one a ∈ (1, . . . , M) such that: i belongs to
pool a and Ta = 0 (b) variable i is a sure one
if there exists at least one a ∈ (1, . . . , M) such
that: i belongs to pool a, Ta = 1 and all the
other variables j, j 6= i, which belong to pool a
are sure zeros.
It is obvious that if i is a sure zero then xi = 0
and if i is a sure one then xi = 1. Note that
however the converse is not true: there can be
a zero (one) variable that is not a sure zero (sure
one, respectively). Indeed, any given choice of
X , M and {Pa} a = (1, . . . , M), identifies the
following subsets of V := {1, . . . , N}.
(i) The zeros and the ones

Z := (i : i ∈ V; xi = 0)

D := (i : i ∈ V; xi = 1) = V \ Z;

(i) The sure zeros and the sure ones

Z ⊃ S0 := (i : i ∈ V;
M∏

a=1

(Ta)
ci,a = 0)

D ⊃ S1 := (i : i ∈ V;
M∑

a=1

ci,axi

∏

j 6=i

(1IS0(j))
cj,a > 0)

(here and throughout this paper we define
00 = 1 and 1IA stands for the characteristic
function of set A);.
(iii) The undetermined zeros and the undeter-
mined ones

U0 := Z \ S0, U1 := D \ S1.
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The two-stage algorithms that we consider are
composed by a first stage of parallel tests and
a second stage of individual tests over the vari-
ables whose value has been left undetermined
by the first stage. Therefore the choice of the
algorithm is completely defined by fixing the
number of tests in the first stage, M ∈ N,
and by choosing the pools {Pa}, a = 1, . . . , M .
The latter corresponds to fixing an N × M
matrix CN,M with binary entries ci,a ∈ {0, 1}
which give the i-th component of vector Pa.
This will be called the connectivity matrix. In
other words, the choice of the algorithm cor-
responds to fixing a couple (M, CN,M), namely
choosing a bipartite graph G = G(CN,M) with N
variable nodes and M test nodes. The number
of tests required to identify the defectives (i.e.
to decode the value of X), T (X, M, CN,M), is
therefore given by the number of tests in the
first stage plus the number of variables which
are left undetermined by them, namely

T (X, M, CNM) := M + |U0| + |U1|. (1)

Note that U0 and U1 depend in general on
X, M and CN,M . We will denote by TM,CN,M ,p

the mean of T (X, M, CN,M) over the Bernoulli
distribution µp for X , namely

TM,CN,M ,p := M +
∑

X∈S

µp(X) (|U0| + |U1|) . (2)

In this probabilistic setting the first important
issue is to determine the optimal value T (N, p)
of TM,CN,M ,p over all two-stage algorithms, i.e.
over all choices of M and CN,M

T (N, p) := min
M,CN,M

TM,CN,M ,p (3)

where minimization is restricted to M =
(1, . . . , N) (it is obvious that the optimal value
can never be attained at M ≥ N + 1).

Here we will study this problem in the
relevant limit of small defective probability,
p ≪ 1, which has already been investigated
in [13]–[16]. We will denote by limN→∞|β the
limit where N goes to ∞, p goes to zero, with
p = N−β and β > 0, i.e.

lim
N→∞|β

f(N, p) := lim
N→∞

f(N, N−β). (4)

We will also study the limit limp→0 limN→∞

and, in order to lighten the presentation of our
results, we will refer to this case as the β = 0
case:

lim
N→∞|0

f(N, p) := lim
p→0

lim
N→∞

f(N, p). (5)

Our main contributions are the following
results for the asymptotics of T (N, p), which
will be proved in Section 4 and 5, respectively.

Theorem 1: When β ∈ [0, 1/2),

lim
N→∞|β

T (N, p)

Np| log p|
=

1

(log 2)2
. (6)

Theorem 2: When β ≥ 1/2,

1

(log 2)2 ≤ lim
N→∞|β

T (N, p)

Np| log p|
≤ e. (7)

To our knowledge the best previously known
bound for 0 < β < 1 were

1

log 2
≤ lim

N→∞|β

T (N, p)

Np| log p|
≤

4

β
(8)

which have been obtained in [14]: the lower
bound via the information theoretic bound and
the upper bound by the explicit construction
of a decoding algorithm based on a random
choice of the pools.

