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The Lévy spin glass transition

K. Janzen
1(a)
, A. Engel

1 and M. Mézard1,2
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Abstract – We determine the phase transition in the Lévy spin glass. A regularized model where
the coupling constants smaller than some cutoff ε are neglected can be studied by the cavity
method for diluted spin glasses. We show how to handle the ε→ 0 limit and determine the
de Almeida-Thouless transition temperature in the presence of an external field. Contrary to
previous findings, in zero external field we do not find any stable replica-symmetric spin glass
phase: the spin glass phase is always a replica-symmetry–broken phase.
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Metallic spin glasses are characterized by randomly
distributed magnetic moments with so-called RKKY-
interactions falling off as r−3 with distance [1]. A given
spin has hence order r2dr couplings to spins a distance
r away or, equivalently, dJ/J2 couplings of strength J .
Such a broad distribution of couplings is only poorly
modelled by a Gaussian distribution usually used in theo-
retical descriptions of spin glasses. The Lévy spin glass,
introduced in [2], is a mean-field spin glass model where
the distribution of couplings has a power law tail with
a diverging second moment. It gives a better descrip-
tion of many experimental glasses (metallic spin glasses,
but also dipolar glasses) than the usual Sherrington-
Kirkpatrick (SK) model [3]. It also provides a situation
which is intermediate between the SK model and finite-
connectivity mean-field spin glasses [4–7]. It is particu-
larly relevant for the study of the importance of rare, but
strong, coupling constants. In this respect, its understand-
ing is an important step in the theory of spin glasses,
as models with strong hierarchies of coupling strengths
can be used to approach the finite-dimensional spin glass
problem [8]. The problem has been around for long, but
its physics has never been fully elucidated. The broad
distribution of couplings presents both conceptual obsta-
cles, and technical ones. In their pioneering work, Cizeau
and Bouchaud [2] have computed the spin glass transi-
tion temperature, and argued that these rare and strong
couplings can stabilize a replica-symmetric (RS) stable
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spin glass phase in the absence of external magnetic field.
Here we revisit this problem using the RS cavity method.
We show that replica symmetry is always broken in the
spin glass phase, and we compute the de Almeida-Thouless
(AT) line [9] giving the phase diagram as a function of
temperature and magnetic field.
We consider an Ising spin glass with Hamiltonian

H({Si}) =−1
2

∑
(i,j)

JijSiSj −hext
∑
i

Si, (1)

where the sum is over all pairs of spins Si =±1, i=
1, . . . , N and hext denotes an external field. The
couplings Jij = Jji are independent, identically distrib-
uted random variables drawn from a distribution
Pα(J) =N

1/α P(JN1/α), where P(x) is a symmetric
probability density with a power law tail which is that of
a Lévy distribution with parameter α∈]1, 2[ [10]:

P(x)�|x|→∞ C

|x|α+1 . (2)

As we shall see, the only important feature of P is
this tail. We shall use specifically the function P(x) =
α
2

1
|x|α+1 θ(|x| − 1), where θ(x) denotes the Heaviside func-
tion. The scaling of the couplings with N ensures that
the free energy corresponding to the Hamiltonian (1) is
extensive [2,11].
The equilibrium thermodynamic properties of the

system at temperature 1/β can be deduced from the
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probability distribution P (h) of local fields hi parame-
terizing the marginal distribution of spin variables by
P (Si) = e

βhiSi/2cosh(βhi). Adding a new site i= 0 with
corresponding couplings J0i to the system the new field
h0 is given by [12]

h0 = hext+

N∑
i=1

u(hi, J0i), (3)

where u(h, J) = atanh(tanh(βh)tanh(βJ))/β.
This relation can be turned into a self-consistent equa-

tion for P (h) by averaging over hi and J0i. Within the
assumption of replica symmetry the hi are independent
and we find in the thermodynamic limit N →∞

P (h) =

∫ ∏
i

dhiP (hi)

∫ ∏
i

dJ0iPα(J0i)

× δ
(
h−hext−

N∑
i=1

u(hi, J0i)

)

→
∫
ds

2π
exp

[
is(h−hext)+ α

2

∫
dh′P (h′)

×
∫ ∞
−∞

dJ

|J |α+1
(
e−isu(h

′,J)− 1)
]
. (4)

