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Abstract. We discuss the analytical solution through the cavity method of a
mean-field model that displays at the same time an ideal glass transition and a
set of jamming points. We establish the equations describing this system, and we
discuss some approximate analytical solutions and a numerical strategy to solve
them exactly. We compare these methods and we get insight into the reliability
of the theory for the description of finite dimensional hard spheres.
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1. Introduction

The theoretical investigation of the glass transition and its relation to jamming in hard
sphere systems has made considerable progress in the last 30 years [1]-[5]. This has been
possible mainly because of the powerful analogy between jammed states and inherent
structures [3], [6]-[8] and of the development of methods based on spin glass theory [9, 10]
to describe the glass transition of particle systems. This progress led to the proposal that
amorphous jammed states of hard spheres can be thought of as the states obtained in
the infinite pressure limit of metastable glasses, and therefore described using tools of
(metastable-)equilibrium statistical mechanics.

The phase diagram of hard spheres that results from these mean-field studies is
summarized in figure 1, where we plot the pressure as a function of the packing fraction
@, which is the fraction of space covered by the spheres. The full black line represents
the equilibrium phase diagram with the liquid-to-crystal transition. If this transition can
be avoided (by compressing fast enough or by introducing some degree of polydispersity),
one enters into a metastable liquid phase. The nature of this metastable liquid changes
at ¢ = pq. It consists of a single ergodic state for ¢ < ¢q. When ¢ > ¢4, the available
phase space splits into many glassy states. If the system is stuck in one of these states and
compressed, it follows one of the glass branches of the phase diagram, until its pressure
eventually diverges at some packing fraction ¢; which depends on the state. At density ok
a thermodynamic glass transition happens (in the sense of mean-field spin glasses [11])
towards an ideal glass. The pressure of the latter diverges at ¢gcp. In the inset, the
complexity, i.e. the logarithm of the number of glassy states, is plotted as a function
of the jamming density ¢;; this approach predicts that there exist jammed states in
a finite interval of density ¢; € [¢wm,¢k]. The boxes show a schematic picture of the
(3N-dimensional, where N is the number of particles) phase space of the system: black
configurations are allowed by the hard-core constraint, white ones are forbidden. In the
supercooled liquid phase the allowed configurations form a connected domain; however,
on approaching ¢4 the connections between different metastable regions become smaller
and smaller. Above ¢k, they disappear in the thermodynamic limit and glassy states are
well defined.

The above mean-field picture has been obtained by a succession of works which
started from the studies of some categories of spin glasses with so-called ‘one-step replica
symmetry breaking’, and have gradually matured into analytic approximation tools for
the theory of hard spheres (see [5] and references therein). A very interesting model
has been introduced recently by Mari et al [12]. It displays exactly the phase diagram
presented in figure 1: it undergoes an equilibrium glass transition and it has an interval
of densities where it shows all the phenomenology which is now associated with jamming,
like marginal mechanical stability and the associated presence of anomalous soft modes
in the vibrational spectrum [13]-[15]. The model has been studied numerically in [12] in
order to show the existence of separate glass and jamming transitions and to clarify to
some extent the relation between the two.

This model is interesting in that it is in principle solvable: it can be investigated by
means of modern methods that have been developed in the context of mean-field spin
glasses, the replica method [16] and the cavity method [17]. This investigation is the
purpose of the present paper, where we derive the cavity equations that describe the

doi:10.1088/1742-5468 /2011 /03 /P03002 3
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Pressure, P

Volume fraction, ¢ 04 0n 0 Ogcp

Figure 1. Schematic mean-field phase diagram of hard spheres in three
dimensions; see the text and [5] for a detailed description.

model and we present some approximated analytical solutions to them, along with a
detailed numerical resolution. Since it will turn out that the exact solution requires quite
heavy numerical calculations (heavier than a direct Monte Carlo study of the model, at
least for a moderate number of particles, such as the one performed in [12]), one might
wonder why this solution is interesting at all. There are at least two reasons why this
study is interesting, in our opinion. The first is that Monte Carlo methods are not able to
access the deep glassy phase or the densest part of the jammed phase: they are confined
to exploration of the region close to ¢q (at equilibrium) and ¢y, (at jamming). Therefore
if one wants to study, for instance, how the properties of the packings change when
going from @y, to pgep, the exact solution is needed. Moreover, we will show that the
cavity method allows us to derive simple analytical approximations to the true solution.
Similar approximations have been used to study finite dimensional hard spheres [5]; their
investigation in the controlled setting of the present ‘solvable’” model allows us to assess
their reliability. Finally, there are some generic structures in the correlations of jammed
packings that researchers would like to explain analytically. Our work is a first step in
this direction.

This paper is meant to be read by specialists in the field, so we did not make much
attempt to explain in details the basis of the method. Recent complete reviews of the
physical problem [5], [18]-[20] as well as of the method we used [17,21] exist, and the
reader is assumed to be familiar with these concepts.

2. Definitions

The model that we study in this paper is a simple generalization of the one introduced
in [12], defined as follows. We consider a ‘factor graph’, namely a bipartite graph made by
two types of nodes: variables and boxes. Each variable is connected to z boxes and each
box is connected to p variables. In a system with N variables the number of boxes is Nz/p

doi:10.1088 /1742-5468 /2011 /03 /P03002 4
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Figure 2. An illustration of the model for p =6, z = 3 and N = 8. Each white
square is a box, each black dot is a variable (sphere). Each box contains all the
spheres connected to it by a link. The spheres inside one box must not overlap
(note that for z =1 one obtains N/p systems of p hard spheres).

and the total number of links (i.e. variable-box connections) is Nz. We will consider an
ensemble of ‘random regular’ factor graphs where each graph satisfying this requirement
has the same probability. A crucial property of this ensemble, that allows for the solution
of the model, is that in the thermodynamic limit N — oo almost all graphs are locally
tree-like, in a sense that can be defined precisely [17].

Each variable is a vector x; € [0,1]¢ with periodic boundary conditions, where
d is the dimension and ¢ = 1,...,N. In the following we denote by |z; — z;| =

Zizlﬂxf — 2| moa1)? the distance between z; and its closest periodic image of x;. If

we call x(x;, z;) the characteristic function of the hard sphere constraint (with periodic
boundary conditions), i.e. x(z;,z;) = 1 if |z; — ;| > D and 0 otherwise, then each box
a=1,...,Nz/p imposes the condition

x(@) = x(@t, ., 2%) = [ [ x(at,22) £0, 1)

i<j
where z¢ are the variables connected to box a. The partition function of the model is

Nz/p

Z = /dxl---de H x(a). (2)

A pictorial description of the model is the following (see figure 2). Each box can be
thought of as a cubic region [0, 1]¢ with periodic boundary conditions. Each variable node
1 =1,..., N represents a ‘sphere’ of diameter D and this sphere appears in position z;
in all the z boxes to which the node is connected. On the other hand, each box contains
exactly p spheres. The constraint is that, for each box, the p spheres present in the box
do not overlap.

The model therefore differs from a standard hard sphere model, since each sphere
interacts only with a finite subset of neighbors, and the topology of the interaction network

doi:10.1088/1742-5468 /2011 /03 /P03002 5
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is fixed by the random graph construction described above. This structure is such that the
model becomes a mean-field model and is therefore exactly solvable, at least in principle,
as we will discuss in the following. It is worth noting, however, that there are two ‘formal’
limits where one gets back the standard hard sphere model: in the case z = 1 the model
reduces to N/p independent systems of p hard spheres each, while for p =2 and z = N —1
one gets back a single system of N hard spheres. Note also that in [12] only the version
with p = 2 has been studied.

Our investigations showed, however, that the model defined above undergoes a
‘crystallization’” phenomenon at high density: the spheres tend to localize around a discrete
set of positions inside the unit box. This has been avoided in [12] by introducing a small
degree of polydispersity of the size of the spheres. Here, in the analytical treatment
of the model, we do not need to use this trick since we can impose directly that the
solutions are translationally invariant, therefore discarding all crystalline phases of the
model. In this way one effectively restricts to the amorphous phases, but one should
keep in mind that these are metastable with respect to the crystal in the true model.
Another possibility to remove the non-translationally invariant phase is to introduce local
‘random shifts: on each link we introduce a quenched variable s,; € [0,1]%, such that
the corresponding particle appears in the corresponding box translated by s,. On a
tree with open boundary conditions, this will not change the model since one can always
perform a change of variable to remove the shifts. In the presence of loops however, the
random shifts will frustrate the periodic order. But since the cavity solution is based on
local recursions, the solutions describing the model with random shifts will be the same
as the translationally invariant solutions of the model without random shifts. A similar
situation occurs when studying an antiferromagnetic model on a random graph: local
recursion relations allow both an antiferromagnetic and an amorphous ordering. The
former is irrelevant on a random graph because long loops of odd length frustrate the
antiferromagnetic order. The antiferromagnetic system thus behaves like the spin glass
in which the signs of the couplings are quenched random variables. See [25] for a more
detailed discussion in the context of a very similar model.

