
Decimation flows in constraint satisfaction problems

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

J. Stat. Mech. (2009) P12009

(http://iopscience.iop.org/1742-5468/2009/12/P12009)

Download details:

IP Address: 129.175.204.97

The article was downloaded on 15/03/2011 at 14:06

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1742-5468/2009/12
http://iopscience.iop.org/1742-5468
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J.S
tat.M

ech.
(2009)

P
12009

ournal of Statistical Mechanics:
An IOP and SISSA journalJ Theory and Experiment

Decimation flows in constraint
satisfaction problems

Saburo Higuchi1,2 and Marc Mézard1

1 Laboratoire de Physique Théorique et Modèles Statistiques, CNRS and
Université Paris-Sud, Bâtiment 100, 91405 Orsay Cedex, France
2 Department of Applied Mathematics and Informatics, Ryukoku University,
Otsu, Shiga 520-2194, Japan
E-mail: hig@math.ryukoku.ac.jp and mezard@lptms.u-psud.fr

Received 13 August 2009
Accepted 10 November 2009
Published 21 December 2009

Online at stacks.iop.org/JSTAT/2009/P12009
doi:10.1088/1742-5468/2009/12/P12009

Abstract. We study hard constraint satisfaction problems with a decimation
approach based on message passing algorithms. Decimation induces a
renormalization flow in the space of problems, and we exploit the fact that this
flow transforms some of the constraints into linear constraints over GF(2). In
particular, when the flow hits the subspace of linear problems, one can stop
the decimation and use Gaussian elimination. We introduce a new decimation
algorithm which uses this linear structure and shows a strongly improved
performance with respect to the usual decimation methods for some of the hardest
locked occupation problems.

Keywords: disordered systems (theory), heuristics, message-passing algorithms

ArXiv ePrint: 0908.1599

c©2009 IOP Publishing Ltd and SISSA 1742-5468/09/P12009+15$30.00

mailto:hig@math.ryukoku.ac.jp
mailto:mezard@lptms.u-psud.fr
http://stacks.iop.org/JSTAT/2009/P12009
http://dx.doi.org/10.1088/1742-5468/2009/12/P12009
http://arxiv.org/abs/0908.1599

J.S
tat.M

ech.
(2009)

P
12009

Decimation flows in constraint satisfaction problems

Contents

1. Introduction 2

2. Locked occupation problems 4

3. Decimation flow 5
3.1. Weighted occupation problems . 5
3.2. Flow equations . 6
3.3. Special constraints . 7

4. How to find polarized variables and correlated pairs 8

5. Numerical experiments 9
5.1. The algorithm . 9
5.2. Class of problems . 10
5.3. Results . 11

6. Conclusions 14

Acknowledgment 15

References 15

1. Introduction

In recent years, statistical physics ideas and methods have become very useful in a
number of problems involving many interacting variables in different branches of science.
A particularly fruitful area which is attracting a lot of attention is that of constraint
satisfaction problems. These are problems which appear in various areas of computer
science and discrete mathematics. They include very fundamental problems like the
satisfiability of random Boolean formulae [1, 2] or the coloring of graphs, and can also
range all the way to very practical issues like chip testing or scheduling. Using statistical-
physics-based approaches, the phase diagram of random ensembles of problems has been
computed [3, 4], and new algorithms for finding solutions have been found [5]. There is
now a whole field at the intersection of information theory, discrete mathematics and
statistical physics [6]–[8].

The algorithms which have been so successful in satisfiability [4] and coloring [9]
typically involve two main ingredients. The first one is a message passing method. It
starts from a probability distribution on the set of interacting variables, which is typically
the uniform measure on the configurations which satisfy all constraints. Then it aims at
estimating, through mean-field-based methods, the marginal distribution of each of the
variables with respect to this distribution. The second ingredient allows one to make
use of the information on marginals provided by the message passing. In the decimation
process [4, 10], one identifies, thanks to the messages, a strongly polarized variable and
fixes it. The problem is thus reduced and the whole process (message passing and
variable fixing) is iterated. The iteration of this process, when successful, eventually
fixes all variables and finds a ‘satisfying’ assignment, i.e. an assignment that satisfies all

doi:10.1088/1742-5468/2009/12/P12009 2

http://dx.doi.org/10.1088/1742-5468/2009/12/P12009

J.S
tat.M

ech.
(2009)

P
12009

Decimation flows in constraint satisfaction problems

constraints. Instead of decimation, one can also use a reinforcement procedure [11], but
in the present paper we shall keep to decimation methods.

