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We develop an analytical theory, based on the quantum cavity method, describing the quantum phase

transitions in low-temperature, strongly disordered ferromagnets and superconductors. At variance with

the usual quantum critical points, we find a phase diagram with two critical points separating three phases.

When the disorder increases, the systems goes from the ordered phase to an intermediate disordered phase

characterized by activated transport and then to a second disordered phase where no transport is possible.

Both the ordered and disordered phases exhibit strong inhomogeneity of their basic properties typical of

glassy physics.
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The zero-temperature quantum phase transitions and
their quantum critical points have been rather well under-
stood in translationally invariant systems [1]. Much less is
known about disordered systems where the transition is
driven by the competition between strong disorder and
interactions.

Motivated by experiments on disordered ferromagnets
and superconducting films [2], we formulate and solve a
theoretical model of a general disorder-driven transition in
the quantum (low-temperature) regime. Recent work has
shown that the strong disorder can be at the origin of new
phases in which all or some excitations are localized in
space and have infinite lifetime and thus cannot contribute
to any transport [3]. Our model shows that the phase
transition where the long-range order disappears has
many other features that distinguish it from conventional
quantum critical points.

By solving the model on a Bethe lattice, we find that the
zero-temperature quantum phase transition happens in two
steps upon increase of the disorder. In the first phase
formed when order is destroyed, only low-energy local
excitations have infinitely long lifetime while high energy
ones can decay; in the second phase all excitations acquire
infinite lifetime. The energy separating the two types of
excitations in the first phase becomes zero at the quantum
critical point and shoots up at the second phase boundary.
The first transition is characterized by wide distributions of
the order parameter (in the ordered phase) and of the
relaxation rates (in the first disordered phase). Their typical
values depend exponentially on the parameters of the
model (interaction strength and disorder), in contrast to
the power laws of usual quantum phase transitions. These
predictions differ from those of the mean-field theory that
gives small but nonzero value of the critical temperature
for any disorder. Because the Bethe lattice is in many
respects similar to a high dimensional lattice where
mean-field theory is exact, the very existence of such phase
transition was unexpected.

We argue that the most plausible mechanism for the
superconductor-insulator transition in homogeneous disor-
dered films of InO, TiN, or Be [4] is a competition between
pair hopping and random pair energies on different sites, as
suggested in a seminal paper of Ma and Lee [5]. In the
vicinity of this quantum critical point, the tunneling spec-
troscopy shows a well defined gap at all points. However,
the coherence peaks expected for a BCS superconductor
appear at some locations and disappear at others [6]. These
results are expected [7,8] if the disorder does not affect
local pairing of electrons but prevents the formation of a
coherent state of these pairs. In contrast, the Coulomb-
interaction-based mechanism would decrease both the gap
and the superconducting coherence, so one can exclude it
as driving force of the transition.
This Letter studies the Ising model in a random trans-

verse field beyond the simple mean-field analysis. This
model is directly applicable to disordered ferromagnets.
For the lattice characterized by connectivity Z our formal-
ism keeps the leading-order terms in 1= lnZ but neglects
terms that are of the order of 1=Z; in this approximation the
results obtained in the ferromagnet coincide with those of
the Ma-Lee model. When applied to the superconductor-
insulator transition these results reproduce correctly the
most important features of experiments on disordered
films: direct superconductor-insulator transition, activated
behavior close to the quantum critical point in the insulat-
ing phase, strong dependence of the activation energy near
the quantum critical point and huge order parameter var-
iations from site to site in the superconducting phase.
The model is described by the Hamiltonian

H ¼ �
�X

i

�i�
z
i þ

g

Z� 1

X
ðijÞ

�x
i �

x
j

�
; (1)

where �j’s are quenched random variables drawn from a

probability Pð�Þ. The second sum runs over the edge of a
random graph with exactly Z neighbors for each site. With
a redefinition of the meaning of spin up and down, one can
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take the site energies �j to be all positive. We shall assume

that the � are uniformly distributed in the interval ½0; 1=��,
and choose � ¼ 1 as energy scale.