We define V,(R) as the volume of a d-dimensional hypersphere of radius R; then
Ve, = Vy(D/2) = 27%4(D) is the volume of one hard sphere (since the spheres have
diameter D), and ¢ = pVj; is the packing fraction, that represents the fraction of the
unit box that is covered by the p interacting spheres. It is trivial to check that there are
no configurations with ¢ > 1. The parameter that controls the packing fraction is the
diameter D since the box size is fixed; for this reason in the following we will use directly
the sphere diameter D as control parameter and label the different transitions as D,
Dccp, Da, etc.

For a system of p hard spheres in d dimensions, we define the following quantities:

Lp

4 fanin T o
i<j
0 o 1 3)
r—1y)=——" O(x —x;)0(y — x; :—/dx---d:p T, Y, T3, ..., Tp),
gp( Y) p(p—1) ; ( )o(y i) 70 3 pX (2, Y, @3 »)

doi:10.1088/1742-5468 /2011 /03 /P03002 6
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such that ZS is the partition function of p hard spheres (apart from a p!), and gg is related
to the usual pair correlation function [22] by

o) = P20 8

For the following discussion, it will be useful to define
U (1,00 ) :/dx Hx(x,xi), (5)
i=1

which is the so-called void space or cavity volume, namely the volume available to insert
an additional sphere in a box given the positions of n other spheres, {x1,...,z,}.

3. Cavity equations

The cavity method has now become a standard method to solve statistical models defined
on random graphs. We will not explain the method here and refer the reader to [17,23].
Here we only write the equations for our specific case.

3.1. Bethe free energy

We define by 0i the set of boxes connected to variable ¢, and by da the set of variables
connected to box a. On each link we define two fields: ¢, _.;(z;) is the probability density
of the variable x; when connected only to the box a; 1;_.,(z;) is the probability density
of the same variable when connected to all the boxes in its neighborhood except a. Both
are normalized to one and they satisfy the equations

Vo) = [ ot vitod = [ T] ol | x(@. ©)

" bedi\a j€da\i

which can derived from the stationarity of the Bethe entropy

S =- Z log/d:pi Via(Ti) Pai(s) +Zlog/ <H da; wj—m(xj)> x(a)

links a—i Jj€0a

+ Zlog/dxi H OailT;). (7)

a€oi

These equations have the general form of the cavity (or Bethe) equations that can be
derived for any model with local interactions [17]. With respect to previous studies of
frustrated systems with the cavity method, the main difference here (and the main source
of difficulty) is the fact that the variables x are continuous. Although the Bethe free
energy is not variational in general, it has the property that the cavity equations can be
obtained imposing its stationarity with respect to the cavity fields. In some special cases
one can argue that it provides indeed an upper or lower bound to the true free energy,
but a proof of this is still lacking.

doi:10.1088/1742-5468 /2011 /03 /P03002 7
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3.2. Replica symmetric cavity equations

The replica symmetric (RS) equations for such a regular graph are trivially obtained by
dropping the spatial dependence of the fields. In this case we use the notation Z, = Z,_,;
and Zy = Z,_,,, and we get

W(z) = %Qp(x)zl’ o(x) = ZRS / (de]w T, ) Xz, @, mpee), (8)

and the RS entropy per particle is

Sgrs = —zlog/dxw(x)go( log/ (H dz; ¥ (z; ) X(z1,...,2,) + log/dx o(x).
(9)

These equations admit the trivial translationally invariant solution ¢ (z) = ¢(x) =1
with Zf;s =1 and

Z3S = /dx / <ﬁ dxjw(;cj)> X(@, @y, ., xp1) = 205 (10)

that is the partition function of p hard spheres in the unit box. Therefore the entropy of
the RS phase is

Sgrs = zlog Zy. (11)
p

3.3. One-step replica symmetry breaking cavity equations

In the standard interpretation [17], the glass phase is signaled by the appearance of

multiple solutions wHa, cpEHZ of equation (6). Each of these solutions represents a glass

state with entropy s, given by the Bethe entropy (7) computed on the corresponding set
of fields. Although one does not have direct access to individual glassy solutions (since the
direct numerical solution of the Bethe equations by iteration on a single graph is extremely
unstable in this region), a statistical treatment of the properties of the solutions in this
regime exists and goes under the name of the one-step replica symmetry breaking (1RSB)
description [23]. It is based on an entropy S(m) which is the sum over all solutions « of
the corresponding partition function Z, = e™** to power m [9]. The latter is computed
by looking to the evolution of the solutions of the Bethe equations under an iteration
that adds one more variable to the graph [23], or more simply by introducing an auxiliary
model and assuming that an RS description holds for that model [17]. We do not discuss
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here these derivations and only report the resulting equations for our model, which are
the following:

S(m) = %logz Z" =ms(m) + X(m) = —2Simk(m) + ngOX(m) + Ssite(m),
Sin(m) = log [ dP(v]aPle) { / dw(xw(w)} = log(Z}1),

: m (12)
Shox(m) = log/dp[wl]"'dp[¢p] [/ (ij(xj)d«?U]') x(xl,...,xp)] = log(Zox)

Jj=1

Ssite(m) = log/dP[gol] -~ -dP ] [/ dx H @Z(x)] = log(Z1.).

Plul = 5 [ TIaPleds |t - - T

Ple] = Z%p/Hdei] d |p(x) — Zigo/dej Vi) x(z,ze, .o 2p1)

where the normalization constants are
Zylpr, -] = /dx H%’(»’U)a
14
Zolth1y .. thpa] = /dx [T dej ()X, 2, ), (14)
J

Zy ={(Z)"), 2o =((Z)")-

The internal entropy can then be written, using the standard method of [9], as

oS Z1 log Ziin Z" 1og Zpox 2% log Zite
s(m) _ (m> _ —Z< link Omg 1 k> + E< box Oﬂ% b > + < site OW% b > (15)
om <Zlink> p <Zb0x> <Zsite>

and the complexity is X(m) = S(m) — ms(m). The parameter m is the 1RSB
parameter, whose equilibrium value must be fixed imposing that the replicated entropy is
stationary [16].

4. The stability of the RS solution
To study the stability of the RS phase we perturb around it:
Q/Jiﬂa(l') -1 _'_Aefikx+19¢~>a’ (16)

and look at the linear stability of A assuming that the phase 6 is random, i.e. when
substituting in the right-hand side of (8) each v gets a random independent phase. This is
done in order to enforce translational invariance; otherwise we would study the instability
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towards modulated phases, which is indeed interesting, but we do not consider it here, for

reasons discussed in section 1. Note that we have k = 2w (ny, ..., ng), where n; are integer
numbers. Then at first order we have
. 1 i N
Ap~ihetio — Aﬁ Z Z / dag - - -dz, x(x, 29, . ... ,:Ep)e_‘kmﬂgf*“. (17)
P a=1 j=1

Now we can bring the factor e '** on the other side and integrate over z; moreover we
take the square and use that the 0,_,, are random and uncorrelated and we obtain the

final result
2

1 .
A2 =A%z —-1)(p—1) 70 /dwl cooday x (2, . xpo)@FE@ETE 0 (18)
P
Defining
ik(x— ]' ik(x1—x2
gg(k) :/dxdyek( y)gg(x—y):ﬁ/dxl---dxpx(xl,...,:cp)ek( ) (19)
P

the stability condition is
Hence from the knowledge of Zg and gg(k) we can compute the RS entropy and the
stability of the RS solution.

4.1. Results for p = 2, any dimension

For p=2,k# 0 and D < 1/2, we have simply ¢3(x —y) = x(z — y)/(1 — V4(D)) and

(k) _/ 4y Ex(@) _/ 4 €002 < D) _ (%D)M Jay2(kD)
? ome 1 —Va(D) C1/2,1/2] 1 —Vy(D) k 1 —Vy(D)
(21)

One can show that for the values of D we are interested in, the maximum of ¢9(k) is
assumed for & = 27, i.e. the smallest k. Then the condition on D is

DY2Jy5(27D) o1
1-Vy(D) — Ve—-1
In the limit z — oo, as D is small, we can use J,(z) ~ (x/2)"/T'(n + 1), and neglecting
the denominator

(22)

D2 Jy5(2w D 4/2 pd 1
p@1D) | _x = Vu(D) < . (23)
1 — V(D) [(d/2+1) z—1
4.2. Results for d = 1, any p
In d =1 we get, from the exact solution,
1= ,
Z)=[—pDP",  g)(k) = o1 e FURD 1+ my p; —i(1 — pD)k, (24)
n=0

where 1 Fia; b; 2] is the confluent hypergeometric function of the first kind. Also in this
case the lowest k& becomes unstable in the first place.
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4.3. Results ford =2 and p = 3

As a last interesting case, we consider d = 2 and p = 3. In the following for simplicity we
consider D < 1/4 to avoid problems coming from periodic boundary conditions.

We start by the computation of the partition function ZJ of three spheres in a box,
which can be done using the standard virial expansion. For convenience we fix the first
sphere, as well as the origin of the coordinate frame, in the center of the box. The center
of the second sphere can be anywhere in the box outside a disc of radius D centered in
the origin. Given the position of the second sphere, the third sphere can be anywhere
outside the union of two discs centered around the first two spheres.

