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Abstract. We study hard constraint satisfaction problems using some decimation algorithms
based on mean-field approximations. The message-passing approach is used to estimate, beside
the usual one-variable marginals, the pair correlation functions. The identification of strongly
correlated pairs allows to use a new decimation procedure, where the relative orientation of a
pair of variables is fixed. We apply this novel decimation to locked occupation problems, a class
of hard constraint satisfaction problems where the usual belief-propagation guided decimation
performs poorly. The pair-decimation approach provides a significant improvement.

1. Introduction
Recent years have seen an important activity in the use of statistical physics concepts and
methods to study discrete optimization problems (for a recent introduction, see [1]). The
analysis of random constraint satisfaction problems (CSPs) has shown that the hardest problems
are generated for a ratio of constraints-to-variable which is close to the critical ratio where a
phase transition is found numerically, separating a “SAT” phase where almost all instances are
satisfiable from an “UNSAT” phase where almost all instances are not satisfiable [2, 3, 4, 5].
Methods like the cavity or the replica method, developed in the statistical physics of disordered
systems, have proved to be very efficient in locating the phase transition, both in satisfiability
[6, 7, 8] and in colouring [9, 10, 11]. Another important result obtained with these methods
is the existence of another phase transition, the “clustering transition”, inside the SAT phase:
this transition separates a phase where the space of solutions builds a large connected clusters
from another SAT phase, close to the SAT-UNSAT threshold, where the space of solutions splits
into ergodically separated groups – clusters [12, 6, 7]. Although the replica and cavity methods
are not rigorous, some important aspects of their results have been confirmed rigorously: the
probability that a random instance is SAT is known to have a sharper and sharper transition
when the number of variables increases at a fixed ratio of constraints to variables [13], and the
clustering property can be proven for random K-satisfiability formulas when K is large enough
[14, 15].

Most interestingly, some of these mean-field based approaches have been turned into efficient
algorithms which have the best performance for random satisfiability and colouring in their
SAT phase close to the threshold, where the hardest instances are generated. These methods
all aim at finding a satisfiable assignment (assuming that there is one). Their starting point is
a ‘Boltzmann’-type measure, the uniform measure over all satisfying assignment, and they are
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typically based on two main steps. The first one, which has been the topic of many studies, is
the use of message-passing methods in order to get an estimate of the marginals of this measure.
The archetype of these methods, belief propagation (BP), can be seen as an algorithmic version
of the Bethe approximation, used on a given instance [16, 17, 18, 19]. When the system is in
a glass phase, the survey propagation (SP) algorithm [7], an algorithmic version of the cavity
method, gives very good performance. These message passing methods are used to estimate the
marginals of each of the variables, with respect to the uniform measure over all solutions.

The second step makes use of these approximate estimates in order to find an assignment of
variables which satisfies all constraints. If message passing would give the exact marginals, this
second step would be exact, but in the most interesting problems the marginals obtained by BP
or SP are approximate, so that a smart use of the information that they provide is not obvious.
So far only two approaches have been used: decimation [7] and reinforcement [20]. Decimation
consists in identifying from some criterion the most “polarized” variable (e.g. the one with
the smallest entropy), and in fixing it to its most probable value. After this variable has been
fixed, one obtains a new, smaller, CSP, to which one can apply recursively the whole procedure
(BP-or SP- followed by identifying and fixing the most polarized variable). In reinforcement,
one finds from the marginals the most probable value of each variable, and one adds, in the
local measure of each variable, an extra bias in this preferred direction. The new CSP therefore
has the same number of variables as the original one, but the local measure on each variable
has been changed. One iterates this reinforcement procedure until the variables are infinitely
polarized. If the algorithm is successful this returns a configuration of variables which satisfies
all constraints. These two procedures, BP+decimation and BP+reinforcement, are remarkably
efficient in random CSPs like K-satisfiability and graph colouring [10], and perceptron learning
[21]. When one approaches the SAT-UNSAT threshold of these problems, a more elaborate
version which uses the information on marginals from survey propagation (SP) is more effective
[7, 6, 20], and at present the SP-based decimation and reinforcement methods are the most
efficient incomplete SAT solvers for random K-satisfiability close to its threshold. Most of the
work on these decimation and reinforcement procedures is numerical, as is also our present
paper. On the analytical side, a first theoretical approach to the decimation problem has been
done recently by [22, 23] who have analyzed the ideal decimation procedure, based on exact
marginals.