If one could use an algorithm giving the exact values of the marginals, any decimation
procedure would be successful: if the marginal probability for the i th variable to take
some value v is not zero, one can fix this variable to v and iterate the decimation; it will
give one satisfying assignment. Actually fixing the variable at each step with a probability
given by its marginal allows one to sample uniformly the space of satisfying assignments.
However getting the exact marginals is very hard. The message passing methods give
only some approximate estimate of these marginals, and decimation must try to make
the best use of these noisy estimates in order to find a satisfying assignment. This paper
explores new kinds of decimation procedures, which turn out to be more powerful than the
usual one for some classes of hard problems. It is a kind of experimental paper, in that it
does not provide any theory of decimation, but searches for efficient new procedures. The
recent work of [12, 13] provides a first step of a theoretical approach to the decimation
problem, by exploring some features of the ideal decimation procedure, based on the exact
marginals.

The decimation can be seen as a flow in the space of problems, where each step
of the flow transforms an N -variable problem into a new (N − 1)-variable problem.
The idea of decimation is thus a kind of renormalization procedure where one fixes a
single variable at a time. Renormalization group ideas have already been applied to
optimization problems, both in low dimensional systems [14] and in random-graph-based
problems [15]. In the case of decimation, the choice of a heuristic for deciding what variable
to fix at each step defines a flow. The simplest choice is to use the belief propagation
(BP) message passing procedure and fix the most polarized variable. This leads to a
deterministic flow. An alternative choice, which results in a stochastic flow, consists in
choosing at random one variable among the R most polarized variables and fixing it. Belief
propagation equations are nothing but the self-consistency equations of the cavity method
within a replica symmetric approach; in some particularly difficult problems, when the
multiplicity of metastable states is important, it is useful to go to a more sophisticated
replica-symmetry-broken cavity approach. This leads to the use of survey propagation
(SP) as the message passing, instead of BP. SP-based decimation and reinforcement are
currently the best solvers for random satisfiability and coloring close to their SAT–UNSAT
transition. Another useful improvement that we have found recently, which is efficient in
some categories of hard problems, is performing a special decimation where, instead of
fixing one variable, one fixes the relative value of two variables [16]. This requires us to
extend the message passing approach in order to obtain correlations between the variables,
a technique which has been developed recently by several groups [16]–[21]. The net result
is also a decimation flow.

In this paper we propose a new use of decimation flows. Instead of trying to decimate
the problem all the way until one has fixed all the variables and found a solution, we
shall try to set up a decimation process that brings the problem towards a subspace of
problems that are not hard to solve. Our approach is based on the remark that there exists
a natural class of constraint satisfaction problems for binary variables which can be solved
in polynomial time. These are the problems which can be written as systems of linear
equations in GF(2). They can be solved by Gaussian elimination, which, in the worst case,
takes a time growing like N3. We shall call these problems ‘linear problems’ (the reader

doi:10.1088/1742-5468/2009/12/P12009 3

http://dx.doi.org/10.1088/1742-5468/2009/12/P12009

J.S
tat.M

ech.
(2009)

P
12009

Decimation flows in constraint satisfaction problems

should not be confused by the term ‘linear’: a linear problem does not necessarily have a
linear energy function). We shall thus seek a decimation flow which arrives in the subspace
of linear problems, and then use Gaussian elimination. This strategy turns out to be rather
powerful for a class of constraint satisfaction problems which are particularly hard to solve
with usual methods, and in particular with the standard message passing plus decimation
strategy. These problems form a subclass of the locked occupation problems (LOPs),
introduced recently in [22, 23]. Most of these LOPs are NP-hard [24]. The exceptions are
precisely the linear systems, and some of the cases where the variables have degree 2, such
as perfect matching. It turns out that, for a whole class of the hard LOPs, the reason why
they are hard to solve within message passing/decimation is that they tend to flow towards
linear problems, where variables (and even variable pairs) are typically unpolarized. This
makes the next decimation steps rather difficult. If one instead interrupts the decimation
when the subspace of linear problems is reached by the decimation flow, the resulting
algorithm shows much better performance.