The Ma-Lee model assumes well paired electrons that
hop from one localized single electron state to another. Its
low-energy physics is described by the spin Hamiltonian
[5,7,9]:

H ¼ �
�X

i

�i�
z
i þ

X
ðijÞ

Mijð�þ
i �

�
j þ ��

i �
þ
j Þ
�
: (2)

Here the state with �z
i ¼ �1 corresponds to a local level

occupied or unoccupied by a Cooper pair; Mij is the pair

hopping amplitude between sites i and j. These hopping
amplitudes couple a typical local level to a large number of
neighbors, Z � 1. Although the model (2) has Goldstone
modes, which are absent in (1), these modes produce
effects small in 1=Z that do not affect qualitatively the
phase diagram; furthermore, the effect of these modes in
realistic three-dimensional systems is small at low tem-
peratures [7] because of the small value of the Ginzburg
parameter that controls the thermodynamic fluctuations
even in the vicinity of the transition. Qualitatively, this is
due to the fact that transition is driven by short scale
phenomena. In the language of (1) and (2), in the super-
conducting phase a spontaneous magnetization appears in
the x direction; in the insulating phase the spins point
parallel to the z axis.

In a simple mean-field (SMF) approach to this prob-
lem, H is replaced by HMF ¼ P

ið��i�
z
i � B�x

i Þ and
B is determined self-consistently as B ¼ ðg=ZÞPjh�x

ji.
At temperature T ¼ 1=�, this gives B ¼
ðg=ZÞPj½B=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
j þ B2

q
� tanhð�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
j þ B2

q
Þ, which self-

averages in the large Z limit. The SMF thus predicts a
phase transition from insulator to superconductor at the

critical value of the hopping gSMF
c ¼ ðR d�Pð�Þ�

tanhð��Þ=�Þ�1. As Pð0Þ> 0, gSMF
c ! 0 when T ! 0.

While these SMF predictions are correct at Z ¼ 1, they
are qualitatively wrong at low temperature in finite con-

nectivity systems, in particular gSMF
c ðT ! 0Þ � 0, as first

argued in [10]. We now turn to a more refined approxima-
tion, valid for finite Z � 1, which is the basis for our
results. We use a quantum version of the cavity method
[11] which becomes exact for spins on a Bethe lattice of
connectivity Z. In this method, one studies the properties of
a spin j in the cavity graph where one of its neighbors has
been deleted, assuming that the K ¼ Z� 1 remaining
neighbors are uncorrelated. The full quantum cavity
method [12,13] involves a complicated mapping of spin
trajectories in imaginary time. Here we use a simplified
version which projects onto the trajectories generated by a
local Hamiltonian (these are the most important ones at
large Z). The system of spin j and its K neighbors is
described by the Hamiltonian

Hcav
j ¼ ��j�

z
j �

XK
k¼1

�
�k�

z
k þ Bk�

x
k þ

g

K
�x

j�
x
k

�
; (3)

where Bk is the local ‘‘cavity’’ field on spin k due to the rest
of the spins (in absence of j). By solving the problem of Z
Ising spins in (3), one can compute the induced magneti-
zation of j, h�x

ji, which is by definition equal to

½Bj=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
j þ B2

j

q
� tanhð�Bj=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
j þ B2

j

q
Þ. We thus get a map-

ping that gives the new cavity field Bj in terms of the K

fields Bk on the neighboring spins [14]. This cavity map-
ping induces a self-consistent equation for the distribution
of the B fields [11]. This mapping cannot be written
explicitely as it involves the diagonalization of the
Z-spins cavity Hamiltonian (3), but it can be studied nu-
merically for moderate Z. A good analytic approximation
can be obtained through a mean-field study of (3), which
gives the explicit mapping

Bj ¼ g

K

XK
k¼1

Bkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
k þ �2

k

q tanh�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
k þ �2

k

q
: (4)

This mean-field approximation of the cavity mapping ne-
glects some level repulsion effects, but by comparing its
results with a numerical study of the cavity mapping, we
have checked that it reproduces the qualitative features of
the phase diagram and becomes quantitatively correct in
the limit of K � 1.
In order to understand the mapping (4), let us imagine

that we iterate it R times on a Bethe lattice. When the
number of spins is large, the corresponding graph is a
rooted tree with branching factor K at each node and depth
R. The field B0 at the root is a function of the KR fields on
the boundary. In order to detect spontaneous ordering, we
compute B0 in linear response to infinitesimal fields Bi ¼
B � 1 on the boundary spins. This is given by

B0=B ¼ � � X
P

Y
n2P

�
g

K

tanhð��nÞ
�n

�
; (5)

where the sum is over all paths going from the root to the
boundary, and the product

Q
n2P is over all sites along the

path P. The response � is nothing but the partition func-
tion for a directed polymer (DP) on a tree, where the energy
of each site is e�En ¼ ðg=KÞð tanhð��nÞ=�nÞ and the tem-
perature has been set equal to one. The solution of this
problem, found in [15], can be expressed in terms of the
convex function fðxÞ ¼ ð1=xÞ log½K R