There are two main reasons for exploring alternatives to the decimation and reinforcement
procedures. First of all, it is clear that the estimates of the marginals obtained by message
passing contain a lot of information, and it is likely that these two procedures do not exploit
it fully. For instance one could think of using this information in order to bias intelligently the
stochastic local search methods, or one could couple it to tree-search based solvers. On the second
hand, some broad classes of constraint satisfaction problems have been found recently where
these procedures perform rather poorly. These are the locked occupation problems (LOPs),
a class of CSPs where the set of solution consists of isolated configurations, far away from
each other [24, 25]. Apart from the XORSAT problem [26, 27, 28] which can be solved by
Gaussian elimination, the random LOPs are very hard to solve in a broad region of the density
of constraints, below their SAT-UNSAT transition. For these LOPs, it is known that SP is
equivalent to BP. The BP+decimation method has been found to give rather poor results, and
the BP+reinforcement, which works better, is still rather limited. One reason for this hardness
is the fact that local marginals often convey little information on the solution.

This situation has motivated us to explore some extensions of the message-passing approaches,
in which one estimates, beside local marginals, some correlation functions of the variables.
Several possibilities to obtain information on the correlations from message-passing procedures
have been explored recently [29, 30, 31, 32, 33, 34]. Here we use the susceptibility propagation
initially introduced in [32]. We first study the general convergence properties of this method,
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and the reliability of its determination of correlations. We show that some of the hard LOPs
that could not be solved by previous methods can now be solved by a mixture of the single-
variable decimation with a new pair-decimation procedure which makes use of the knowledge of
correlation. In the case of binary variables which we study here, this new procedure amounts to
identifying a strongly correlated pair of variables, and fixing the relative orientation of the two
variables.

The paper is organised as follows. In Sect. 2, we define the occupation problems. Sect. 3
introduces the message passing procedures, belief propagation and susceptibility propagation,
and gives some simple basic properties of susceptibility propagation. Sect. 4 explains the new
decimation procedure based on the estimate of correlations between pairs of variables. In Sect. 5,
it is applied numerically to locked occupation problems and the accuracy of the method is
examined: we measure the performance of the decimation process which makes use of the
correlations obtained with this method. A short conclusion is contained in Sect. 6.

2. Occupation Problems
2.1. Definition
We consider a subclass of constraint satisfaction problems, the occupation problems [24, 25]. In
these problems the elementary variables are binary, and the value of xi ∈ {0, 1} is interpreted
as an occupation number of a point i ∈ {1, . . . , N}. These N occupation variables are related
by M constraints a ∈ {1, . . . ,M}. The constraint a applies to the occupation variables of ka

points, ∂a = {ia,1, . . . , ia,ka}, forming a subset of size ka of {1, . . . , N}. The constraint acts on
the number of of occupied variables in this subset, ra =

∑
i∈∂a xi. It is parametrized by a (k+1)-

component “constraint-vector” Aa = (Aa(0), . . . , Aa(ka)) with binary entries: by definition, the
constraint a is satisfied (ψa = 1) if and only if Aa(ra) = 1.

Many well known CSPs belong to the category of occupation problems. For instance, k-
XORSAT [26] is described by alternating constraint vectors A = (0, 1, 0, 1, 0, 1, ...); 1-in-k
satisfiability is described by A = (0, 1, 0, 0, 0, ...). We shall often denote a problem by the set of
allowed values in the occupation-vector. For instance, 1-or-2-or-4 in 5 satisfiability corresponds
to A = (0, 1, 1, 0, 1, 0).