If the second sphere is at distance r = |xy — x1| from the origin x; = 0, the free
volume accessible to the third sphere is

r r 72
vy(1,m3) = 1 — 27D? 4+ (2D — r) D? <2 arccos ;o — 55 4 — ﬁ) . (25)

This has to be integrated over the position of the second sphere. There are three possible
cases.

(1) r € [D,2D]; in this case the first and second exclusion spheres have an overlap, and
the second sphere can rotate at any angle without hitting the boundary of the box.
Therefore one has

0 0 2 2 r r r?
Z5(1) =27 : drr |1 —2rD"+ D 2arccosﬁ—ﬁ 4_ﬁ . (26)

(2) r € [2D,1/2] (recall that the box has side 1 so r is at most 1/2); in this case the first
and second exclusion spheres have no overlap, and the second sphere can rotate at
any angle, therefore

1/2
73(2) = 27r/ drr(1 — 27 D?). (27)
2D

(3) r € [1/2,/2/2]; also in this case there is no overlap contribution, but the second
sphere can only be at some angles because of the cubic shape of the box. The total
angle that can be spanned is 8(7/4 — arccos(1/(2r))), therefore

V2/2 s 1
7Z3(3) = 8/ drr(1 —2rxD?) (— — arccos (—)) : (28)
All the integrals can be evaluated and summing the three contributions one gets the final
result

79 =1-3rD*+ rD'(3V3+8r), D<1/4. (29)

We also need the value of the pair correlation at contact, g5(D). Following the same
reasoning this is given by
(D) — w(r=D) 1-2rD?+ D*(27/3 —/3/2)
95 7 1— 37D + 1/47DY(3V/3 + 87)

D < 1/4. (30)

Finally, ¢%(z — y) = va(z,y)/Z3, from which one can compute gJ(k) numerically and
determine the stability of the RS solution.
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5. The Gaussian approximation

We now introduce an approximation to describe the 1RSB phase of the model. We
assume that the fields ¢;(z) and ¢;(x) are localized around a position which is randomly
distributed in the box (this maintains the global translational invariance). This ansatz,
of course, is not a solution of the 1RSB equations. However, we expect that it provides
a reasonable estimate of S(m), which is expected to become more and more accurate for
large connectivity and close to the random close packing point. Moreover, we will see
in the following that, even if the variational nature of the replicated entropy cannot be
proven, these approximations give upper bounds for Dk. For this reason we will refer from
now on to these approximations as ‘variational’ approximations. Note that if a variational
approximation predicts that the Kauzmann radius is less than the radius where the RS
solution is unstable, Dk < Dgg, then we know for sure that there is a discontinuous
transition occurring at a value of D smaller than Dgs.

We assume a Gaussian shape for the fields, which leads to the following assumption
for their distribution:

o (@=X)?/24

Ply] = /dX5 lw(ﬂf) T @R AR

o~ (@=X)?/28A

: Ply] = /dX5 [@(90) T s A

(31)

We substitute this ansatz in the Bethe free energy (12) and determine the variational
parameters A and § by its extremization. In the following we will use the definition
yalz) = e /24 /(2r A)2. Substituting the expressions above in (12), we obtain the

following results:
Slink = log[nf‘l/2 27 (1+ 5)A]d(1’m)/2], 39
Ssite _ log[m(l—z)d/QZ(l—m)d/2 (27T5A)—(1—m)(1—z)d/2]' ( )

Note that Spox does not depend on d. Therefore we first write the contribution of Sy
and Sge and optimize with respect to d:

0 ] . (33)

d d d
Ssite - ZSlink = _5(1 - m) 10g<27TA) + 5 logm + 5(1 - m> lOg |:(1 + 5)z

The optimization is straightforward and gives 6 = z—1 as expected from the first equation
of (6). The optimized result is

d d d 1
Seite — 2Slink = —5(1 —m)log(2mA) + B logm + 5(1 —m)(z —1)log {1 — ;} . (34)

The last term to be computed is Sy, which has the form

Shox = log/dX1 --dX, l/ day -+ -dryyaley — Xq) - - valz, — X,)x(z, - - ,IL‘p):| )
(35)

Unfortunately this cannot be computed exactly and we have to resort to further
approximations.

doi:10.1088/1742-5468,/2011,/03 /P03002 12


http://dx.doi.org/10.1088/1742-5468/2011/03/P03002

On the solution of a ‘solvable’ model of an ideal glass of hard spheres displaying a jamming transition

5.1. Small cage expansion, first order

The small cage expansion proceeds as follows [5]. First we assume that m is an integer
and write Spox as

Shox = log/dxl ~dzpp(T1) - - p(Tp) Hx (Zi,75), (36)
1<j
where 7 = (24,. .., :L‘m) is the coordinate of a ‘molecule’ made of m particles, x(z,y) =
[T x(%ay ya), and p(Z) = [dX [[I, va(ze—X). Observing that [ day - - - dw,, p(z) = 1,
we write
1p
Shox = log/d:i"l cd@y p(Zq) - p(Tp) Hb_((j'z’,i'j) = X(15, 715) + X (215, 715)]
i<j
Lp
~ IOg [/ dZL‘H e dl’lp H X(ZL‘M, l’lj)
i<j
+ Z/d$11 d$1p (H X T4y Tig ) Q(%z‘ - xlj):|a (37)
1<j <y’

where we omitted the second order in the development in series of Y — y; and we defined
Qlz—y) = /dxl +dwy, dyy -+ - dy p( [Hx TasYa) — 1] (38)

In [5] it is shown that the second order gives a contribution O(A) and that at lowest order
(see appendix C3 of [5]) Q(r) = 2/ AQu(m)d(r — D), where Qqo(m) is a function of m
defined in [5] as

Qo(m):/oo[@(t)m—@(t)]; o) = ;[ +erf(t f/ dr o, (39)

—00

We get then

—1
Sbox ~ log Z) + p(p2 ) /dx dy Q(z — y)gp(z — y)

p(p — 1) 2dVA
2 D
and collecting all the terms we get

= log ZS +

Qo(m)g,(D)Va(D), (40)

S(m) = g(m — 1) log(2mA) + ;—i logm + g(l —m)(z —1)log [1 — ﬂ
z(p —1)2dvA

z (
+ Zlog 7!
P 08 4y 2 D
Optimization with respect to A gives

—-m 1
VA =D " IVAD)G(D) (42)
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d d d 1
S(m) = i(m — 1) log(2mA*) + ) logm +d(1 —m) + 5(1 —m)(z —1)log [1 — —}
2
+ glog 7. (43)
In particular, using the results Qo(m — 0) ~ /7/4m and Qp(m ~ 1) = Q¢ x (1 —m) with

Qo = 0.638 [5], one can show that this expression trivially reduces to the RS entropy (11)
for m = 1, and that

22D d I
Y= 1 = —dl —(z—1)1 1—— Zlog Z°
7 S d%[dp—D%U%ﬁdn gt =0 1]+ S 2
d 2w D
Yoo = — lim m29,,[S(m)/m] = —=log — — dlo { }
q m—1 [S(m)/m] 2 %7 & z(p — 1)Va(D)g5(D)Qo

d 1 z 0
+ 5(2 — 1) log [1 - ;} +2;logZp.
5.2. Results for p = 2, any dimension

For p = 2 we have trivially Z§ = 1 — Vy(D) and ¢3(z,y) = x(z,9)/23, therefore
g3(D) =1/Z3. We get

2

S(m)zc—i(m—l)log l%D (1—Va(D))" (1 —m) } ;l

EAIE Qo(m)? + —logm
+d(l—m) + 5(1 —m)(z — 1) log {1 - ﬂ + 2 logl1 ~ Va(D)) (44)

and

d

2(1 — 2
5; = lim S(m) = —7 log {SD (1—Vy(D))

22Vy(D)?
+ 5 log[l = V(D)],

]+d+g(z—1)1og l1—ﬂ

d [QWDQ(l—X/;j(D))? ;z

1 2 = —=
Beq = = lim m0,,[S(m) /m] = —5 log | =55 o
2

and D is defined by ¥oq = 0 while Dgcp is defined by ; = 0. The results are reported
in figure 3.

5.3. Results for d =1, any p

Also in d = 1 the integrations can be performed for all p. We get

1
7% =1 —pDP! YD) = ) 45
p=l-pDl D)= (45)
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Figure 3. Special values of the sphere radius as functions of z at p = 2 for
different values of d in the Gaussian approximation: Drg beyond which the RS
solution becomes unstable, Dgcp where the pressure diverges, and Dk where the
Kauzmann transition takes place. When Dk < DRgg the transition is necessarily
first order.
Then

S(m):%(m—l)log {W(l_pl)) (1=m) } ;

12(p — 12 Qo(m)? + —logm

+(1—m)+ %(1 —m)(z — 1) log {1 - ﬂ 2= e — D), (46)
and
Y = —%10 {22(21(;7_2)?));] +1+%(z— 1) log [1 — ﬂ +Mlog(1 —pD),
R N 10 b 220 S U U SRR P N (0 RSO
Yeq = 5 {222(p—1)2Q%}+2+2< 1)1g{1 J%— 5 log(1 — pD).