1
0 d�ð tanhð��Þ=�Þx�,

which is minimal at a value x ¼ xc. In the large R limit,
there exist two phases for the DP problem: (i) ‘‘Self-
averaging’’ (SA) phase: If xc > 1, then ð1=RÞ�
log� ¼ fð1Þ þ logðg=KÞ. The ordered phase appears at

gc ¼ Ke�fð1Þ ¼ gSMF
c . (ii) ‘‘Glassy phase’’ (GL) phase: If

xc < 1, then ð1=RÞ log� ¼ fðxcÞ þ logðg=KÞ. The ordered
phase appears at gc ¼ Ke�fðxcÞÞ > gSMF

c . These two re-
gimes of the DP problem are qualitatively very different.
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The SA regime is the high ‘‘temperature’’ phase of the
polymer, where the measure on paths defined in (5) is more
or less evenly distributed among all paths. The low-
temperature GL regime is a glass phase where the measure
condensates onto a small number of paths. An order pa-
rameter which distinguishes between these phases is the
participation ratio Y ¼ P

Pw
2
P, where wP is the relative

weight of path P in the measure (5). In the replica formal-
ism the SA phase is replica symmetric,� is self-averaging,
and Y ¼ 0; the GL phase is a one-step replica-symmetry-
breaking (RSB) glass phase, the value of Y is finite and
non-self-averaging (it depends on the explicit realization of
the �’s even in the thermodynamic limit), and its average is
given by 1� xc [16]. This glass transition, and the nature
of the GL phase, are identical to the ones found in the
random energy model [17,18].

Using these DP results one gets the phase diagram of the
spin systems shown in the right pane of Fig. 1. At any
temperature, there is a nonzero critical value of the cou-
pling, gcðTÞ, separating an ordered, superconducting phase
with spontaneous x magnetization at g > gcðTÞ from a
normal disordered, insulating phase with zero magnetiza-
tion at g < gcðTÞ. Within each phase there are two regimes
of temperature, SA and GL. As is clear from our suscep-
tibility analysis, the glass transition of the DP affects the
propagation of a static perturbation in the spin system. In
the disordered SA phase, the total effect of the perturbation
decreases when R increases, and propagates evenly: the
average value of the susceptibility coincides with its typi-
cal value. In the disordered GL phase, the total perturbation
also decays, but it condenses on a finite number of paths.
Consequently, the susceptibility is non-self-averaging,
similarly to what is found in one dimension [19]. Rare
paths are important in the whole glassy phase where the
susceptibility distribution has a power law tail. The power
tail leads to a divergence of the higher moments of the

susceptibility even for g > gSMF
c , signalling the appearance

of a Griffith phase in this regime as shown in Fig. 1, in
agreement with numerical work on the 2D model [20].
When gSMF

c < g < gc the typical susceptibility is finite but
the average susceptibility diverges. In the ordered phase,
the perturbation propagates to infinity, again with very
different patterns in the SA and GL phases. The SMF
gets the correct result of the SA regimes, but completely
misses the low-temperature physics of condensed correla-
tion paths.
The RSB transition also strongly affects the scaling of

the field in the ordered phase, for g ’ gc which is fully
characterized by the distribution of fields PðBÞ induced by
(4). An expansion of its Laplace transform shows that, in
the GL phase, PðBÞ decays at large B as PðBÞ ’ C=B1þxc .
This distribution has a diverging mean, dominated by rare
fluctuations. The analysis of the self-consistent equation
for PðBÞ shows that the geometric mean of the field be-
haves as Btyp ’ A exp½�gB=ðg� gcÞ�.
In the disordered phase the average value of the trans-

verse field is zero, but its quantum fluctuations can become
important and lead to a broadening of the local levels that,
in the absence of g, correspond to �z

i ¼ �1. We first study
this effect at T ¼ 0. The level broadening (LB) means that
local excitations of energy ! ’ 2�i decay. This is generi-
cally impossible in finite systems because of energy con-
servation. Therefore the onset of LB, which is associated to
the possibility to transport energy, is a phase transition
phenomenon which appears only in infinite systems. We
can study this transition using the same type of approach as
for the static phase diagram. We consider a central ‘root’
spin in a Bethe lattice of depth R, and assume that the
system is very weakly coupled to the environment through
its boundary spins. This coupling is described by adding to
the Hamiltonian (1) the boundary term Henv ¼
�P

i2B�
x
i BiðtÞ where the sum is over the KR boundary

spins, and the BiðtÞ are independent dynamical random
fields generated by the environment, characterized by a
response function Gð!Þ�il ¼

R
dthBiðtÞBlð0Þie�i!t.