A factor graph G = (V ;E) can be associated with an instance of an occupation problem [19].
Each variable and each constraint becomes a vertex of this graph (so that |V | = N + M), and
an edge connects variable i and constraint a if and only if i ∈ ∂a. The neighborhood of the
vertices are ∂a = {i ∈ V |(i, a) ∈ E}, ∂i = {a ∈ V |(i, a) ∈ E}. For a collection of variables in
S ⊂ V , we shall write xS = {xi|i ∈ S}. We also use the short-hand notation x = xV . The factor
graph representation of a locked occupation problem (1-in-4 satisfiability A = (0, 1, 0, 0, 0)) with
a satisfying assignment is shown in Fig. 1.

An occupation problem is locked if the following three conditions are met [24, 25, 35]

• A(0) = A(k) = 0.
• A(r)A(r + 1) = 0 for r = 0, . . . , k − 1.
• Each variable appears in at least two constraints: |∂i| ≥ 2

In a locked problem, each satisfiable assignment is an isolated point (one cannot obtain
another assignment satisfying all constraints by changing a small number of variables). This
feature seems to be at the origin of the difficulty to solve these problems with the usual message
passing methods [24, 25].

2.2. Random locked occupation problems
We shall study random instances of locked occupation problems defined as follows: All the
function nodes have degree ka = K, and the constraint-vectors are all equal to the same vector
A. The factor graph is uniformly chosen among the graphs where all function nodes have degree
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Figure 1. The factor graph representation of a small instance of 1-in-4 satisfiability
(A = (0, 1, 0, 0, 0)). It has N = 9 variables (circles) and M = 4 constraints (squares)
ψ1(x1, x2, x3, x5), ψ2(x2, x4, x5, x8), ψ3(x3, x5, x6, x9) and ψ4(x3, x6, x7, x9). This figure also
shows a satisfying assignment in which x2 and x6 are occupied while other sites are not.

K and the variables have random degrees which are independent identically distributed variables
chosen from the truncated Poisson degree distribution

q(�) =

{
0 (� = 0, 1)

e−cc�

�!(1−(1+c)e−c) . (� ≥ 2)
. (1)

This ensures that all variable nodes have degree at least 2, making the problem locked; the
average degree of a variable is

� =
∞∑

�=0

�q(�) =
c(1 − e−c)

(1 − (1 + c)e−c)
. (2)

and the average number of variable nodes, N , is given by N = KM/�.
The “thermodynamic limit” is taken by sending M → ∞ at fixed �, so that the density of

constraints M/N is fixed. The phase diagram has been studied in [24]. When increasing �, the
probability that a satisfying assignment exists drops from 1 to 0 at the ‘satisfiability threshold’
�s. Between the ‘clustering threshold’ �d ([24] and the satisfiability threshold, the system is in
a SAT phase, but the solutions are isolated points which are far away from each other. In this
regime, although the satisfying assignments still exist with probability one, it is very difficult
to find one by the algorithms known so far, because of the splitting of the set of solutions into
clusters. This is the region which we will focus on most.

3. Message passing methods
3.1. Belief Propagation Update Rules
Consider an occupation problem described by a factor graph G = (V,E) and a constraint-vector
A. The uniform measure over all satisfying assignments (assuming that there is at least one
such assignment), is defined as

p(x) =
1
Z

M∏
a=1

ψa(x∂a) (3)

where the function ψa(x∂a) is equal to 1 if A(
∑

i∈∂a xi) = 1, and to 0 otherwise.
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For later use, we introduce local ‘external fields’ hx
� (x ∈ {0, 1}, � ∈ V ), which will be sent to

zero at the end, and consider a joint probability distribution

p(x|hx) =
1

Z(hx)

M∏
a=1

ψa(x∂a) ×
N∏

�=1

∏
x

ehx
� δx�,x . (4)

This probability distribution is well defined as soon as there exists at least one (“SAT”)
configuration satisfying all the constraints. The constant Z(hx) is a normalization factor. Our
final aim is to extract solutions from the uniform measure p(x|0) over solutions satisfying all
constraints (when there exists at least one solution).