For hext = 0 this equation is equivalent to the one obtained
in [11] using the replica method. Notice that the details of
P(x) do not matter: the field distribution P (h) depends
only on the Lévy tail C/|J |α+1 of the distribution of
couplings Pα, and not on the details of its regularization
at small J . All the thermodynamic properties of the
Levy spin glass only depend on the exponent α which
characterizes the power law decay at large |J |, and the
prefactor C (which in our case is chosen to be C = α/2),
which fixes the energy scale.
It is instructive to solve (4) numerically with a popula-

tion dynamics [7] method. In order to do this, one should
first realize that in the update equation (3) the main
contribution is obtained from the relatively rare couplings
which are finite in the large-N limit. Let us introduce a
threshold ε and divide the couplings into strong (|Jij |> ε)
and weak (|Jij |� ε) couplings. Equation (3) involves a sum
over O(ε−α) strong couplings, which is treated exactly,
and a sum over O(N) weak ones, which is approximated
by a Gaussian random variable z with zero mean and a
variance determined self-consistently. The resulting popu-
lation dynamics algorithm is given by [13]

hj = hext+
K∑
k=1

u(hk, Jk)+ z,

z2 = α

∫
dhP (h)

∫ ε
0

dJ

Jα+1
u2(h, J), (5)

where K is a Poissonian with average ε−α. In this form
the algorithm represents a noisy variant of the one used for

locally tree-like graphs [7]. The most time-consuming step
in its numerical implementation is the update of z2 each
time a new field is generated in the population. In order
to perform this step efficiently we first determine once for
all an estimate of the function h→ ∫ ε

0
dJ
Jα+1

u2(h, J), based
on a tabulation and interpolation procedure.
When hext = 0, one easily finds that P (h) = δ(h) for T >
Tc(α), and P (h) becomes non-trivial at T < Tc(α). The
spin glass transition temperature Tc(α) is independent of
ε, it is given by

Tc(α) =

[∫ ∞
0

α dx

xα+1
tanh2 x

] 1
α

(6)

as found in [2,11].
The parameter ε plays a crucial role. The correct (within

the RS approximation) P (h) is obtained in the limit ε→ 0
whereas the limit ε→∞ amounts to approximating P (h)
by a Gaussian, as in [2]. For a given value of ε, there
are on average ε−α strong and (N − ε−α) weak bonds in
eq. (3). In the large-N limit the total contribution of the
weak bonds to the local field vanishes when ε→ 0. This
becomes apparent from the fact that in this limit, z2 �
(α/(2−α))ε2−α ∫ dhP (h) tanh2(βh) which also validates
the exchange of the limits ε→ 0 and N →∞. The simplest
procedure would hence be to neglect the weak bonds
altogether by putting z = 0 in (5). Although this would
give the correct result when ε→ 0, the convergence of the
procedure were much too slow for it to be of any practical
use. Approximating the effect of weak bonds by a Gaussian
random variable speeds up considerably the convergence
of P (h) towards its limiting ε= 0 form. We show in fig. 1
the second moment 〈h2〉 of P (h) as a function of ε. The
results obtained for ε= 0.2 . . . 0.5 are already very close to
the exact value at ε= 0. As a test we have also used the
naive z = 0 truncation for this α= 1.1 case. In order to
obtain the same accuracy for P (h) we had to go down to
ε= 0.005 entailing a factor 100 increase in computer time.
In zero external field, we have checked the result by a

direct iteration of (4) using the fast Fourier transform.
Figure 1 shows some examples of P (h), together with
the Gaussian form proposed in [2]. It is clear that P (h)
deviates from a Gaussian distribution. This can already
be seen from (4): inserting a Gaussian P (h′) in the r.h.s.
does not produce one in the l.h.s.
We now turn to the computation of the AT line, char-

acterized by replica symmetry breaking (RSB). The RS
cavity method described above is valid as long as the spin
glass susceptibility, χSG =

∑
i,j (〈SiSj〉− 〈Si〉〈Sj〉)2/N , is

finite. The divergence of χSG signals the appearance of
the spin glass phase. In order to compute this suscepti-
bility, we use the truncated model where we keep only
the strong bonds with |Jij |> ε, while the weak bonds are
neglected. Since the limit ε→ 0 will be performed analyt-
ically the truncated model is here an efficient approach.
In the truncated model, the graph of interacting spins is
a diluted Erdös-Renýı random graph: in the N →∞ limit
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Fig. 1: Distribution of local fields P (h), for α= 1.1 and three different temperatures. The dotted lines are the corresponding
results within the Gaussian approximation proposed in [2]. Left: P (h) for T = 0.9Tc, T = 0.6Tc, and T = 0.1Tc (center
top to bottom) obtained from population dynamics with ε= 0.3. Right: the second moment of P (h) for T = 0.9Tc, T =
0.6Tc, and T = 0.1Tc (bottom to top), obtained with the population dynamics method as a function of the regularization
parameter ε.