Our results determine the sharp asymptotics
of T (N, p)/(Np| log p|) for the cases p = N−β

with β ∈ (0, 1/2) and for the cases p → 0
after N → ∞. Furthermore, they sharpen the
previously existing bounds for p = N−β with
1/2 ≤ β < 1.

A second relevant issue is the explicit con-
struction of an asymptotically optimal algo-
rithm, namely the identification of a family of
couples (M, CN,M) such that

lim
N→∞|β

TM,CN,M ,p

Np| log p|
= lim

N→∞|β

T (N, p)

Np| log p|
. (9)

Here, for each β with 0 ≤ β < 1/2, we identify
a (β-dependent) family of couples (M, CN,M)
which satisfies (9). Let

L =: [| log p|/ log 2] (10)
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M =: [Np| log p|/(log 2)2] (11)

where [x] stands for the integer part of x. We
construct a pooling design based on a “regular-
regular ” bipartite graph with N variable nodes,
M test nodes, L tests per variable and K =
NL/M variables per tests, and with girth (i.e.
length of the shortest graph cycle) at least 6.
This means that the corresponding connectivity
matrix satisfies the following constraints

∀a ∈ (1, . . . , M) :
N∑

j=1

cj,a = K (12)

∀i ∈ (1, . . . , N) :
M∑

b=1

ci,b =L (13)

∑

1≤j<l≤N

∑

1≤d<b≤M

cj,bcj,dcl,bcl,d = 0 (14)

In Section 4 we will prove that any such
connectivity matrix is asymptotically optimal,
namely

Theorem 3: Let CL
N,M

be such that conditions

(12), (13) and (14) are satisfied. If 0 ≤ β < 1/2,
then:

lim
N→∞|β

T
M,CL

N,M
,p

Np| log p|
=

1

(log 2)2 . (15)

Notice that the family of graphs satisfying
the requested properties is non-empty under
the conditions for β stated in the theorem,
thanks to a constructive procedure found in
[17], as we shall discuss in the proof.

Furthermore we have proved that the opti-
mal value is also attained asymptotically by
some random pool designs whose construc-
tion is much simpler than the one of [17].
Let PR−P

N,M,L denote the distribution of bipartite
“regular-Poisson” graphs with N variable nodes,
M test nodes, and a fixed number of tests,
L, randomly connected to each variable node.
Explicitly:

PR−P
N,M,L(CN,M) :=

N∏

i=1

P (ci,1, . . . , ci,M) (16)

with

P (ci,1, . . . , ci,M) :=





1(
M
L

) if
M∑

a=1

ci,a = L

0 otherwise. (17)

Note that, when one takes the large N limit
with L ≪ N and L ≪ M , the degrees of
the tests become iid random variables with a
Poisson distribution of mean K = NL/M . If
we make the choice L = L and M = M as in
(10) and (11) the following result, whose proof
is provided in section 5, holds

Theorem 4: When 0 ≤ β < 1/2

lim
N→∞|β

∑

C
N,M

PR−P
N,M,L

(CN,M)
TM,C

N,M
,p

Np| log p|
=

1

(log 2)2 .

(18)

Finally, we provide a random class of con-
nectivity matrices for which our upper bound
in (7) for the case p = 1/Nβ with 1/2 ≤ β < 1
is attained. Let PP−P

N,M,L denote the distribution
of random bipartite graphs with N variable
nodes, M test nodes and l tests per variable (k
variables per test), with l Poisson distributed
and with mean L (k Poisson distributed with
mean K = NL/M), namely

PP−P
N,M,L(CN,M) =

M∏

a=1

N∏

i=1

(
L

M

)ci,a (
1 −

L

M

)1−ci,a

.

(19)
If we make the choice L = L̃ and M = M̃ with

L̃ =: [e| log p|] (20)

M̃ =: [eNp| log p|] (21)

the following result, whose proof is given in
section 6, holds

Theorem 5: When 0 ≤ β < 1

lim
N→∞|β

∑

C
N,M̃

PP−P

N,M̃,L̃
(C

N,M̃
)
T

M̃,C
N,M̃

,p

Np| log p|
= e. (22)

Furthermore, the choice (20)-(21) for the cou-
ple (M, L) is optimal over all the Poisson-
Poisson distributions, namely

Remark 1: When 0 ≤ β < 1, for any M, L

lim
N→∞|β

∑

C
N,M

PP−P
N,M,L(CN,M)

TM,CN,M ,p

Np| log p|
≥ e. (23)

Note that the Poisson-Poisson distribution
had already been used in [14] to obtain the
upper bound on T (N, p) which we have re-
called in formula (8). Here, by optimizing the
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choice of the parameters L and M for PP−P
N,M,L,

we ameliorate the upper bound (8) which was
obtained in [14] by choosing M = 4Np| log(p)|
and L = 2| log p|.