The marginal distribution pi(xi|h) can be estimated by the BP algorithm. The BP update
rules for two families of messages, namely cavity fields and cavity biases, are given by [36, 1]

ν
(t+1)
i→a (xi|hx) =

1

Z
(t)
i→a(h

x)

∏
b∈∂i\a

ν̂
(t)
b→i(xi|hx) ×

∏
x

ehx
i δxi,x , (5)

ν̂
(t)
a→i(xi|hx) =

∑
x′

∂a

δxi,x′
i
ψa(x′

∂a)
∏

�∈∂a\i
ν

(t)
�→a(x

′
�|hx). (6)

Here, we have decided to introduce a normalization factor Z
(t)
i→a(h

x) for ν
(t)
i→a(xi|hx) and to

avoid the normalization for ν̂
(t)
a→i(xi|hx). This choice is perfectly valid for BP, and it helps to

get relatively simple susceptibility propagation update rules (10)(11).
Assuming convergence to a fixed point, the BP estimate for the marginal distribution of

variable i is:
pi(xi|hx) =

1
Zi(hx)

∏
b∈∂i

ν̂
(∗)
b→i(xi|hx), (7)

where ν̂
(∗)
a→i(xi|hx) is the fixed point of the BP iteration.

3.2. Susceptibility Propagation Update Rules
The 2-point connected correlation function at h = 0 is obtained as

pconn
ij (xi, xj) ≡ pij(xi, xj) − pi(xi)pj(xj) =

∂pi(xi|hx)
∂h

xj

j

∣∣∣∣∣
h=0

. (8)

To have a message-passing algorithm to calculate this quantity, we introduce the cavity
susceptibility and its companion by

νi→a,j(xi, xj) =
∂νi→a(xi|hx)

∂h
xj

j

∣∣∣∣∣
h=0

, ; ν̂a→i,j(xi, xj) =
∂ν̂a→i(xi|hx)

∂h
xj

j

∣∣∣∣∣
h=0

. (9)

Note that the roles of variables xi and xj are asymmetric; j can be an arbitrary variable while
i is a neighbor of the constraint a.

The cavity susceptibility can be calculated by a message-passing method [29]. The
susceptibility propagation update rules can be obtained by differentiating the belief propagation
update rules (5) and (6) with respect to hx

j . They read [32, 37]

ν
(t+1)
i→a,j(xi, xj) =

1

Z
(t)
i→a(h

x)

∏
b∈∂i\a

⎛
⎝δi,jδxi,xj +

∑
b∈∂i\a

ν̂
(t)
b→i,j(xi, xj)

ν̂
(t)
b→i(xi)

+ C
(t)
i→a,j(xj)

⎞
⎠ , (10)

ν̂
(t)
a→i,j(xi, xj) =

∑
x′

∂a

δxi,x′
i
ψa(x′

∂a) ×
⎛
⎝ ∏

�∈∂a\i
ν

(t)
�→a(x

′
�)

⎞
⎠ ∑

m∈∂a\i

ν
(t)
m→a,j(x

′
m, xj)

ν
(t)
m→a(x′

m)
, (11)
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where
ν

(t)
i→a(xi) = ν

(t)
i→a(xi|hx = 0), ν̂

(t)
a→i(xi) = ν̂

(t)
a→i(xi|hx = 0). (12)

The function C
(t)
i→a,j(xj) originates from the derivative of Z

(t)
i→a and can be determined by

requiring the normalization
∑

xi
ν

(t)
i→a,j(xi, xj) = 0.

Let us suppose that we have found a fixed point (ν(∗)
i→a, ν̂

(∗)
a→i, ν

(∗)
i→a,j ,ν̂(∗)

a→i,j) of BP and the
susceptibility propagation. By differentiating (7) with respect to the external fields, we can
express the 2-point connected correlation function in terms of the messages at the fixed point as

pconn
ij (xi, xj) = pi(xi)[δi,jδxi,xj + Cij(xj)] +

1
Zi(0)

∑
b∈∂i

ν̂
(∗)
b→i,j(xi, xj)

∏
c∈∂i\b

ν̂
(∗)
c→i(xi). (13)

The constant Cij(xj) is related to the derivative of Zi(h) and is conveniently fixed by the
condition

∑
xj

pconn
ij (xi, xj) = 0.