The paper is organized as follows. Section 2 introduces the locked occupation
problems. Section 3 explains the decimation flows that we study; it describes the space of
problems (weighted occupation problems) which are stable under this flow, and it defines
the special kinds of constraints that can be encountered in decimation, in particular the
linear constraints. In section 4 we explain how to identify the optimal variables (or pairs
of variables) on which one performs the decimation steps. Section 5 summarizes the
algorithm and shows the results of some numerical experiments. A short conclusion is
given in section 6.

2. Locked occupation problems

Locked occupation problems contain |V | = N binary variables taking values xi ∈
{0, 1} (i ∈ V). These variables are related by |F | = M constraints, denoted by a ∈ F ,
each one involving k variables. In order to characterize these constraints, it is convenient
to define a variable xi as ‘occupied’ when xi = 1, and ‘empty’ if xi = 0. Each constraint
a relates k variables, with indices i(a, 1), . . . , i(a, k). It imposes some restrictions on the
total number of occupied variables among these k variables. These restrictions are fully
specified by a (k+ 1)-component ‘constraint vector’ A with binary entries, A(r) ∈ {0, 1}.
The constraint a is satisfied if and only if

A

(
k∑

m=1

xi(a,m)

)
= 1. (1)

A factor graph G = (V, F ;E) is associated with every instance of a LOP in the usual
way [25]. The set of vertices of this bipartite graph G is V ∪ F while the set of edges
is E = {(i, a)|i ∈ V, a ∈ F, ∃j s.t. i = i(a, j)}. The notion of neighborhood is naturally
introduced: ∂a = {i ∈ F |(i, a) ∈ E}, ∂i = {a ∈ V |(i, a) ∈ E}. For a collection of
variables in S ⊂ V , we shall write xS = {xi|i ∈ S}. We also use the shorthand notation
x = xV . The uniform measure over satisfying configurations can thus be written as

P (x) =
1

Z

M∏
a=1

ψa(x∂a) (2)

doi:10.1088/1742-5468/2009/12/P12009 4

http://dx.doi.org/10.1088/1742-5468/2009/12/P12009

J.S
tat.M

ech.
(2009)

P
12009

Decimation flows in constraint satisfaction problems

where ψa(x∂a) = A(
∑

i∈∂a xi). It exists as soon as there is at least one configuration
satisfying all constraints.

An occupation problem is locked if the following three conditions are met [22, 23, 26]:

• A(0) = A(k) = 0.

• A(r)A(r + 1) = 0 for r = 0, . . . , k − 1.

• Each variable appears in at least two constraints.

For example, the problem defined by k = 3, A = (A(0), A(1), A(2), A(3)) = (0, 1, 0, 0)
corresponds to positive 1-in-3 satisfiability [27], while the problem with k = 4, A =
(0, 1, 0, 1, 0) is a system of odd-parity checks.

3. Decimation flow

In this paper we concentrate on finding a satisfying assignment with large probability,
assuming that there is at least one such assignment. To this end, we make use of ‘flow’
operations which replace an instance I of the constraint satisfaction problem at hand
with another instance I ′ which has fewer variables. We will focus on two basic flow steps,
which consist in either fixing a variable to a given value, or fixing the relation between
two variables. Our procedure thus generalizes the usual decimation by introducing also
the possibility of ‘pair fixing’. This strategy follows from the observation in [16] that the
correlations between variables play an important role in LOPs. The first case (single-
variable decimation) consists in imposing

xi = x (3)

where x is 0 or 1. The second one (pair decimation) consists in imposing

xi = xj + ymod 2 (4)

where y is 0 or 1. In the next section we will explain with what kinds of approximate
methods one can identify a variable xi and its assigned value x for single-variable
decimation, or a pair xi, xj and its assigned relative value y for pair decimation. Here we
want to study the flow process itself.

First we notice that each step effectively reduces the number of variables by 1. At
each decimation we update a table which contains all the variables which have been fixed,
and to what value (either a fixed value or a relation to another variable). When the
decimation is completed, this table allows us to find the values of all variables. As usual
in renormalization group flows, our basic flow steps, when applied to a LOP, produce
a problem (instance) which is no longer a LOP. One thus needs to identify a space of
problems, containing the LOPs, which is stable under our two basic decimation steps.
Such a stable space is provided by the weighted occupation problems.