Furthermore the result of Remark 1 to-
gether with Theorem 1 imply that the optimal
value for β ∈ [0, 1/2) can never be attained
on the class of Poisson-Poisson distributions,
while it can be attained both on the class of
regular-Poisson distributions and on the class
of regular-regular graphs with girth at least 6
(see Theorem 4).

The outline of the paper is the following.
In section 3 we establish a lower bound on

TM,CN,M ,p (Theorem 6) which holds for any N
and p → 0. In section 4 we prove Theorem
3 which, together with Theorem 6, completes
the proof of Theorem 1 and identifies a set of
algorithms for which the asymptotic value of
TM,CN,M ,p is attained if β ∈ [0, 1/2). In section 5
we prove Theorem 4 which identifies a differ-
ent class of random algorithms over which this
asymptotic value is also attained. In Section
6 we prove Theorem 5 which, together with
Theorem 6, completes the proof of Theorem
2 and identifies an algorithm over which our
upper bound on TM,CN,M ,p is attained when
1/2 ≤ β < 1.

3 LOWER BOUND ON T (N, p)

In this section we prove the following lower
bound on T which holds for any N whenever
we let p → 0.

Theorem 6:

lim
p→0

T (N, p)

Np| log p|
≥

1

(log 2)2
. (24)

When one takes the limit limN→∞|β with β ∈
[0, 1), Theorem 6 improves the previously exist-
ing lower bounds [14] on T (N, p). Furthermore
for all the cases β ∈ [0, 1/2) it allows, together
with Theorem 4, to determine the exact value
of limN→∞|β T/(Np| log p|). On the other hand
when β ≥ 1 better bounds then the one given
by our (24) already exist [13], [14].

Let q := (1 − p) and Z+
N := {0, 1, . . . , N}, we

define BM,CN,M ,p and the function Ap : (Z+
N)N →

R as

BM,CN,M ,p := q
N∑

i=1

M∏

a=1

(
1 − qda−1

)ci,a

(25)

Ap(~m) :=
N∑

i=1

mi

i
+ q0m1 exp (−

N∑

i=2

mia
i
p)

(26)

where da is the degree of test a, i.e.

da :=
N∑

l=1

cl,a (27)

and, for i = 2, . . .N ,

ai
p := | log

(
1 − (1 − p)i−1

)
|.

We also let

Āp := min
~m∈(Z+

N
)N

Ap(~m) (28)

U(p) := min
r∈[2,∞)

1

r| log(1 − (1 − p)r−1)|
(29)

c(p) := min
w∈[0,∞)

(
U(p)w + (1 − p)e−w

)
(30)

In order to prove Theorem 6 we will use the
following results, whose proofs are postponed
to the next sections.

Lemma 1:

(a) For any choice of M and CN,M the ex-
pected number of undetected zeros, U0, is lower
bounded by

∑

X

µp(X)|U0| ≥ BM,CN,M ,p. (31)

(b) If the girth of the graph G(CN,M) is larger
or equal to 6, (31) holds as an equality.

Lemma 2:

min
M,CN,M

(M + BM,CN,M ,p) ≥ NĀp.

Lemma 3:

Āp ≥ min(1, c(p)). (32)

Claim 1: When p → 0, U(p) = p
(log 2)p + Θ(p2).

Proof of Theorem 6:
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By using definition (2), Lemma 1 and the
trivial inequality

∑
X µp(X)|U1| ≥ 0, we get

TM,CN,M ,p ≥ M + BM,CN,M ,p. (33)

Notice that for all the choices of p that we
consider, the bound will not suffer from the
fact that we neglected the contribution from
undetermined ones. This can be seen from the
facts

∑

X

µp(X)|U1| ≤
∑

X

µp(X)|D| = pN

and TM,CN,M ,p ≥ −Np log2 p (this is the informa-
tion theoretic lower bound [14]),which imply
that for any β ∈ [0, 1):

lim
N→∞|β

∑
X µp(X)|U1|

TM,CN,M ,p
= 0.