The results are reported in figure 4.

doi:10.1088,/1742-5468,/2011/03/P03002 15


http://dx.doi.org/10.1088/1742-5468/2011/03/P03002

On the solution of a ‘solvable’ model of an ideal glass of hard spheres displaying a jamming transition

10 100 10 100

0.2 D, 0.2
DRS
A
0.04 0.04
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Z Z

Figure 4. Dgs, Dacp and Dk as functions of z for different values of p at d =1
in the Gaussian approximation.

6. The delta approximation

In this section we introduce another variational approximation scheme, that we shall call
the ‘delta approximation’. The motivation is that within the Gaussian ansatz, A — 0 at
jamming; therefore both ¢ (z) and () become delta functions in this limit. We would
therefore like to compute the free energy directly for delta function fields; we expect this
to give a simpler expression of the free energy, that should be good close to jamming. The
problem is that the Gaussian expressions are divergent for A — 0 unless m also goes to
zero proportionally to A. This is due to the fact that both fields ¢(z) and ¢(x) become
delta functions for A — 0. We therefore construct here a different approximation by
eliminating the field ¢(z) and making a delta function ansatz only for the field ¢ (x); in
this way the field ¢(x) is computed exactly and in particular it is not a delta function.

One can show in general that by using equations (13), one can eliminate the field
() and the replicated entropy can be equivalently written as

—1
S(m) - Ssite’ - %Sboxa (47)
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where Shox is defined as in equation (12) and
Sawe =log [ APY]--dP[v;

x [ [ Il [k et by vk ek )
=1
= log<Z$e> (48)

The ‘delta approximation’ is then based on the following ansatz for P(1):

Ply] = / AX () — 8z — X)), (49)

namely on each site ¢ the probability of the variable z; is a delta function centered in an
i.i.d. random point. Under approximation (49), the replicated entropy becomes

S(m):lof.j:/Xml---dX;1 (/dx Hx (z, X{,..., X} ))

-1
— %lOg/XmprX(Xl,,Xp)

— log/ <H dXy - dX) 1X(Xf,...,X§_1)> Vo) (X7 -+ X7 )™
k=1

-1
_ =l log Z,), (50)

recalling the definition of v, in equation (5). Introducing the normalized measure of n
spheres in a unit box,

dp(zy -+ xp) = 20 , (51)
we can rewrite S(m) given in equation (50) in the equivalent form
S(m) 1og/ (H dp (XF - )) [vz(p,l)(Xll, e ,le_l)]m + zlog Zg_l

— % log ZS. (52)

In the following we study this expression for several specific values of p and d. In this
section we will derive the expressions for the complexity, and in section 8 we will present
the results together with a comparison with numerical resolution of the cavity equations.
Note that for m = 1 one can easily show that S(m) given above is equal to the RS
entropy (11), which is an important requirement for the consistency of this approximation.
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6.1. One dimension

6.1.1. Results forp=2. We first consider the simplest case, namely one spatial dimension
and only two-particles-in-a-box interactions (p = 2). Since Z{ = 1 and Z) = (1 — 2D),
we get

S(m) = log / dei [0, (X, - X)) — glog(l —2D). (53)

We have therefore to compute the probability distribution P,(v) of the void space left in
[0, 1] for the insertion of a new particle, after having put z particles in random positions
{X.}. Then we have

S(m) = log /0 o P(o) o™ — ~ log(1 - 2D). (54)

Note that v ranges from 0 (no void space) to 1 — 2D (in the limiting case where all points
X; coincide), and we expect that P,(v) = pod(v) + Pi°%(v) since a finite fraction of the
configurations have zero void space at large enough D. Since the delta function does not
contribute to S(m), we will omit it from now on.

In order to estimate P,(v), we can make the assumption that whenever v > 0, there
is only one hole large enough to contribute to v (i.e. a hole whose length is larger than
2D). The function P,(v) can then be easily evaluated in the following way. The hole that
contributes to v must have length 2D + v, and must be delimited by two particles that we
can choose in z(z—1) different ways, since the particles are distinguishable. We can put the
first particle in z; = 0 and the second in xs = 2D + v (integration over x; can be omitted
since it gives a factor of 1, the length of the box). The remaining z — 2 particles must be
in the space between x5 and 1, therefore giving a contribution (1 —2D —v)*~2. Therefore,
within the one-hole approximation, we get P,(v) = z(z — 1)(1 — 2D — v)*~2. We notice
that the total probability of v > 0 must be smaller then one since some configurations
might have v = 0. This gives the condition

1-2D
/ dv P.(v) = 2(1 =2D)* ' <1= D> (1 -2z YE1)/2 (55)
0
which gives an estimate of the limits of validity of the one-hole approximation.

Plugging the result for P,(v) into equation (54), we get an approximate formula for
the replicated free energy which depends on z and D:

IF'(z+H(m+1) z
=1 (m—1+3)10g(1 - 2D).
S(m) og< Cogm) )+ (m=1+ ) log(1 - 2D) (56)
Recall that e, = —[m?9,,(S(m)/m)]|m=1 and that Dy is the point where the latter
quantity vanishes. We get
1 22 :
WSS P - 5 log(1-2D), Dy =3[l — e ®/722=ll0](57)
q=2
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On the other hand, ¥; = S(m = 0) and it vanishes at the close packing diameter Dgcp.
We get

%, =log(z) + ——log(1 — 2D),  Dgep = L[1 — 222, (58)

The complexity curve can be obtained explicitly, using ¥ = —m?9,,(S(m)/m) and
s = 0, S(m), which gives the parametric representation

z—1 1

s =log(l —2D) — —_—
o m +q

z—2

- r(z+1)r(m+1))+ — 1

log(1—2D) +1

og( )+ og( 01 m)
One can check easily that both critical diameters Dk and Dgcep are well within the

region of validity of the one-hole approximation given by equation (55), and they scale as

Dg, Dgep ~ log z/z in the large connectivity limit. The values of Dk and Dgcp can be
compared to the stability of the RS solution (which scales as Dy ~ 1/1/2).

6.1.2. Results for p=3. We now consider the three-particles-in-a-box case p = 3, still for
d=1. Since Z9 =1—2D and Z) = (1 — 3D)?, we get from equation (52)

1-3D 4
S(m) = log /0 Qv Py (o) 0" + 2 log(1 ~ 2D) — log(1-3D),  (60)

where now P, ,(v) is the probability distribution of the void space in [0, 1] for the insertion
of a new particle, after having thrown at random z pairs of particles, each pair being at
distance larger than D. The latter ranges from 0 (no void space) to 1 — 3D (in the case
where each pair is exactly at distance D and superposed to all the others).

Within the same one-hole approximation, we can approximate P,.(v) as follows.
The hole must have length L = 2D + v. We have to distinguish between two different
situations: (i) the hole is made by the same couple of particles; (ii) the hole is made
by two different couples. In the case (i) we have z ways of choosing the couple. We
fix then one of the two particles of the couple in 0 and the other one in L (which
gives an extra factor 2). Finally the other z — 1 couples of particles must be in the
interval [L, 1] with the conditions that they are pairwise compatible, which gives a factor
f(L,D) = le dz le dy x(z,y) = (1 — L — D)? for each pair. With this definition the
contribution due to the same couple finally reads 2z f(L, D). In the case (ii), instead,
we can fix one particle of one couple in 0 (we have 2z ways to choose it) and one particle
of another couple in L (we have 2(z — 1) ways of choosing it). The free particle of the
first couple must be in [L,1 — D], due to the condition that it is compatible with its
partner which has been fixed in 0. This gives a contribution (1 — L — D). An analogous
contribution comes from the free particle of the second couple, which must be in the
interval [L 4+ D, 1]. The other z — 2 couples must be in the interval [L, 1] and must satisfy
the compatibility condition, and therefore give a contribution f(L, D)*~2. The sum of the
two contributions is (422 —2z)(1 — L — D)=V and it has to be normalized by the total
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integral (1 — 2D)?; going back to v = L — 2D we get

22(22 — 1)(1 — v — 3D)*="1)

P (v) = 61
2.2 (0) (1—2D)? oy
As in the previous case we get the condition
1-3D 221
2z(1-3D)
dv P, (v) = <1, 62
| o - F g < (62)
which gives a lower limit of validity in D of the one-hole approximation.
Plugging this result into equation (60) we get for the replicated entropy
I(im+1I'(1+22) 2z
S =1 —1——|log(1—-3D 63
(m) = tog |~ LU ) log(1-30), (69)
from which we get
21 2:-3
Zeq - -+ log(l - 3D)a DK = %[1 - 87(3/%73) Zqu(l/q)]a (64)
q 3
q=2
and

22 =3
¥, =log(2z) + :

log(1 —3D),  Dgcp = 5[1 — (22)7%/@=79]. (65)

We checked that both Dgcp and Dy are well within the region of validity of the one-hole
approximation; actually, the value of the left-hand side of equation (62) never exceeds 0.1.
Again, Dgcp and Dk are found to scale as 2log z/z for large z.