3.1. Weighted occupation problems

We generalize the occupation problems as follows. We first allow the constraint degree k
and constraint vector A to be dependent on the constraint: the constraint a involves ka

variables and its constraint vector can depend on a and is denoted as Aa. Each constraint
a depends furthermore on ka integer weights wa,i, i ∈ ∂a, and on a shift sa. In a weighted

doi:10.1088/1742-5468/2009/12/P12009 5

http://dx.doi.org/10.1088/1742-5468/2009/12/P12009

J.S
tat.M

ech.
(2009)

P
12009

Decimation flows in constraint satisfaction problems

occupation problem, the constraint a is satisfied if and only if the variables xi, i ∈ ∂a are
such that

Aa

(∑
i∈∂a

wa,ixi + sa

)
= 1. (5)

Let W be the set of weighted occupation problems. We shall now show that W is
stable under our two basic decimation steps, and make explicit the two flow steps in W
which correspond to the two decimation procedures.

3.2. Flow equations

Let us first study a single-variable decimation, fixing xi to a value x ∈ {0, 1}. The variable
xi disappears from the problem. The constraints a with a ∈ ∂i are modified: their degree
is decreased by 1, as they no longer involve variable i, and their constraint vector is shifted
by a constant:

s′a = sa + wa,ix for a ∈ ∂i. (6)

We now turn to a pair decimation operation. Suppose that we fix xi = xj + ymod 2.
Explicitly, this amounts to an operation on integers:

xi = xj + y(1 − 2xj). (7)

Then the variable xi disappears from the problem, the number of variables is reduced by
1, and all the edges (i, a) for a ∈ ∂i disappear from the factor graph. The constraints
a ∈ ∂i are modified, but their modification depends on whether j ∈ ∂a or not.

If a constraint a ∈ ∂i does not involve j, then j is added to the neighborhood of a.
The modification of a is given by

E ′ = E ∪ (j, a); (∂a)′ = (∂a) ∪ (j); w′
a,j = wa,i(1 − 2y); s′a = sa + wa,iy. (8)

Notice that the degree ka of a is unchanged in this case: through decimation, a loses one
neighbor (i), and gains another one (j).

If a constraint a involves both i and j, then

w′
a,j = wa,j + (1 − 2y)wa,i; s′a = sa + wa,iy. (9)

In this procedure, the degree of a is decreased by 1 (if w′
a,j �= 0), or by 2 (if w′

a,j = 0, in
which case both i and j disappear from ∂a).

Clearly, W is stable through our decimation operations. It is important to notice
that, at each step:

• The number of variables decreases.

• The degree ka of each constraint is non-increasing.

• The function Aa is unchanged.

• The sum
∑

i∈∂a |wa,i| is non-increasing for each constraint.

The flow generated through these operations can be seen as a kind of renormalization
group flow. If we start from a LOP where each constraint a has degree ka = k, this
flow stays within a finite subspace of W , where ka ≤ k and

∑
i∈∂a |wa,i| + sa ≤ k. These

properties allow us to use this type of flow as an effective algorithm.

doi:10.1088/1742-5468/2009/12/P12009 6

http://dx.doi.org/10.1088/1742-5468/2009/12/P12009

J.S
tat.M

ech.
(2009)

P
12009

Decimation flows in constraint satisfaction problems

3.3. Special constraints

When applying the flow process, one may encounter constraints which present some
peculiarities which should be noticed.

Irrelevant variables. First of all it may happen that a variable is irrelevant for some
constraint. With some appropriate labeling of the variables, consider the constraint
A(
∑k

i=1wixi + s) = 1. Variable 1 is irrelevant if and only if

∀{x2, . . . , xk} ∈ {0, 1}k−1 : A

(
k∑

i=2

wixi + s

)
= A

(
w1 +

k∑
i=2

wixi + s

)
. (10)

When a variable is irrelevant for a constraint, it can just be eliminated from this constraint,
reducing k by 1, without any other change in the weights or threshold. We shall suppose
here that, whenever a constraint is changed by the flow, one checks for possible irrelevant
variables and eliminates them.