Since (33) holds for any (M, CN,M), by using
Lemma 2 and 3 it follows immediately that

T (N, p) ≥ N min(1, c(p)). (34)

From definition (30), as an immediate corol-
lary of Claim 1, we get

c(p) =
p| log p|

(log 2)2
+(1− 2| log(log 2)|)

p

(log 2)2
+ o(p)

(35)
in the limit p → 0. By gathering the re-
sults (34) and (35) the proof of Lemma (3) is
concluded. Furthermore, we get the following
lower bound for the corrections

1 − 2| log(log 2)|

(log 2)2
≤

T (N, p) − Np| log p|(log 2)−2

Np
(36)

3.1 Proof of Lemma 1

(a) By definition the set of undetected zeros,
U0, contains all the variables i such that xi = 0
and Ta = 1 for any a such that ci,a = 1, i.e.
i belongs only to pools containing at least a
variable equal to one. Therefore:

∑

X

µp(X)|U0| =
N∑

i=1

∑

X

µp(X)(1 − xi)
M∏

a=1

Wi,a(X)

(37)

where

Wi,a(X) :=


1 −

∏

j=1,...N

j 6=i

(1 − xj)
cj,a




ci,a

. (38)

Since Wi,a(X) does not depend on xi we can
immediately perform the average over this
variable for each term of the sum in (37). Then,
for each given i, we introduce the partial order
≺i according to which x ≺i x′ if and only if
xj ≤ x′

j for all j ∈ {(1, . . . , N) \ i}. For any
CN,M and for any a ∈ (1, . . . , M), Wi,a is a non-
decreasing function with respect to this partial
order, namely x ≺i x′ implies that Wi,a(X) ≤
Wi,a(X

′). Therefore inequality (31) follows by
applying FKG inequality [18] to each term of
the sum in (37). In other words, we have simply
used the positive correlation among the events
that there exists at least one variable equal to
one in two (or more) intersecting pools.

(b) If the bipartite graph has girth at least
6, i.e. if M, CN,M are such that for any couple
of variables there exists at most one test which
contains both of them (see condition (14)), the
events defined above are independent. There-
fore (31) holds with the equality sign.

3.2 Proof of Lemma 2

Given a choice (M, CN,M), we define for each
variable i the vector ~mi = (mi

1, . . . , m
i
N) ∈

(Z+
N)N where mi

j denotes the number of tests
which contain variable i and globally contain j
variables

mi
j :=

M∑

a=1

ci,aδj,da

where da is defined in (27). (and δ is the
Kronecker δ). Then we define for each ~m =
(m1, . . . , mN ) ∈ (Z+

N)N a density, f(~m), such
that Nf(~m) is the number of variables i for
which ~mi = ~m. With this notation we can
rewrite the number of tests, M , and the defi-
nition (25) for BM,CN,M ,p as

M = N
∑

~m

f(~m)
N∑

j=1

mj

j
(39)

BM,CN,M ,p = Nq
∑

~m

f(~m)P (~m) (40)



7

where here (and whenever it appears in the
following) the sum over ~m is performed on
~m ∈ (Z+

N)N and

P (~m) :=
N∏

j=1

(1 − qj−1)mj . (41)

Let also

ej :=
M∑

a=1

ci,aδj,da

with this notation and using (39) and (40) it is
immediate to check that

M + BM,CN,M ,p = B̃p(fM,CN,M
) (42)

where, for any couple (M, CN,M), fM,CN,M
:

(Z+
N)N → (0, 1/N, . . .N/N) is defined by

fM,CN,M
(~m) := N−1

N∑

i=1

N∏

j=1

δmj ,ej
(43)

and

B̃p(f) := (44)

N
∑

~m

f(~m)

[
N∑

i=1

mi

i
+ q0m1 exp(−

N∑

i=2

mia
i
p)

]

Therefore by using (42) and definition (26) we
get

min
M,CN,M

(M + BM,CN,M ,p) = min
M,CN,M

B̃p(fM,CN,M
)

≥ inf
f∈F

B̃p(f) ≥ N min
~m∈(Z+

N
)N

Ap(~m) = NĀp

(45)

where F is the set of probability functions on
(Z+

N)N , i.e. f : (Z+
N)N → R

+ with
∑

~m f(~m) =
1. The second inequality immediately follows
from the definition (26) and the fact that f is a
probability distribution.