3.3. Log-likelihood representation
The rules (10,11) apply to all types of CSPs with discrete variables. When dealing with binary
variables, it is helpful to rewrite the belief and susceptibility update equations in terms of
log-likelihood variables. We introduce the cavity field and cavity bias in the log-likelihood
representation ni→a and n̂a→i as (we omit the time superscript (t) where it is obvious):

νi→a(xi|h) = Ai→a eni→a(h)si , ; ν̂a→i(xi|h) = Ba→i en̂a→i(h)si , (14)

where si is the spin variable si = 2xi − 1 = ±1 and the external fields in the two representations

are related by hj =
h1

j−h0
j

2 .
Naturally we define the cavity susceptibility in the log-likelihood representation as

ηi→a,j =
∂ni→a(h)

∂hj

∣∣∣∣
h=0

; η̂a→i,j =
∂n̂a→i(h)

∂hj

∣∣∣∣
h=0

. (15)

The belief propagation update rules read

n
(t+1)
i→a =

∑
b∈∂i\a

n̂
(t)
b→i + hi ; n̂

(t)
a→i = fa→i({n(t)

j→a}j∈∂a\i) , (16)

where

fa→i({nj→a}j∈∂a\i) =
1
2

log
F (+1)
F (−1)

; F (σ) =
∑
s∂a

δsi,σψa(s∂a)
∏

j∈∂a\i
enj→asj . (17)

By differentiating both sides of (16), we obtain

η
(t+1)
i→a,j =

∑
b∈∂i\a

η̂
(t)
b→i,j + δi,j (18)

η̂
(t)
a→i,j =

∑
m∈∂a\i

∂fa→i({n(t)
j→a}j∈∂a\i)

∂nm→a
× η

(t)
m→a,j . (19)
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Assuming that a solution n
(t)
j→a of the BP equations (16) is used, one sees that the susceptibility

propagation update rule (18,19) is an inhomogeneous linear system in η and η̂. The coefficient
matrix takes the following form:

∂fa→i({nj→a}j∈∂a\i)
∂nm→a

=
〈smsi〉 − 〈sm〉〈si〉

1 − 〈si〉2 . (20)

Here the brackets in 〈si〉 and 〈smsi〉 for i,m ∈ ∂a mean the expectation value with respect to the
joint probability distribution for variables that are neighbors of a constraint; it can be obtained
solely from beliefs [1, Sec.14.2.3].

The magnetization and the pair correlation between arbitrary sites are given in terms of the
fixed-point messages by

〈si〉 = tanh

(∑
b∈∂i

n̂
(∗)
b→i

)
, (21)

〈sisj〉conn ≡ 〈sisj〉 − 〈si〉〈sj〉 =

[
1 − tanh2

(∑
b∈∂i

n̂
(∗)
b→i

)]
×

[∑
c∈∂i

η̂
(∗)
c→i,j + δi,j

]
. (22)

Although the symmetry between the sites is not manifest in the right-hand side of (22), it is in
fact symmetric when the graph is a tree and the fixed point gives the exact magnetization.

3.4. Basic properties of susceptibility propagation
In order to study the structure of susceptibility propagation update rules (18,19), we construct
a kMN -component column vector

y(t) = (η(t)
i→a,j , η̂

(t)
a→i,j)

t
(i,a)∈E,j∈V . (23)

Then the fixed point condition associated with (18,19) can be written as a linear equation

y(∗) = My(∗) + b, (24)

with the inhomogeneous term
b = (δi,j, 0)t(i,a)∈E,j∈V . (25)

The coefficient matrix is block-diagonal in j:

M(iaj),(i′a′j′) = δj,j′M(ia),(i′a′), (26)