In the leading order in g=K the relaxation rate of the root
spin follows from the Fermi golden rule:

�0ð!Þ ¼ ImGð!ÞX
P

Y
n2P

�
2g=K

!� 2�k

�
2
: (6)

This perturbative equation is valid when all fractions inside
the product remain small, and the relaxation rate of each
spin is very small. Thus it is self-consistent if �0 ! 0,
which is enough to locate the LB transition.
Eqn. (6) is similar to (5) and can be studied with the

same method. The typical value of the central spin width,
�0ð!Þ, is controlled by

f�ð!Þ ¼ 1

R

Z 1

0

Y
n

d�n ln

�X
P

Y
n2P

�
2

!� 2�n

�
2
�
:

�0ð!Þ decreases away from the boundary and goes to zero

FIG. 1 (color online). Phase diagram of the spin system for
K ¼ 2. The right pane shows the critical line TcðgÞ (full lines)
and the boundary of the Griffiths phase (dashed line). The left
pane shows the critical energy that separates the states with zero
width from those with a finite width. The inset shows the low-
temperature region which emphasizes the difference between
mean-field and Bethe lattice solutions.
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if and only if f�ð!Þ þ 2 lnðg=KÞ< 0. This LB transition
line can be obtained from the computation of f� with the
mapping to a DP, which gives the following results. At
! ¼ 0, in the whole disordered regime g < gc, f�ð0Þ þ
2 lnðg=KÞ � 0, and therefore the spontaneous level-width
limG!0 limR!1 �0 vanishes. The LB transition appears
exactly at the critical point g ¼ gc where order parameter
develops. As one might expect, f�ð!Þ decreases with !, it
is minimal at ! ¼ 1=2 (which corresponds to the center of

the band in our notations), see Fig. 1. At g < g	 ¼
Kef�ð1=2Þ=2 the relaxation rate is zero for all states, this is
the ‘‘superinsulator’’ regime of [3]. In the intermediate
regime g	 < g< gc the states in the middle of the band
have finite width, they are separated from the zero-width
states by a critical energy !	ðgÞ similar to the mobility
edge of the noninteracting problem. Similar to the order
parameter in the ordered phase the excitations reside on a
small subset of all sites; this subset becomes nearly one-
dimensional as ! ! !	.

We now discuss the low-temperature properties of the
relaxation, neglecting phonons. An important ingredient is
the level-width �ð!Þ when !>!	ðgÞ, which we have
found [2] to behave as: �typð!Þ ’ �	 exp½�!0ðgÞ=ð!�
!	ðgÞÞ�. In the intermediate regime g	 < g< gc the exis-
tence of some mobile excitations with frequencies above
!	ðgÞ provides a mechanism for a small broadening of the
very low-energy levels, which can be estimated as follows.
A mobile excitation with energy E appears with an
Arrhenius rate, giving a width expð�!0=ðE�!	Þ �
E=TÞ. The dominant contribution comes from excitations
with energies E ¼ !	ðgÞ þ ffiffiffiffiffiffiffiffiffiffi

!0T
p

, and results in the tem-

perature dependence �
 expð�2
ffiffiffiffiffiffiffiffiffiffiffiffi
!0=T

p �!	ðg; TÞ=TÞ
that shows a crossover between a square root and activated
(or even faster) behavior as one goes away from the critical
point. Similar to the order parameter in the ordered phase,
the wave functions of the mobile excitations form a very
sparse tree near the critical frequency !	ðgÞ.

In conclusion, we have found that the Ising model in
transverse field (and the equivalent Ma-Lee model) on the
Bethe lattice shows a series of two zero-temperature tran-
sitions between a phase with no relaxation, a phase with a
slow relaxation and an ordered phase. The low-temperature
phases are very strongly nonuniform: both the order pa-
rameter formation and the spin relaxation are controlled by
rare interaction paths containing a very small number of
spins. When applied to the superconductor-insulator tran-
sition our results imply the existence of both weak and
strong insulators. At the critical point the relaxation rate

varies as expð1= ffiffiffiffi
T

p Þ but crosses over to activated at lower
g and low T, in the strong insulator the relaxation is

completely suppressed. Of course, some physical effects
neglected in our model would lead to a very slow relaxa-
tion even in the strong insulator.
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lously broad distribution of the order parameter close to the
quantum superconductor-insulator transition.
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