The following remark will be used to con-
struct an optimal algorithm in section 4

Remark 2: Define g ∈ F as

g(~m) :=

{
1 if ~m = m

0 otherwise (46)

with m ∈ (Z+)N such that

mi :=

{
[| log p|/log 2] if i = [log 2/p]

0 otherwise (47)

Then:

B̃p(g)

Np| log p|
=

1

(log 2)2
+ o(p). (48)

Furthermore g coincides with fM,CN,M

(43) on all bipartite graphs with
M = N [p| log p|/(log 2)2] = M tests and
connectivity matrix CN,M such that the
number of tests per variable is fixed equal to
[| log p|/log 2] = L.

3.3 Proof of Lemma 3 and Claim 1

Proof of Lemma 3: Let m be the vector over
which Āp is reached. We consider separately
the two complementary cases: (a) m1 ≥ 1
and (b) m1 = 0. In case (a), the minimum is
obviously larger or equal to one. Therefore

Āp ≥ min(1, bp) (49)

where
bp := min

~m∈(ZN )N

m1=0

Ap(~m)

We now enlarge the minimization of mi to all
real positive values R

+ = [0,∞), and introduce
the two functions on (R+)N−1:

u(~m) :=
N∑

i=2

mi/i (50)

vp(~m) :=
N∑

i=2

mia
i
p (51)

A simple bound on b is expressed in terms of
these functions:

bp ≥ min
~m∈(R+)N−1

(
u(~m) + (1 − p)e−vp(~m)

)
. (52)

This minimization is carried out in two steps.
We first fix vp(~m) = w ≥ 0, and look for the
minimum of u in the subspace vp(~m) = w.
Let us denote by u∗(w, p) this minimum value.
Finding u∗ is a problem of linear optimiza-
tion. So the minimum must be obtained on
one of the vertices of the simplex of (R+)N−1

defined by vp(~m) = w. These vertices are easily
identified: There are N − 1 of them, located at
points ~m(2), . . . , ~m(N), with m

(r)
j = δj,rw/ar

p. As
u(~m(r)) = w/(rar

p) , the minimum of u is at
u∗(w, p) = w minr∈{2,...,N} 1/(rar

p). By enlarging
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the space of r to all real values in [2,∞), we
get:

u∗(w, p) ≥ wU(p). (53)

Now we carry the optimization in (52) as:

bp ≥ min
w∈[0,∞)

[
wU(p) + (1 − p)e−w

]
(54)

which establishes lemma 3.

Proof of Claim 1: Let z := (1 − p)r−1 and

gp(z) :=
(1 − z) log(1 − z)

z log[z(1 − p)]
. (55)

For r ≥ 2 and 0 < p < 1, it is immediate to
verify that 0 < z ≤ (1−p) and that any station-
arity point for U(p) must satisfy gp(z) = 1. By
studying the function gp(z) it is then possible to
prove that there are two values z ∈ (0, 1) which
satisfy the latter condition. Furthermore, when
p → 0 only one of these two values belongs to
(0, 1 − p] and it corresponds to z = 1/2 − ǫ(p)
with ǫ(p) = Θ(p). The desired result for U(p)
immediately follows.

4 UPPER BOUNDS ON T (N, p) FOR β ∈
[0, 1/2) VIA REGULAR-REGULAR GRAPHS

In this section we prove Theorem 3. On the
one hand this result allows to complete the
proof of Theorem 1, namely to identify the
sharp asymptotic value of T (N, p)/(Np| log p|)
in the limit N → ∞, p = N−β for β ∈ [0, 1/2).
Precisely,

Proof of Theorem 1: The proof follows im-
mediately from Theorem 6 and Theorem 3.

On the other hand Theorem 3 provides a
constructive procedure for a class of algorithms
(i.e. a choice of M and a class of matrices
{CN,M}) which are asymptotically optimal.