6.1.3. Conjecture for arbitrary p (2,3,...,00). A comparison of equations (57) and (63)
and of equations (58) and (64) allows us to guess the form for general p:

1 p—1)z—
Z —+—plog(1—pD),
~ q P

I

[1 0P/ (0—1)z=p) L, ”Z(l/cn]
(66)
(p—Vz—p

¥j =log((p—1)2) + log(1 — pD),

Daep = -[1—((p— 1)Z)fp/((p71)zfp)].

BIH

However we did not attempt to provide a proof of this conjecture.
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6.2. Two dimensions

In the d = 2 case we cannot compute S(m) analytically and we must resort to a numerical
evaluation. The numerical algorithm consists in writing a routine that is able to compute
the void space v,, defined in equation (5), left by n discs centered in a set of positions
{X}. We used an adaptation of the algorithm described in [24] that works as follows.

e We start by a grid of squares of side A < D (typically A = 1/100). These squares
are considered as particular cases of convex polygons.

e We add discs X - - - X, sequentially.

e Each time a disc is added, we check if a given polygon is entirely contained in the
disc. In this case it is removed from the grid.

e Next we consider the polygons that intersect the boundary of the new disc. We
approximate the boundary of the void space left in the old polygon by a new polygon,
by approximating the boundary of the disc by a straight line (which is reasonable if
A < D, with error O(A/D)?). The new polygon replaces the old one in the grid.

e This construction is iterated until all discs have been placed. The area of the polygons
that survived is computed easily using equation (1) of [24], and it gives the void
space vy,.

The void space has to be averaged over the distribution []7_,du(X]---dX}_)),
hence we must sample a configuration of p — 1 spheres in a box (and do this z times
independently). This can be easily done for p = 2 (one sphere, flat distribution) and
p = 3 (put one sphere in the center of the box, draw a second sphere outside it, then
translate randomly both spheres).

A correct sampling gives access to the void space distribution P(v), that has the form
P(v) = pod(v) + P™8(v), as in one dimension. In the following we omit the delta term
and only consider P'™&(v), which therefore is not normalized to one (its integral gives
the probability that v > 0). From this we can compute equation (52) as we did in one
dimension:

z(p—1)

S(m) = log / dv P(v) 0™ + zlog Z)_ — log Z,). (67)

Similarly we get, using the relation [ dv P(v)v = (v) = (Z)/Z)_,)* (which can be easily
checked and also serves as a check of the correct sampling of P(v)),

0 z
_ 7 0 Zp—l
Yeq = ]—jlogZp - ( 70 ) /d’uP(v)vlogfu,

p
p—1)

(68)
¥ = log/dv P(v)+ zlog Z)_, — il
p

log Zz?'

Therefore both ., and ¥; can be computed directly from P(v); from them we can
determine the transition points Dk and Dgcp.
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7. Numerical solution of the equations

In the previous sections we described two analytical approximate methods yielding the
phase diagram of the model. Beyond these analytical approaches, one can also develop
some algorithms to solve the functional self-consistent 1RSB equations numerically. In
this section we explain how it is possible to implement a numerical procedure to solve
equations (13) in the 1RSB phase for each value of the connectivities, z and p, of the
diameter D, of the 1RSB parameter m and, in principle, of the spatial dimension d (in
practice, numerical solutions can only be achieved in one and two dimensions). In order to
do that we need representations of the cavity fields ¢(x) and ¢(x), and of the distributions
Ple] and P[], which can be treated by a computer.

As far as the cavity fields are concerned, the simplest possibility is to discretize the
volume [0, 1] where the functions ¢(z) and (x) are defined using a regular hyper-cubic
grid with ¢ bins per side of size 1/¢. For instance, in one dimension we discretize the
interval [0, 1] in ¢ slices of length 1/¢, and in two dimension we discretize the square box
on a square lattice of ¢ X ¢ points.

The coordinate in the box can assume a discrete set of values, i, /q, with ;being a
d-dimensional vector whose components are integers between 0 and g — 1, identifying the
coordinate of the position of the center of the sphere in the box. If the position of the
center of the sphere occupies a given site of the grid i, then all other sites of the lattice
that are at Euclidean distance from i smaller than the diameter of the sphere D cannot
be occupied by the center of another sphere (we call this number np). The volume of the
sphere in the discretized version of the model can be estimated as Vi = np/(2¢)?, and the
packing fraction as ¢ = pV, = pnp/(2¢)?. Since in the continuum limit V, = V4(1)(D/2),
we can then define an effective diameter as Deg = (1/¢)[np/Va(1)]'/%. Note that in general
Deg # D, and we take D.g as representative of the sphere diameter in the continuum limit.
In particular, by symmetry, in d = 1 the number of excluded sites always has the form
np = 1 + 2a for integer a, and one has
1+ 2a

2q

In d = 2 the parameter np depends in an irregular manner on the choice of D (since the
square lattice we use breaks the spherical symmetry) and one has in general

1
Do = =4/ 22, (70)
q N

In the discretized version, the fields () and ¢(x) are vectors of ¢¢ components (such
that the sum of all components is equal to one), and the cavity equations, equation (6),
become a set of coupled algebraic equations for the ¢? components of the cavity fields,
which can be easily solved numerically (of course, the numerical complexity of this step
grows linearly with the number of components of the cavity fields, ¢?).

Note that the discretized version of the model is a generalization of a very important
optimization problem known as the ‘random graph coloring’ problem, where the number
of colors corresponds to the number of components of the cavity fields ¢?. In particular,
for np = 0 and p = 2 we recover the standard g-coloring problem, which has been deeply
studied in the past few years, and whose properties and phase diagram are known in great
detail [25].

Deg = (69)
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The continuum limit of the model is, of course, recovered for ¢ — oo. As a
consequence, in order to make sure that the numerical results are reliable and that they
are not affected by the discretization, we solve numerically the 1RSB equations using
several values of ¢, and analyze the scaling properties of the numerical solutions with the
number of bins. Moreover, one should note that for d > 1, partitioning the box using a
hyper-cubic grid breaks the spherical symmetry down to some discrete symmetry. This
makes the scaling towards the continuum limit in two dimensions more problematic than
in one dimension (also because, due to the fact that the complexity of the numerical
algorithm grows as ¢?, we are limited to smaller values of ¢ for d = 2).

Other numerical representations of the cavity fields were also possible. For instance,
as @(z) and 1 (x) are periodic functions in the interval [0, 1]¢, we could have performed
a Fourier transformation of the recurrence equations keeping all the components up to
a certain momentum, yielding a finite set of coupled algebraic equations for the Fourier
coefficients of the cavity fields (similarly to what we did in section 4 to study the RS
stability). However, it turns out that this strategy is not efficient in the most interesting
region of the phase diagram, namely at high packing fraction where a 1RSB glass transition
is found. Indeed here the cavity fields become extremely peaked (this is also the reason
why the Gaussian and the delta approximation work very well), and the momentum cutoff
needed to get accurate results becomes too large to be handled.

Another possibility we could have employed was to represent the fields as a population
of delta functions, e.g. p(x) = > co0(z — x,). This strategy, which has the advantage
that one does not need to discretize the space, has, on the other hand, the disadvantage
that at each step of the iterative procedure, in order to generate a new field, one has to
sample uniformly one point in the free space available for the insertion of a new particle,
given the position of z(p — 1) neighboring particles in the box. This is trivial in d = 1,
however in that case the discretized procedure works already well enough. In d = 2, this
could be done using the algorithm described in section 6.2. However this algorithm is too
slow to be used efficiently for this scope. Therefore in the following we will not explore
further this representation.

7.1. The population dynamics algorithm

Now, once that we dispose of the discretized representation of the cavity fields, we need to
be able to implement a computational strategy to solve the 1RSB functional self-consistent
equations, equations (13), for any values of the connectivities, z and p, of the diameter of
the spheres, D, and of the 1RSB parameter m. This step is quite standard in the context
of the cavity method, and goes under the name of ‘population dynamics algorithm’ [23].
The idea is to represent the probability distributions P|[p] and P[] as populations of M
representative cavity fields with some weights:

M M
Plel =) 23 0lp(x) —pa(z)],  and PR =) 25d[(z) — pal2)). (71)

As previously discussed, we need to consider only the translationally invariant solution of
equations (13) in order to describe the glassy phase. A solution P[¢(x)] is translationally
invariant if the property P[i(z + s)] = P[(x)] holds for any s € [0, 1]¢, where ¢ (z + s)
is an arbitrary translation (taking into account periodic boundary conditions) of ¥ (x).
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Since we represent the probability distribution P[] by a set of representative samples
Yo (x), it is very easy to implement translational invariance. In principle, we would like to
impose that if ¢, (z) is one of the samples, then any translation of it is also contained in
the set of samples with the same weight. But this is just equivalent to doing the following;:
at each time we use a given sample ©(x) as a representative of P[], we apply to it a
‘random shift’, namely we extract a vector s uniformly in [0, 1] and we translate ¢ (x) by
s. In this way we impose translational invariance by hand.
The population dynamics algorithm works in the following way.