(taken before the ε→ 0 limit), the number of spins inter-
acting with a given spin is a Poissonian random variable
with mean ε−α. This graph is locally tree-like, in the sense
that, if one looks at all the spins at distance � r of a given
spin Si, their interaction graph is typically, in the large-
N limit, a tree of depth r. This allows to compute χSG
as [7,12]:

χSG =

∞∑
r=1

ε−αrC2(r), (7)

where C2(r) is the average square correlation,
(〈SiSj〉− 〈Si〉〈Sj〉)2, between two sites i, j at distance r.
As we will see, C2(r) decays exponentially with distance
as C2(r) =Ae

−r/ξ. We thus define the stability parameter
λ= ε−αe−1/ξ. This parameter is the rate of the geometric
series (7) giving χSG. The spin glass phase transition is
given by the condition λ= 1.
Because of the locally tree-like structure of the interac-

tion graph in the truncated model, the computation of λ
reduces to the study of a one-dimensional Lévy spin glass
model, with energy given by

E =−
r−1∑
n=1

JnSnSn+1−
r∑
n=1

hnSn, (8)

where the couplings Jn are independent random
variables drawn from the distribution Pα,ε(J) =
αεα/(2|J |1+α)θ(|J | − ε), and hn are independent random
variables drawn from the distribution of cavity fields P (h)
determined above. C2(r) is the average square correlation
(〈S1Sr〉− 〈S1〉〈Sr〉)2, and one is interested in computing
the decay rate 1/ξ =−limr→∞log(C2(r))/r. While this
one-dimensional system looks simple, it requires some
special care. The usual “population approach” used in

finite-connectivity spin glasses [7,12,14] fails in the Lévy
case, because the ratio between the average and the
typical correlation diverges in the small ε limit: the well-
known “non–self-averageness” of correlation functions [15]
becomes crucial in this case. This fact is most easily seen
in the case where the fields hn are equal to zero. As we
have seen, this happens when hext = 0 and T > Tc(α). The

average correlation is C2(r) = (
∫
dJPα,ε(J)tanh

2(βJ))r;
in the limit where ε goes to 0 this gives e−1/ξ =
εα
∫∞
0
(αdJ/J1+α) tanh2(βJ). Therefore the stability

parameter is λ=
∫∞
0
(αdJ/J1+α) tanh2(βJ): the diver-

gence of the spin glass susceptibility occurs exactly at
the value Tc given by (6) where the distribution of local
fields becomes non-trivial. The typical correlation is
exp(r

∫
dJPα,ε(J)log(tanh

2βJ)), it behaves as ε2r� εαr
in the small ε limit. This means that the average corre-
lation C2(r) is totally dominated by rare realizations:
its numerical estimate would require an average over
O(1/ε(2−α)r) samples.
In order to get around this problem, one must solve

analytically the one-dimensional Lévy spin glass prob-
lem described in (8). This can be done either with the
replica approach of [16], or using a cavity type approach.
Both methods give the same result, the detailed compu-
tations will be given in [13]. Let us just describe in a
nutshell the basic steps of the cavity approach. One first
solves the one-dimensional spin glass model (8) using
the cavity method. The solution is given in terms of
some cavity fields gn which satisfy the update equa-
tions gn+1 = hn+1+u(gn, Jn). Then one studies the spin
glass correlation through the response of gn to a pertur-
bation in g1. Calling ∆n = (∂gn/∂g1)

2, linear response
theory gives ∆n+1 = (∂u(gn, Jn)/∂gn)

2∆n. Let us denote
by Pn(gn,∆n) the joint probability distribution of gn and
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Fig. 2: Determination of the de Almeida-Thouless line. Left: stability parameter λ as a function of temperature for α= 1.5 and
hext = 0, 0.5, 1 and 2 (from right to left). From the intersection of the curves with the stability boundary λ= 1 the AT line is
determined. Right: phase diagram of a Lévy spin glass with α= 1.5 (right) and α= 1.1 (left). Above the AT lines shown RS is
stable, below it is unstable.

∆n, over realizations of the random variables {hp}, p∈
{1, n}, and {Jp}, p∈ {1, n− 1}. The update equations
giving gn+1 and ∆n+1 in terms of gn and ∆n induce a
mapping Pn+1 = F (Pn) for the joint probability distribu-
tion. In order to study this mapping, one can introduce
the function fn(gn) =

∫
d∆n∆nPn(gn,∆n). It satisfies the

recursion relation

fn+1(gn+1) =

∫
dgn

∫
dJnPα,ε(Jn)

∫
dhn+1P (hn+1)

×
(
∂u(gn, Jn)

dgn

)2
fn(gn) δ (gn+1− [hn+1+u(gn, Jn)]) .