In order to construct these algorithms we will
keep in mind the following observations. First,
as already remarked in the previous section,
the number of tests due to the undetermined
ones is negligible for all the choices of p dis-
cussed in Theorem 3. Therefore we focus on
algorithms that minimize the number of tests
in the first stage, M , plus the number of un-
determined zeros, |U0|. The second observation
is that inequality (33) comes from (31) and the

latter becomes an equality provided M, CN,M

are such that the corresponding graph has girth
at least 6. The third observation is the one
contained in remark 2 which states that the
minimum for the right hand side of (33) is
attained on any graph with M tests and L
tests per variable, where M and L have been
defined in (10) and (11) (we recall that both
M/N and L depend only on p). Therefore if
it is possible to find at least one graph with
girth at least 6 among those with M tests and
L tests per variable, the mean number of tests
on this graph will match the lower bound in
Theorem 6 in the limit p → 0. In the following
we will use the above ideas and the results
on regular-regular graphs with a fixed minimal
girth which have been obtained in [17].

Proof of Theorem 3: Consider a connectivity

matrix CL
N,M

with fixed variable degree L, fixed

test degree K = LN/M and girth at least 6
(see condition (56)). The proof of the existence
of such a graph and an explicit procedure
for its construction have been provided by Lu
and Moura in their study of large girth LDPC
codes [17]. Their procedure requires that the
condition

M ≥
(L − 1)(NL/M)

LK − L − K
(56)

be satisfied. (This condition corresponds to con-
dition (14) in appendix A of [17] for the choice
g = 6). In the limit N → ∞ with p = 1/Nβ

with β < 1/2, the validity of (56) can be readily
checked, using definitions (10) and (11).

From equation (2) and (37), the number of
tests on any such graph satisfies the inequality

lim
N→∞

T
M,CL

N,M
,p
≤ M + Np + N(1 − p)Rp (57)

where

Rp =
∑

X

µp(X)
M∏

a=1

Wi,a = (1 − (1 − p)K−1)L.

(58)

The last equality is obtained by using defini-
tion (38) for Wi,a (the mean over the Bernoulli
distribution is easily performed thanks to the
girth condition). Theorem 3 immediately fol-
lows from (57).
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The results (57) and (58) hold for any choice
of p. However, it is important to notice that
the existence of at least one such connectivity
matrix with girth at least 6 is guaranteed only
for β ∈ [0, 1/2). In particular for p = N−β

with 1 < β < 2 there cannot exist any such
matrix: otherwise (57) and (58) would imply
T (N, p) ≤ β/(log 2)2N1−β log N which goes to
zero as N → ∞ (and is in contradiction with
the lower bounds in formula (57) of [14]).

Putting together (57), (58) and (36) it is also
immediate to verify that the higher order cor-
rections to the optimal value T (N, p) are of
order pN . More precisely, if we let

H(N, p) :=
T (N, p) − Np| log p|(log 2)−2

Np
(59)

the following holds.

Remark 3: For β ∈ [0, 1/2) in the limit N →
∞ the following holds

1 − 2| log log 2|

(log 2)2
≤ H(N, p) ≤ 2 (60)

5 REGULAR-POISSON GRAPHS ARE

(ALSO) OPTIMAL FOR β ∈ [0, 1/2)
In this section we will prove Theorem 4 which
shows that asymptotically optimal pool de-
signs are obtained with regular-Poisson distri-
butions for proper choices of the graph pa-
rameters. This is particularly relevant since
the construction of regular-Poisson graphs is
much simpler than the construction of [17] for
regular-regular graphs with girth at least 6.

Consider the regular-Poisson distribution on
bipartite graphs defined in section 2 with N
variable nodes, M test nodes and L tests per
variable, PR−P

N,M,L
. Fix a variable, i, and let En

i be

the characteristic function of the event (defined
over the space of all bipartite graphs with M
nodes) that there are more than n loops of
length 4 which contain i, i.e. there are more
than n triples (j, a, b) with j a variable different
from i (j 6= i, j ∈ (1, . . . , N)) and a, b two
distinct tests (a 6= b, a, b ∈ (1, . . .M)) such that i
and j belong to both tests. Precisely, we define

En
i : CN,M ∈ {0, 1}N×M → R as En

i (CN,M) :=1 if

N∑

j=1,(j 6=i)

∑

1≤a<b≤M

ci,aci,bcj,bcj,a > n (61)

and En
i (CN,M) :=0 otherwise.