(1) Pick at random p — 1 fields v; from the population P[], according to their weights
zy. Apply a random shift with flat probability in [0, 1]¢ to each of the cavity fields.

(2) Using equations (6), compute the new cavity field ¢, along with its weight z,,
which is given by the normalization in equations (14) to the power m, according
to equations (13). Note that at high density, in the 1RSB phase, the cavity fields
become extremely peaked. This implies that there exist some configurations of the
p — 1 fields 9; for which the new field ¢ is zero everywhere in [0, 1]¢. In this case the
corresponding weight is zero and we have to reject it and restart the procedure. These
events, which can cause a major slowing down of the algorithm, are called ‘rejection
events’.

(3) Repeat (1) and (2) M times, until a whole new population Pyey ] is generated, and
replace the old population with the new one (this kind of update is called in the
context of the population dynamics algorithm a ‘parallel update’).

(4) Apply steps (1)—(3) using the population P[p] to generate a new Ppey[V].

(5) Repeat steps (1)—(4) until convergence, namely until the populations P[] and P[]
are stationary.

Once this process has converged, we can compute the average values of the link, the
site and the box contributions to the 1RSB entropy, equation (12), from which one can
obtain the complexity ¥(m). This allows us to determine the equilibrium value of m*
inside the 1RSB glassy phase as the point where S(m) has a minimum [9]. In practice,
instead of computing the replicated entropy using equations (12), we can use another and
equivalent formula (derived below) which is more advantageous from a numerical point
of view. Indeed, using equation (6) we can easily obtain the following relations (we omit
the arguments of the functions Z):

o Zbox o Zsite
= Zw .

(72)
Using these and equations (13), one can rewrite the total and internal entropy as

z z z z
S(m) = (1 _Z+]_9) Slink+]—95¢+5¢, s(m) = (1—24—]—9) Slink—f-BS(p-f-Sw. (73)

The computation of S, = log(Z') and Sy, = log(Z;}') is numerically less involved than S
and Spox appearing in equations (12). Moreover, these contributions can be evaluated on-
line during steps (1)—(5) of the population dynamics algorithm described above (we have
just to compute the average values of Z7' and Z' over all the M attempts of generating
a new cavity field), without requiring the implementation of any further step.
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Of course, representing the distributions P[¢)] and P[y] as populations of M elements
is an approximation which becomes exact only in the M — oo limit. On the other hand,
the numerical complexity of the population dynamics algorithm grows linearily with M.
In practice one has to find a good compromise between a value of M small enough such
that the execution time of the code stays reasonable, but large enough to avoid systematic
corrections due to the finite size of the populations. In the present case, we find that
M = 2% is close to the optimal value.

Although we have produced a working version of the algorithm described above at
any finite value of the 1RSB parameter m, it turned out that the execution time is too
large to get accurate results in a reasonable time. However, there are two special limits,
namely m — 1 and m — 0, which describe respectively the physics at the Kauzmann
point and in the close packing regime, where some simplifications arise which allow us to
perform the numerical study of the model in a more efficient way. These two limits are
discussed below.

7.2. Reconstruction: the limit m =1

In this section we consider the numerical solution of the 1RSB equations for m = 1.
Recall that S(m = 1) gives back the equilibrium RS entropy of the system between the
dynamical transition (where a non-RS solution of the 1RSB equations appears for the first
time due to the emergence of glassy metastable states) and the Kauzmann point. In this
limit, using the approach introduced in [26] which goes under the name of reconstruction
method, also applied in a similar context to the coloring optimization problem in [25],
the self-consistent 1RSB equations can be simplified. Similarly to [25,26], one can indeed
introduce two new families of distributions over the cavity fields for each value of the
variable z, defined as

Rao[] =¢(@)Pl]  and  Refe] = o(z)Ple]. (74)

Using the previous definitions, the 1RSB cavity equations, equations (13) can be rewritten
in terms of these new distributions. Furthermore, imposing the translational invariance
which implies that R, [¢(y)] = Ro[t(y—x)] for all z we obtain the self-consistent recursion
relation for the new distributions which read

/HdRos@z [ ——Hsoz ]

Rolyp] = /d,u ($1"'17p—1|0)HdR0[¢z‘] (75)

X 5[ /de]% ) (y yla-“ayp*l) )

where
X(0,21,...,2p—1)dey - -dapy
A4 '

dp (z1 -+ - xp_1]0) = (76)

From a numerical point of view, these latter equations are much easier to solve than
equations (13) for two reasons. First, no reweighting factor is present, which prevents the
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population from concentrating on few cavity fields with large weight. Second, rejection
events cannot occur in this case. Indeed, for example, the procedure to generate a new
field ¢ amounts to the following.

(1) Pick at random p — 1 fields v; from the population Rg[¢)]. Note that all the fields
have the same weight in this representation.

(2) Pick p — 1 variables zy,...,7, ; in the interval [0,1] satisfying the hard sphere
constraint x(0,x1,...,z,_1) with a flat measure.

(3) Shift each of the p — 1 chosen cavity fields ¢; by z;.

(4) Using equation (6), compute the new cavity fields ¢ (again, note that there is no
reweighting in this case), and insert the new field randomly into the population R[]
(this kind of update is called a ‘serial update’ and ensures a better convergence than
the parallel one).

Once the populations Rylp] and R[] have attained stationarity, we can compute the
complexity of the system. Since the replicated entropy S(m = 1) equals the RS one, the
complexity at m = 1 is given by ¥, = Srs — s(m = 1). The internal entropy can be
evaluated using equations (15) and (13), where

(Zhink 10g Zink) = /dROW)] dRo[¢] log/dyw(y)cp(y),
(Zylog Zy) = / HdRo [pi] log / dy H@(y),

. (77)
(Z,log Z,) = / dpu(r -+ ,110) 20 T dReo [8] log / dy
=1

x H dyi ¥i(yi — 2)X(Ys Y1, -+ Yp—1)-

From the complexity we can determine the Kauzmann point, which corresponds to the
value D where Y, vanishes.

In principle this method would also allow us to determine the location of the dynamical
transition, which is the first point where a non-RS solution of the 1RSB equations appears
at m=1.

The results at m = 1 obtained with the reconstruction method will be discussed in
section 8, and compared with the analytical approximations.

7.3. Hard fields: the limit m =0

Also this specific limit yields a simplification of the numerical algorithm. The m — 0
limit corresponds in this context to the ‘close packing limit’, since an inspection of the
expression of the internal entropy s(m) shows that it goes to —oo as log(m), and the
pressure diverges as well [5]. Therefore the limit m — 0 gives access to the jammed glassy
states at infinite pressure [5].

The limits for m going to zero of Z[,., Z% , and Z7, are either zero (for ‘incompatible’
configurations of the cavity fields) or one (for ‘compatible’ configurations of the cavity
fields) regardless of the value of the cavity fields. As a consequence, in order to compute
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the complexity (which equals the replicated entropy S(m — 0), since the internal entropy
term, ms(m), disappears) we are only interested in the propagation of this information.
To this aim, we introduce the ‘hard’ components of the cavity fields ¥y.,q and @parq:

1 if (z) >0 1 if p(z) >0

¢hard($) = {O 0 otherwise. (78)

otherwise

and Ohard(T) = {

These functions are defined as being equal to one for all values of z such that the
cavity fields are non-vanishing regardless of their value (i.e., corresponding to a non-
vanishing probability of finding a sphere with center in x), and zero otherwise. Since the
reweighting factors in equations (13) do not depend on the actual value of the fields
in the m — 0 limit, the propagation of the hard components decouples completely
from the propagation of the cavity fields and can thus be treated independently. As
a consequence, the population dynamics algorithm described above can be used on the
populations encoding the probability distributions of the hard fields. Once a stationary
state has been reached, we can compute the complexity at m = 0, X;, from equations (12),
computing the logarithm of the average value of the fraction of attempts yielding non-
vanishing values of Zjin, Zpox, and Zgie. Using equation (73), instead of computing (Z/" )
and (Z7,), one can more easily compute (Z') and (Z7'), which are given respectively
by the average values of the fractions of non-rejection attempts to generate the new .4
and @paq fields over the total number of attempts. Then we can determine the location
of Dgep defined as ¥;(Dgep) = 0.

The results at m = 0 obtained with this method will be reported in section 8, and
compared with the analytical approximations.

An important caveat is that in principle some fields could be proportional to
exp(—1/m) in the limit m — 0. If this happens, then the procedure above fails since these
fields give a finite contribution to the normalizations which is neither 0 nor 1. Although
we could not perform a careful systematic investigation of this effect, it seems that it
might happen only for values of z and p where the transition at m = 1 is continuous. This
point surely deserves further investigation.

Note that in order to compute the correlation function in the close packing limit (see
section 9) we also need to know the actual values of the cavity fields. Since the propagation
of the hard components decouples completely from that of the fields themselves, one can
use the population dynamics algorithm to find the solution of the 1RSB equations for the
distributions of the hard fields and of the cavity fields independently (knowing that the
cavity fields can only be nonzero where the hard components are equal to one), and use
equation (80) to compute the pair correlation function.