M =

(
0 1(a′ ∈ ∂i \ a)δi,i′

1(i′ ∈ ∂a \ i)δa,a′
∂fa→i({n(∗)

j→a}j∈∂a\i)

∂ni′→a′
0

)
, (27)

where the block M is independent of the block index j.
Thus we obtain the unique fixed point

y(∗) = (1− M)−1b (28)

if (1 − M) is invertible, or equivalently, if (1 −M) is invertible.
The susceptibility propagation update rules (18,19) can be regarded as an iterative method

to solve the linear equation (28). It converges to a value irrespective of the initial vector if all
the eigenvalues of M have moduli smaller than unity. Because the block M does not depend on
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j, the existence of the fixed points and convergence to them are solely determined by M and do
not depend on j.

When the factor graph is a tree, even in presence of the external fields hx, the exact marginals
are obtained by (7) on a fixed point ν

(∗)
i→a, ν̂

(∗)
i→a [19]. Therefore, by differentiation with respect to

hx , there exists a susceptibility fixed-point which gives the exact 2-point correlation function. In
the examples which we have considered, the iteration of susceptibility propagation converges to
this fixed-point. On the other hand, if the graph has more than one loop, there is no guarantee
either that the fixed point exists or the iteration leads to that fixed point.

A simple test of these statements is obtained by studying the the 1-in-2 satisfiability problem,
which is nothing but the anti-ferromagnetic Ising model at zero temperature, or a version of
the XORSAT problem [26]. If one considers this problem on a chain of length N , it is easy
to check that the belief and susceptibility propagation equations have a unique fixed point,
which gives the correct results for the magnetization and for the pair correlation (〈si〉 = 0 and
〈sisj〉 − 〈si〉〈sj〉 = (−1)i−j).

Consider now the same problem on the simplest graph with one loop, a ring. The BP
iteration now has a continuous family of fixed points, characterized by ‘right moving’ messages
which alternate between the value A+ and −A+, and ‘left moving’ messages which alternate
between the value A− and −A−, where A± are two constants [1]. As a consequence of the
existence of this family of fixed points, (1 − M) is not invertible; in fact it has an eigenvector
with zero eigenvalue, y0 = (1,−1) where 1 corresponds to the η-block and −1 corresponds
to the η̂ block. In agreement with the existence of this dangerous eigenvector, one finds that
the susceptibility propagation update rule does not converge. As the susceptibility messages
are updated, η

i→i+
1
2 ,j

picks up the constant shift δi,j = 1. This effect is accumulated as the

messages go around the ring, and the consequence is that the messages diverge as t → ∞.
In summary, for 1-in-2 satisfiability on a ring, the belief propagation can converge to a family

of solutions for the magnetization among which only one solution is exact. On the other hand,
the susceptibility propagation update does not have a fixed point, it diverges. In the simple case
of a ring, this behaviour can be cured by using the finite temperature version of the BP and
susceptibility propagation update equations. But in general there is no guarantee of convergence
of loopy BP and loopy susceptibility propagation, and when they converge the quality of their
results cannot be assessed a priori. Fig. 2 gives an example of analysis of a small instance of
1-in-4 satisfiability, giving an idea of the errors made by susceptibility propagation on small
factor graphs. On the other hand, as for standard BP, one may hope that the method becomes
better for large instances when the factor graph is locally tree-like.

4. Correlation based decimation
4.1. Single-variable and pair decimation
As we mentioned in the introduction, decimation consists in finding a strongly polarized variable
and fixing it to its most probable value. One way to measure the degree of polarization
is to compute the marginal pi(x) of a variable xi, and the corresponding entropy Si =
−∑

x pi(x) log pi(x). At each step one chooses the variable with the smallest entropy and fixes it:
one gets a new occupation problem which has one variable less, and one iterates the procedure.