In order to prove Theorem 4 we will need
the following Lemmas which give an upper
bound on the probability that there are more
than n loops of length 4 through i (Lemma 4)
and an upper bound on the probability that i
is an undetermined zero and does not belong
to more than n loops of length 4 (Lemma 5).

Lemma 4:
∑

C
N,M

PR−P
N,M,L

(CN,M)En
i (CN,M) ≤

≤
NL

6

M
3 +


NL

4

M
2




n+1

. (62)

Lemma 5: Let k be the average degree of the
checks, k := NL/M = log 2/p, and

Cp :=
∑

C
N,M

PR−P
N,M,L

(CN,M)(1−En
i )
∑

X

µp(X)
M∏

a=1

Wi,a

(63)
(we drop for semplicity of notation the depen-
dence of Wi,a on X, CN,M and the dependence
of En

i on CN,M ). Define also γ := pα.
For any n and α with 0 < n < L/2 and 0 <

α < 1/2, the following holds

Cp ≤
[
1 − (1 − p)k(1+γ)

]L−2n
+ (64)

+L exp

[
−

γ2 log 2

2p

]
+ o

(
L exp

[
−

γ2 log 2

2p

])
.

Proof of Theorem 4:
For any n and α with 0 < n < L/2 and 0 <

α < 1/2, the mean number of tests verifies
∑

C
N,M

PR−P
N,M,L

(CN,M)TM,C
N,M

,p ≤ M + Np+

| log p|3

Np3
+ N

(
| log p|2

Np2

)n+1

+ N
[
1 − (1 − p)k(1+γ)

]L−2n

+NL exp

[
−

γ log 2

2p

]
+ No

(
L exp

[
−

γ log 2

2p

])

(65)

where γ := p2α.
In order to derive (65) we have: (i) used

definition (2); (ii) bounded the mean number
of undetermined ones with the mean number
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of ones; (iii) decomposed the mean number of
undetermined zeros into those that are (are not)
on a variable node i which contain more than
n loops of length 4; (iv) upper bounded the
last two terms via the results of Lemma 4 and
Lemma 5. If we now make the choice n := L

−1/2

the result of the Theorem immediately follows
by noticing that:

lim
N→∞|β

NL exp(−γ2p−1 log 2/2)

Np| log p|
= 0 (66)

lim
N→∞|β

| log p|3

Np3Np| log p|
= 0 (67)

lim
N→∞|β

N

Np log p

(
| log p|2

Np2

)n+1

= 0. (68)

Proof of Lemma 4: Given a connectivity
matrix, CN,M , we identify among the loops of
length 4 two distinct classes: loops of type
S and of type D. Loops of type S are those
disconnected from any other loop, namely they
correspond to the choices of two variables i, j
and two tests a, b such that both i and j belongs
to a and b and there does not exist another test
containing both i and j. Loops of type D are
all loops of length 4 which are not of type S.
For a given variable i, let Di be the character-
istic function of the event that i belongs to at
least one loop of type D. Precisely, we define

Di : CN,M ∈ {0, 1}N×M → R as Di(CN,M) :=1 if

N∑

j=1,(j 6=i)

∑

1≤a<b<c≤M

ci,aci,bci,ccj,bcj,acj,c > 0 (69)

and Di(CN,M) :=0 otherwise.
The following inequalities hold

∑

C
N,M

PR−P
N,M,L

(CN,M)Di ≤
NL

6

M
3 (70)

∑

C
N,M

PR−P
N,M,L

(CN,M)En
i (1 −Di) ≤


L

4
N

M
2




n+1

(71)

(we drop the dependence of Di and Ei
n on

CN,M .) The result follows immediately from
(70) and (71) and the fact that, for any i and
CN,M , Ei

n(CN,M) < 1.
Proof of Lemma 5: For a given connectivity

matrix CN,M , let i be a site with less than n

loops of length 4. Let us call Ai(CN,M) the set
of tests which contain i, Bi(CN,M) the set of
tests which belong to a loop of length 4 passing
through i, and Bi(CN,M) = Ai(CN,M)\Bi(CN,M).
Clearly |Bi(CN,M)| ≤ 2n. The following holds

M∏

a=1

Wi,a ≤
∏

a∈Bi(CN,M
)

Wi,a (72)

=
∏

a∈Bi(CN,M
)


1 −

∏

j=1,...N

j 6=i

(1 − xj)
cja


 .