8. Comparison between the numerical results and the approximations

In this section we report the results obtained from the direct numerical calculation with
discretized space and we compare them with the delta and Gaussian approximations.
8.1. Complexity

In figure 5 we report the complexities ¢, (the complexity at m = 1 equal to (1/N)
times the logarithm of the typical number of glass states when the configurations are
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Figure 5. The complexity in some representative cases of discontinuous

transitions at d = 1, computed with the numerical solution of the population
dynamics algorithm with varying resolution of the discretization process, is
compared to the Gaussian and delta approximations. Upper panels: ¢, (left)
and ¥; (right) for p = 2 and z = 110. In both cases we fixed the parameter
a = 4,7,10 in equation (69) and changed ¢ to vary the effective diameter
Deg = (1 + 2a)/(2q), which is reported on the horizontal axis. Lower panel:
Yeq (left) and X; (right) for p = 4 and z = 3. In the first case, we varied ¢ at
fixed a, while in the second we did the opposite.

sampled uniformly) and 3; (the complexity at m = 0 equal to (1/N) times the logarithm
of the total number of jammed states) for several representative cases at d = 1 where

the transition is discontinuous.

Generically we observe that the delta approximation

performs better at m = 0, while the Gaussian approximation is more reliable at m = 1.
Both approximations give an upper bound to the true complexity and therefore give values
for Dk and Dgcp that are above the true ones. Moreover, both approximations miss the
dynamical transition since by construction the fields are assumed to be localized.

Some results for d = 2 are reported in figure 6.

Here the scaling for ¢ — oo

becomes very difficult because the numerical solution is computationally demanding and
we cannot go beyond ¢ = 20 for moderate connectivities. We could perform a systematic

doi:10.1088,/1742-5468,/2011/03/P03002

28


http://dx.doi.org/10.1088/1742-5468/2011/03/P03002

On the solution of a ‘solvable’ model of an ideal glass of hard spheres displaying a jamming transition

Jamming complexity Zj -m=0

I
*-o q=11
=-nq=12
>- q=13
+-2 q=20
o—- Delta n
— Gaussian

=p

d o=z ¢

Z:

! ‘ ‘ ! ‘
0.325 0.35 0.375 0.4
D

Figure 6. The complexity at d = 2, p = 2 and z = 20, computed with
the numerical solution of the population dynamics algorithm with varying
resolution of the discretization process, is compared to the Gaussian and delta
approximations. Here we can only use moderate values of ¢, and because of
the geometry of the discretization the effective diameter of the sphere, given by
equation (70) and reported on the horizontal axis, cannot be varied smoothly.
For instance, at ¢ = 11 we could not find a point at positive complexity.

investigation only p = 2 and z = 20, which is unfortunately a case where the transition
is continuous and the solution might be unstable towards further RSB in the glass phase.
In this case, at m = 1 we correctly find a continuous transition at a value of D which
is compatible with the result found from the stability analysis of section 4. At m = 0,
we find good agreement with the results of the Gaussian and delta approximations. Note
however that also at m = 0 the results could be unstable towards further RSB.

8.2. Phase diagram

In figure 7 we compare the transition lines obtained by the Gaussian and delta
approximations with the numerical results, where available. We computed Dk and Dgcp
by performing an extrapolation to ¢ — oo (which is simple since the corrections are found
to be proportional to 1/¢) in some representative cases where the transition is continuous
or discontinuous; the results are reported in figure 7. We observe that indeed the Gaussian
and delta approximations give consistent results, which are also consistent with the exact
numerical solution and provide upper bounds to the latter.

Whenever the RS instability Drs < Dk, the transition is continuous. This happens
generically for small z. On increasing z, the lines Dgrg and Dk cross and the transition
becomes discontinuous. The value z* where this crossover happens depends weakly on the
space dimension, but it depends strongly on p. Indeed we have z* ~ 100 for p = 2, while
z* ~ 20 for p = 3 and (as we can infer from figure 4) the transition is always discontinuous
for p > 3.
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Figure 7. Phase diagrams for p = 2,3 and d = 1,2. We compare the results
of the Gaussian and delta approximations with the numerical results obtained
directly from a discretization of the cavity equations. In the lower right panel,
the horizontal line indicates the value D = 1/4 above which the calculation of Z
is not valid, see equation (29).

9. Correlation function

9.1. Definition

As explained in section 3, in the glass phase the cavity equations have multiple solutions,
each describing a different glass state. Within each state a@ we can define a correlation
function g,(x,y) as follows. For each box we have

@(p ) = — L S VS — ) - L
Ya ( 7y) p(p—l) <§5( Z>5(y ])>aa p(p_1>

Jdag - dag ) (@9) i (e0) x (@, . 2l) SO 0w — 29)d(y — )
x @ @ ’
Jdag - daa (@) -8 (22) x (@4, .. ., 22)
(79)
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since the fields 1/16(3) (%) describe the distribution of the variables adjacent to box @ in the
absence of the box itself. We now average this quantity over the boxes and over the states
a with the weight Z"". We get

Nz/p 1

99 = 377 2 5 g 20 ()
= e b / dP[n] - - dP[y] Zoox [t -+ )™ b1 (2) s ()

X / (H () dxj> Xz, y,z3, ..., 7). (80)

Note that in the RS case the above expression reduces to gg (z,y).
We expect that at m = 0 (close packing), g(x,y) develops a peak in |z —y| = D
describing contacts [27,28]. The number of contacts is

C=(p-1) / 0.0 d. (1)

The delta peak is also accompanied, in three-dimensional sphere packings, by a square
root divergence, g(r) ~ (r — D)~%5 [27,28], which we want to investigate here.
Note that in the delta approximation we just get

g(.’L’,y) = % /dXB T pr X(xa Y, X37 B 7XP> = gg(x7y>a (82)
p
therefore all the structure of the correlation in the packings is lost in this approximation.

One can show, following [5], that in the Gaussian approximation, as A ~ m for
m — 0, one gets a delta peak at » = D in the jamming limit, with all particles being
non-rattlers and ¢ = 2d. Therefore, this approximation is able to capture some of the
peculiar structure of the correlation. On the other hand, the square root singularity is
missed by the Gaussian approximation [5].

Unfortunately, it is very difficult to study the contact peak in the numerical solution
of the cavity equation, because the discretization makes it hard to define a proper notion
of contacts and separate the delta peak contribution from the background. Therefore,
in the following we focus on the square root singularity which is also a non-trivial and
somehow unexpected feature of pair correlations at jamming [27, 28].

Numerical results are presented in figure 8 for the g(r) in one dimension, and two
representative values of z and p where the transition is continuous or discontinuous. In
both cases, the divergence is compatible with a square root singularity (r — D)%% in a
range of 7 — D, but at smaller » — D the g(r) seems to diverge as (r — D)~ with an
exponent v > 0.5. However, in this region the square root divergence is probably mixed
with the contact delta peak, because of the discretization. A detailed analysis of this
mixing was not possible because the values of ¢ we could reach were still too small. Since
this investigation is computationally very demanding, we could not perform a systematic
study of the value of the exponent as a function of p and z, nor investigate the more
interesting case d = 2, which is very difficult because our discretization does not preserve
the spherical symmetry around the central particle. We leave a more systematic numerical
analysis for future work.
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Figure 8. Pair correlation function ¢g(r) at d = 1, m = 0 (jamming) and D ~
Dgcp (in practice, the closest value to Dgcp compatible with the discretization).
Left: p = 2, z = 6; note that in this case the system undergoes a continuous
transition and these results might be unstable towards further RSB. Right: p = 4,
z = 3; here the transition is discontinuous. Note that for p = 4 we observe an
additional singularity at r = 2D [27].

9.2. Argument for the square root singularity

We now present an analytical argument to relate the shape of the cavity fields to the
square root, singularity. We focus on m = 0, and we study the small » — D behavior of
g(r) as follows. We define the quantity

U(2) = / (H zpj(xj)dxj) X By g, (83)

=1 X(:L‘l,l’z)

Note that z = x —y € [-1,1] but using periodicity one can restrict to z €
[—1/2,1/2]® with periodic boundary conditions. The probability distribution of ) induces
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a distribution P[¥] on W. Then we have

o) = [ dedygle)ste—y—2) =5 [ apl %e [ / dZ‘P(Z)x(Z)] |

(84)

where the term e™*»x ensures the normalization [ dz g(z) = 1.

In the following we restrict for simplicity to d = 1. Note that by translational
invariance the field ¥ is centered around a random uniformly distributed position zy,
while its shape is encoded by a non-trivial distribution. Now assume that with a certain
finite probability with respect to the shape distribution, one has the following.

e U(z) vanishes at some finite distance from the center given by zy = 2y &+ dzp. The
quantities z; are then also random and uniformly distributed in [-1/2,1/2].

e The shape of W(z) around the point where it vanishes is of the form
W(z) ~ e Az, (85)

e |z, —z | <2D, and z, > D (the additional symmetric contribution coming from z_
gives a factor 2 and will be neglected as well as all proportionality constants).