(9)

In this equation one can safely take the ε→ 0 limit, as
the function (∂u(gn, Jn)/∂gn)

2 behaves as J2n at small
Jn, cancelling the potential divergence of the Lévy
distribution at small Jn. The resulting linear equation,
fn+1(gn+1) =

∫
dgnK(gn+1, gn)fn(gn), defines the trans-

fer matrix operator K(x, y). The correlation length ξ
is given in terms of the largest eigenvalue ν of K by
ν = e−1/ξ. The computation of ν is most easily done by
changing from the right to the left eigenvalue equation.
This gives the eigenvalue equation

νφ(x) =

∫
dJPα,ε(J)

∫
dhP (h)

(
∂u(x, J)

∂x

)2

×φ(h+u(x, J)) =
∫
dy KT (x, y)φ(y). (10)

The largest eigenvalue of the linear operator K can
be found numerically by iterating (10) φn(x) =∫
dyKT (x, y)φn−1(y)/Zn, starting from an arbitrary
function φ0(x). At each step the constant Zn is computed
by imposing a normalisation condition

∫
dxφn(x) = 1.

After many iterations the function φn(x) converges to
the eigenvector of K with the largest eigenvalue, and the
normalisation converges to limn→∞Zn = ν = exp(−1/ξ).
In order to find the AT line one must hence use the
P (h) distribution as determined above with (5) and
then find the correlation length ξ of the one-dimensional
problem using the φn iteration in (10). With this
procedure the limit ε→ 0 is smooth, and this allows
for a clean determination of the AT line, as shown
in fig. 2.
The behaviour of the stability parameter λ can be stud-

ied analytically in zero external field close to the critical
temperature. Writing τ = 1−T/Tc(α), one must compute
the second and fourth moments of P (h) up to order τ2,
and then expand the eigenvalue equation (10). One finds
after some work λ= 1+ (α2/3) (T2(α)+ 2T4(α))/(T2(α)−
T4(α)) τ

2+O(τ3), where Tn(α) =
∫∞
0
αdx/x1+αtanhnx.

As the coefficient of τ2 is positive for all α∈]1, 2[, the
RS solution is always unstable close to Tc, contrary to
what was found with the Gaussian ansatz [2]. The same
is obtained numerically in presence of an external field:
we have not found any evidence for a stable RS spin
glass phase, at all the values of α and hext that we
have studied.
To summarize, we have shown how the Lévy spin glass

problem can be studied naturally within the framework of
diluted spin glasses, using a decomposition of the couplings
into strong and weak ones. The resulting phase diagram
is very similar to the one found in other mean-field spin
glasses. In particular, the spin glass phase is never replica-
symmetric. The large fluctuations due to the presence of
rare strong couplings request the introduction of some
rather sophisticated methods in order to compute the
spin glass instability. These fluctuations are even more
pronounced in the case α< 1, not treated here, where the
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free energy ceases to be self-averaging. A natural question
concerns the nature of the low-temperature spin glass
phase. As we have seen the whole Lévy glass problem
can be basically mapped to some kind of dilute spin
glass problem, and it is likely that one will find the same
phenomenology as in standard dilute spin glasses [7,17]:
in those models the full RSB solution has not been
found, but the one step RSB solution can be worked
out in details and gives a very good approximation to
the thermodynamic properties and ground-state energy.
Applying similar methods to the Lévy glass is in principle
straightforward, but in practice this computation requires
developing some sophisticated techniques for dealing with
the broad distribution of couplings, as we have seen in
the computations of the AT line. This is left for future
work [13].
While we were writing up this work, a preprint by Neri
et al., now published in [18] has appeared where similar
issues were addressed. This paper uses the same kind of
decomposition into strong and weak couplings as we do.
It is complementary to ours in that it studies the phase
diagram of a Lévy spin glass without external field, but
with a bias in the coupling distribution, using a two-replica
method which is different from our computation of the spin
glass susceptibility.

∗ ∗ ∗

We would like to thank M. Weigt for interest-
ing discussions. Financial support from the Deutsche
Forschungsgemeinschaft under EN 278/7 is gratefully
acknowledged. MM thanks the Alexander von Humboldt
foundation for its support.

REFERENCES

[1] Binder K. andYoung A. P., Rev. Mod. Phys., 58 (1986)
801.

[2] Cizeau P. and Bouchaud J.-P., J. Phys. A, 26 (1993)
L187.

[3] Sherrington D. and Kirkpatrick S., Phys. Rev. Lett.,
35 (1975) 1972.

[4] Viana L. and Bray A. J., J. Phys. C, 18 (1985) 3037.
[5] Kanter I. and Sompolinski H., Phys. Rev. Lett., 58
(1987) 164.
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