(73)

We can now plug (72) into (63) and get

Cp ≤
∑

C
N,M

PR−P
N,M,L

(CN,M) (74)

1I(|Bi(CN,M)| ≥ L − 2n)
∏

a∈Bi(CN,M
)

[1 − (1 − p)da−1]

where in order to perform the mean over
µ(X) we used the fact that the neighborhoods
of any two tests a, b belonging to Bi(CN,M)
intersect only in i (for any j 6= i one has
cjacjb = 0) and we recall from definition (27)
that da is the degree of test a. Let kmax be the
maximum degree of the first L tests, namely
kmax := maxa∈(1,...,L)

∑
j cj,a. Using (75) and the

invariance of the regular-Poisson distribution
under test permutations, we get

Cp≤
∑

C
N,M

PR−P
N,M,L

(CN,M)
N∑

k=0

δk,kmax(1 − (1 − p)k)L−2n

≤ (1 − (1 − p)k̄(1+γ))L−2n + LGp (75)

where

Gp := (76)
N∑

k=k̄(1+γ)

(
N

k

)(
k

N

)k (
1 −

k

N

)N−k(
1 − (1 − p)k

)L−2n
.

It is now easy to verify that in the limit p → 0:

Gp ≤ exp[−γ2p−1 log 2/2]+o(exp[−γ2p−1 log 2/2])
(77)

and by plugging (77) into (75) the proof is
completed.
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6 UPPER BOUNDS ON T (N, p) FOR β ∈
[1/2, 1) VIA POISSON-POISSON GRAPHS

In this section we prove Theorem 5. This
allows to complete the proof of Theorem 2
which establishes upper and lower bounds on
T/(Np| log p|) when p = 1/Nβ and 1/2 ≤ β < 1.

Proof of Theorem 2: The proof follows im-
mediately from Theorem 6 and Theorem 5.

Furthermore Theorem 5 allows to identify
a class of algorithms over which the upper
bound is attained.

Proof of Theorem 5: Consider the class
of Poisson-Poisson distributions on bipartite
graphs defined in (19) with N variable nodes,
M test nodes, a mean number of tests per vari-
able equal to L and a mean number of variables
per test equal to K = NL/M , PP−P

N,M,L. From
(37), performing first the average with respect
to the Poisson-Poisson distribution in which
the cia variables are iid, the mean number of
undetected zeros can be written as:

∑

CN,M

PP−P
N,M,L(CN,M)

∑

X

µp(x)|U0| = (78)

N
∑

X

µp(x)(1 − x1)


1 −

K

N

N∏

j=2

(
1 − xj

K

N

)


M

.

Denoting by r the number of indices j such
that xj = 1, this gives:

∑

CN,M

PP−P
N,M,L(CN,M)

∑

X

µp(x)|U0| = (79)

N
N−1∑

r=0

(
N − 1

r

)
prqN−r

(
1 −

K

N
(1 −

K

N
)r
)M

where we recall that q := (1 − p).
Let γ := p/| log p|, then

N−1∑

r=N(p+γ)

(
N − 1

r

)
pr(1 − p)N−r (80)

< exp[−Nγ2p−1/2] + o(exp[−Nγ2p−1/2]).

By using definition (2) and the above equations

(78), (79) and (80) we get

lim
N→∞|β

∑

CN,M

PP−P
N,M,L(CN,M)

TM,CN,M ,p

Np| log p|
≤

lim
N→∞|β

(p| log p|)−1

[
M

N
+
(
1 −

K

N
(1 −

K

N
)Np+Nγ

)M

+N−1 exp(−3Np| log p|−2/2) + p
]

=

lim
N→∞|β




M

Np| log p|
+

(
1 − K

N
(1 − K

N
)Np+Nγ

)M

p| log p|


 .

(81)

By minimizing the last expression on M and
K we find that the optimal value is taken on
M = epN | log p|+ o(Np| log p|) = M̃ + o(M̃) and
K = 1/p + o(1/p) = NL̃/M̃ + o(NL̃/M̃), where
L̃ and M̃ have been defined in (20) and (21).
Furthermore

lim
N→∞|β

∑

CN,M

PP−P

N,M̃,L̃
(CN,M)

T (N, p)

Np| log p|
≤ e (82)

is easily verified, thus completing the proof of
Theorem 2.

Remark 1 can be proven along the same lines.
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