Assuming that the susceptibility propagation provides us with the good estimate for the
2-point connected correlation, we can think of a decimation procedure which acts on a pair
of variable instead of a single variable. Let xi and xj be variables. If one defines a
random variable yij = 1(xi = xj), one can compute the probability pij(yij) of yij, and the
corresponding pair entropy Sij = −∑

y pij(y) log pij(y), once one knows the 2-variable marginal
pij(xi, xj) = pi(xi)pj(xj) + pconn

ij (xi, xj). In pair decimation, one identifies the pair (i, j) with
the smallest entropy Sij, and one fixes the “pair relation” as either xi = xj or xi + xj = 1,
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Figure 2. Left: Comparison between the 2-point connected correlation function calculated
exactly and that estimated with susceptibility propagation. A 1-in-4 satisfiability instance on a
randomly generated factor graph with N = 27 variables and M = 16 constraints with Poisson
degree distribution with average degree � = 2.4856. Right: Comparison between the minimum
entropy min(Si, Sj) (where Si and Sj are the entropies of xi, xj )and Sij, that of yij = 1(xi = xj).
For each pair i, j, we plot Sij/ log 2 versus min(Si, Sj)/ log 2. The points in the bottom-right half
part correspond to correlated pairs. The instance is 1-in-4 satisfiability on a random factor graph
with N = 1618 variables and M = 1000 factors with the truncated Poisson degree distribution
with average degree � = 2.4856.

depending on which event is the most probable according to the measured correlation. This
results in a reduced smaller CSP, which is still an occupation problem.

In both cases, it is convenient, when one fixes a variable (or the relation between two
variables), to find out if this has direct logical implications on other variables. These implications,
called “unit clause propagation” in the context of satisfiability, can be found efficiently by the
“warning propagation” algorithm, a min-sum message passing procedure described in [28, 22].

The efficiency of the new pair decimation process depends on whether one can find a pair
with less entropy than the single variable with the smallest entropy. It is easy to see that, in the
absence of correlations, namely if pij(xi, xj) = pi(xi)pj(xj), then the entropy of yij is larger than
the one of xi or xj. So the whole procedure relies on being able to detect correlations. Fig. 2
shows that strongly correlated pairs can be found, making it possible to use pair decimation
efficiently.

4.2. Algorithm
Our algorithm has two main parts, the message passing (belief + susceptibility propagation)
part and the decimation part. The basic message-passing algorithm that we use is described by
the following pseudocode:

Input: Factor graph, constraint-vector, convergence criterion, initial messages
Output: Estimate for 2-point connected correlation functions (or ERROR-NOT-

CONVERGED)

• Initialize messages
• Repeat until all messages have converged to a fixed point (within a given resolution):

– Update cavity fields and cavity biases ν
(t)
i→a(xi) and ν̂

(t)
a→i(xi) with (5)

– Update cavity susceptibilities ν
(t)
i→a,j(xi, xj) and ν̂

(t)
a→i,j(xi, xj) with (10)(11) with the

help of ν
(t)
i→a(xi) and ν̂

(t)
a→i(xi) obtained above

• Compute 1-variable marginals pi(xi) and entropies Si from the fixed-point messages ν̂
(∗)
a→i(xi)

by (7)
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Figure 3. This graph shows how the 2-point connected correlation pconn
ij (xi, xj) decays as the

distance d between xi and xj increases. At each distance d, the distribution of |pconn
ij (0, 0)| is

plotted. In the inset, logarithm of the average of that quantity is plotted against the distance.
The instance is 1-in-4 satisfiability on a random factor graph with N = 1618 variables and
M = 1000 factors with the truncated Poisson degree distribution with average degree � = 2.4856.

• Compute 2-point connected correlation functions pconn
ij (xi, xj) and entropies Sij from the

fixed-point messages ν̂
(∗)
a→i(xi) and ν̂

(∗)
a→i,a(xi, xj) by (13)

This algorithm requires a memory proportional to kMN , and each step of iteration requires a
computation of O(N2) for fixed k.