Then the function x(z)¥(z) vanishes everywhere except in [D,z;], where it is given
by exp|—A/(z; — 2)®]. The average over P[V¥], for what concerns this contribution, is
translated onto an average over z; and equation (84) becomes

e ME=2%(D < 2 < 2y) ¢ e A/ (24 =2)"
~ — — > —
g(Z) /dZJr f[Z)+ dz e—A/(z4—2)" H[ZJr = D] /Z dZ+ fg+ dz e—A/(z4—2)>" (86)

where C' is a suitable cutoff that comes from the fact that if z is too much larger than D
the approximation (85) will break down. We will show that this cutoff does not matter
as the main contribution for z — D comes from z, close to D.

To simplify notations, we introduce A = (z — D)/D and € = (zy — D)/D. Also we
define a = A/D® and ¢ = (C — D)/D. With these notations we get

c o/ (=)

g(\) x )\ de fog Dh el (87)
The integral in the denominator is dominated by the small A behavior, that gives
/ " e/ / " e @ea0e) _ gaen € (88)
0 0 ax
and
g0 x / * de e—(atD) ga(1/e2 —(1/(e=N)) (89)
A

We want now to evaluate the integral by a saddle point for A — 0. We assume (and
will check self-consistently) that the saddle point value €* > A. Then we can expand for
Ae < 1 and

g(\) o / de ¢ (D) loge—aarem(@h. (90)
A
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The maximum of the above expression is found at * = (aa\)/(@*1) > )\ for small \ as
initially assumed. Substituting this in the expression above one obtains g(\) o 1/A. To
get the correct result we need to compute also the quadratic corrections around the saddle
point. Including these, we finally obtain

g(N) o AO05) o (p — D)o/, (91)

i.e. a power-law divergence for z — D with exponent € [0, 1], which is consistent with the
observed exponents in figure 8. Note that a square root singularity is obtained for a = 1,
namely a simple exponential singularity of the cavity fields. We checked in our numerical
results that indeed the form of the fields is compatible with the ansatz (85).

Note that this same argument can be carried out at finite m, but in this case we get
that g(\) is independent of A for small A\. A more complete analysis should show that at
finite m, g(\) is a power law for A > O(m") with some exponent v, and it crosses over to
a finite value for A < O(m”).

10. Discussion on finite dimensional hard spheres

One way to recover the normal hard sphere model from our model is to set p = 2 and
z = N — 1. However, this limit cannot be investigated within the cavity formalism which
is based on taking first the limit N — oo at finite z. Here the limits N — oo and z — o0
do not commute, and if we first send N — oo and then z — oo we do not recover the
hard sphere models (a similar behavior is found for the Bethe lattice spin glass [23]).

Therefore we want here to find a suitable limit that we can take after N — oo to
recover the hard sphere model. As we discussed in section 1, one possibility if to set
formally z = 1 and identify p with the number of particles, therefore taking p > 1. Of
course, for z < 2 and finite p the model does not have any phase transition (it becomes a
one-dimensional model for z = 2). Therefore, we have to send p — oo before z becomes
smaller than two.

As a first check, we note that in this limit the RS entropy

z
SRS - ]_Dlog ZI(;) - Sliq((p)a (92)

where Siiq(¢) is the entropy of d-dimensional hard spheres in the thermodynamic limit at
fixed packing fraction . Actually, there is a problem with the latter identification, since
Zg does not contain a factor p! which should take into account indistinguishability of the
particles. This is indeed to be expected, since we took a formal limit z — 1, but at any
finite z > 1 the particles are connected to several boxes which makes them distinguishable.
We therefore recover the finite dimensional result for a system of distinguishable particles.

Next, we can look at the stability of the RS solution according to equation (20).
To compare with standard hard spheres it is crucial to observe that here the box side
is one while D becomes very small for p — oo, in such a way that the packing fraction
o = pVy(D/2) = pVy(1/2)D? is finite. For p — oo first and z — 1 after, we have
gg(:c) — giiq(z), however z is expressed in units of the box length. If we introduce as
usual the distance r measured in units of the sphere diameter, r = z/D, we have (for

k #0)
gg(k) = /d:p eimgg(:p) = Dd/dT eikDrgnq(T) = DS(kD), (93)
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where S(kD) is the structure factor, and the stability condition becomes

~ — D! _ _ IR <1,

V(P —1(z = 1)DYS(kD)| = /(p— 1)(= 1)pvd(1/2)\5(7f0)\ <1, (94)
which is always verified for p — oo since ¢ and S(kD) are both of order one. This is
indeed consistent with our investigations of the model at finite p that showed that the
transition is always discontinuous at p > 4. We conclude that one cannot observe a
continuous transition in the normal hard spheres model. This conclusion is consistent
with those of Biroli and Bouchaud [29] who showed that indeed replicated liquid theory
in finite dimensions does not allow for a continuous RSB transition.

We also note that starting from equations (43) and (42) and taking first p — oo (with
¢ = pVa(D)/2* and (p — 1)go(r) = pgiiq(r)) and then z — 1 we recover equation (74)
of [5], which is the starting point of the Gaussian small cage replica treatment in finite
dimensions, provided we identify again lim, .. (1/p)log ZS = Sjq(p), neglecting the
problem with the missing p!. Apart from this caveat, this is a nice alternative derivation
of the approximation of [5], which is not based on the replica method.

Finally, one could try to take the same formal limit in equation (52) to obtain an
alternative approximate expression for S(m) in finite dimensions. Using the relation
ZS/ZS_1 = (v), where v is the void space of p — 1 particles, we obtain for z — 1 (after
p — o)

S(m) = log <Zj;> + ]19 log Z,). (95)

Note however that the void space v  p, therefore we must rearrange terms as

{((v/p)™) 1 0
S(m) = log ——~~ +mlogp + —log(Z,/p"). (96)
((v/p)) p i
The term mlogp can be dropped since it gives an additive constant to the internal
entropy, and the resulting expression has a well defined p — oo limit, assuming here
that lim,_..(1/p)log(Z)/p!) = Siq() (which is, however, inconsistent with the previous
discussion, for reasons that we do not understand at present). This expression can in
principle be directly computed, even if it is very hard to sample the distribution P(v) of
void space because at high density v = 0 for most configurations [30].

11. Conclusions

In this paper, we have studied a mean-field hard sphere model introduced in [12]. The
model is similar to a standard hard sphere model, however each sphere interacts only
with a finite and preassigned number of neighbors. The network of interactions is given
by a random graph, such that the model belongs to the mean-field class and is therefore,
in principle, exactly solvable via the cavity method. We therefore derived the cavity
equations for the model and we presented both analytical approximations to their solution
and an ‘exact’ numerical solution based on a discretization of the space.

We have shown that the analytical approximations give quite reliable results for the
phase diagram and the complexity. In particular, for large enough z and/or p, the
transition belongs to the random first order class. Therefore, as suggested in [12], the
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model displays an ideal glass (Kauzmann) transition to a glass phase. Following the glass
phase upon increasing pressure, one gets to a point where the pressure diverges, similarly
to standard hard spheres close to the so-called J-point. Given that the model has an
exponential number of metastable states, one obtains a set of J-points spanning a finite
range in density. Overall, the phenomenology of the model in this regime is very close
to that expected for finite dimensional hard spheres based on mean-field approximations,
see [5] and figure 1. We found, in particular, that the Gaussian approximation is very
good for the Kauzmann transition but tends to overestimate the close packing. This is
consistent with what happens for three-dimensional hard spheres where the Gaussian
approximation gives ¢k ~ 0.62, which is consistent with numerical estimates, and
waep ~ 0.68, while numerical simulations suggest a somewhat smaller value [5]. On the
contrary, the delta approximation is very good for close packing but tends to overestimate
the Kauzmann point. We proposed a formula for the complexity that is based on the delta
approximation and can be computed numerically for three-dimensional hard spheres. It
would be very interesting to do this computation and compare the result with the Gaussian
approximation in that case.

We also found a somehow unexpected result, that the transition is continuous at
small z and p. In particular, for the values of p = 2 and z = 100 that have been used
in [12], the transition should be very weakly first order. The physics in the presence
of a second order transition could be very different. For instance, in the case of the
Sherrington—Kirkpatrick model, the intensive ground state energy can be found easily;
this would correspond to a unique J-point density. However, the details of this depend
on the model, and in particular on the shape of the complexity function, so we cannot
give any conclusive statement. It would be interesting to investigate better this point by
repeating the numerical simulations of [12] both in a region where the transition should
be strongly second order (e.g. at p = 2 and small z) and in a region where it should be
strongly ‘random first order’ (e.g. for p = 4 and small z).

Finally, we partially investigated the structure of the configurations at jamming. We
computed the correlation function of the model and showed that it displays a power-law
singularity close to contact, at least for d = 1. We also gave an analytical argument
to explain the mathematical origin of the singularity. Extending this study to higher
dimension could give insight into the physics that is responsible for this divergence and
hopefully connect it to isostaticity and the presence of soft modes in the spectrum, as
suggested in [14,15]. Additional numerical simulations could be extremely useful also in
this respect.
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