One accelerates it by observing that the correlations tend to decay rather fast with the
distance between variables on the factor graph. Fig. 3 shows the distribution of magnitude of
2-point connected correlation function computed with susceptibility propagation for all pairs of
points in a graph for a fixed distance between the points. One observes a broad dispersion of
correlations, and an approximate exponential decay with the distance. Here we measure the
distance d with the convention that each edge connecting a variable to a constraint is of length
1. Because of this exponential decay, it is possible to use in some cases approximate versions
of susceptibility propagation which are faster and use less memory. This is done by truncating
to zero the cavity susceptibilities νi→a,j, ν̂a→i,j beyond some prescribed distance dist(a, j) > d
or dist(i, j) > d and keeping only the correlation functions between pairs of variables not far
from each other. This truncation provides us with an efficient practical method to compute the
2-variable correlations between variables with d ≥ 4.

The decimation algorithm that we have used is described by the following pseudo-code:
Input: Factor graph, constraint-vector, convergence criterion, initial messages, threshold

entropy Sth.
Output: A satisfying assignment (or FAIL-NOT-FOUND)

• While graph has more than R variables:
– Run the message passing algorithm (belief + susceptibility propagation)
– Find the variable i with the smallest entropy Si

– Find the pair ij with the smallest entropy Sij

– if (Si < Sth or Si < Sij), fix variable i
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Figure 4. Success probability of pair decimation process for 1-in-4 satisfiability A = (0, 1, 0, 0, 0)
(left) and 1-or-4-in-5 satisfiability A = (0, 1, 0, 0, 1, 0) (right) on a random factor graph with M
constraints and average degree � (right), plotted versus � . For comparison, the performance
of simple belief-guided decimation process is shown. The vertical lines show the clustering and
satisfiability thresholds.

– else, fix the pair relation ij
– Clean the graph :

∗ Fix the value of isolated variables
∗ Do warning propagation
∗ Find degree 2 constraints, and if they enforce that yij = 0 or that yij = 1, fix the

pair relation
• When the number of variables is equal to or smaller than R: perform an exhaustive search

for satisfying assignments. If found
– Then return the satisfying assignment
– Else return FAIL-NOT-FOUND

The threshold entropy Sth = 0 is an ad-hoc parameter. For the optimal reduction of the entropy
within a decimation step, it is reasonable to set Sth = 0. However, we have found that Sth > 0
performs better for finding a satisfying assignment. The optimal value of Sth depends on the
type of locked occupation model and the average degree. This behaviour can be understood
from the fact that the estimation of 1-variable marginals is more precise than the 2-variable
ones within given computational resource. Thus it is advantageous to respect the former if it is
decisively small.

5. Numerical results
We have run some simulations of random LOPs using the above algorithm.

The convergence criterion for message passing was set to 10−2. The threshold for exhaustive
search has been fixed to R = 16, and the values of Sth were typically 0.20. The performance
of this algorithm is shown for 1-in-4 satisfiability A = (0, 1, 0, 0, 0) and 1-or-4-in-5 satisfiability
A = (0, 1, 0, 0, 1, 0) in Fig. 4. For 1-in-4 satisfiability, data with randomization is presented:
instead of fixing the most polarized variable or pair, we fix a variable or pair randomly chosen
among a fixed number (here we adopt 8) of most polarized variables/pairs. The figure also
shows the two important thresholds for these problems, �d and �s, which are values of the
average degree (a measure of the density of constraints) separating qualitatively distinct phases.
In both LOPs the performance of the new algorithm using pair decimation is clearly improved
compared to the simple belief-guided decimation employed in [24]. Especially for 1-or-4-in-5,
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the present algorithm works well above the clustering threshold, a region of � where all known
algorithms are reported to perform poorly [24].

6. Conclusion and Discussion
We have shown how to find satisfying assignments for locked occupation problems in their
hard (clustered) phase by using a new pair decimation technique based on the measurement
of correlation among variables. This improves significantly upon the conventional decimation
method which is guided by 1-variable marginals only. The intuitive understanding of this
behaviour is that, since flipping a variable in an LOP typically forces another variable far away
to be flipped, the performance of the algorithm is improved when one estimates the correlations.
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