Linear constraints. Let us consider a constraint A(
∑k

i=1wixi + s) = 1 which has
no irrelevant variable. This constraint is a linear constraint if and only if the set
B of configurations of the k variables x1, . . . , xk which satisfy this constraint can be
characterized by an affine subspace in GF(2). This is the case whenever there exists a

number b ∈ {0, 1} such that B consists of all solutions of the equation
∑k

i=1 xi = b(mod 2).
A typical case where this happens is when wi = 1 and the vector A is either given by
∀ r:A(r) = 1

2
(1 − (−1)r) or by ∀ r:A(r) = 1

2
(1 + (−1)r). But it may happen that a

constraint is linear in a slightly less obvious way. For instance consider the constraint on
k = 2 variables characterized by w1 = −2, w2 = 3, s = 2 and the vector A = (110001).
This is a linear constraint (which can be rewritten as x1 + x2 = 1(mod 2)). As there
are only two linear constraints on GF(2) (with b = 0 and 1), one can identify whether a
constraint is linear by comparing its truth table to each of these two linear constraints.
This takes of order k2k+1 operations and can be done for the relatively small values of k
that we study here.

Variable-polarizing constraints. Consider the constraint A(
∑k

i=1wixi + s) = 1. This
constraint is said to be polarizing for the variable x1 if and only if there exists τ ∈ {0, 1}
such that

∀{x2, . . . , xk} ∈ {0, 1}k−1 : A

(
k∑

i=2

wixi + s

)
= τ = 1 −A

(
w1 +

k∑
i=2

wixi + s

)
. (11)

If τ = 1, the constraint imposes that x1 should be equal to 1. If τ = 0, it imposes that x1

should be equal to 0.
Pair-polarizing constraints. Consider the constraint A(

∑k
i=1wixi + s) = 1. This

constraint is said to be polarizing for the pair x1, x2 if and only if there exists τ ∈ {0, 1}
such that

∀{x3, . . . , xk} ∈ {0, 1}k−2 :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

A

(
k∑

i=3

wixi + s

)
= A

(
w1 + w2 +

k∑
i=3

wixi + s

)
= τ

A

(
w1 +

k∑
i=3

wixi + s

)
= A

(
w2 +

k∑
i=3

wixi + s

)
= 1 − τ.

(12)

doi:10.1088/1742-5468/2009/12/P12009 7

http://dx.doi.org/10.1088/1742-5468/2009/12/P12009

J.S
tat.M

ech.
(2009)

P
12009

Decimation flows in constraint satisfaction problems

If τ = 1, the constraint imposes that x1 + x2 = 0 (mod 2). If τ = 0, it imposes that
x1 + x2 = 0 (mod 2).

4. How to find polarized variables and correlated pairs

In this section we explain how to choose a variable, or a pair of variables, to which the
flow operations are applied.

One first natural class is found when the flow itself generates variable- or pair-
polarizing constraints as defined in section 3. As soon as the flow generates a constraint,
it can be tested with respect to these two criteria, and if the constraint is found to be
variable- or pair-polarizing, one performs the corresponding variable or pair decimation.
Notice that the variable decimation process induced in such a way is equivalent to the
well known ‘warning propagation’ procedure [4, 12], which is frequently used with BP and
SP in order to infer the consequences of fixing a variable.

Next we consider the subset of all the linear constraints defined in section 2. This
subset obviously constitutes a necessary condition for the constraint satisfaction problem
at hand. That condition can in principle imply relations of the form (3) or (4). If the
standard Gaussian elimination on GF(2) is applied on the subset of linear constraints,
all the variables that can be solved in the form (3) are found. Some of the two-variable
relations (4) can also be found even if xi and xj are not neighbors. The set of pairs found
in this way depends on the detailed order of operations in the Gaussian elimination. If
more than one such variable or pair is found, one performs variable or pair decimation.
This step does more than the standard warning propagation. It can find some distant but
completely correlated pairs in a single step. How often this occurs depends on the nature
of instances.

When the above procedures do not impose any strict relations on variables or pairs,
one must estimate the single-variable marginals Pi(x) = P (xi = x) and the relative pair
marginals Pij(y) = P (xi + xj = y). The standard methods for finding polarized variables
are BP [28] and SP [4]. In fact, application of the single-variable decimation defined
above to a variable which has an extreme one-variable marginal according to BP or SP
is equivalent to BP-or SP-guided decimation [12]. In this case, one stays in a subspace
where all the weights on the edges are equal to 1.

To find a highly correlated pair, one should resort to some of the recently
proposed methods which aim at estimating correlations with message passing [16]–
[21]. The application of the second flow operation within the susceptibility propagation
method [16, 19] is equivalent to pair decimation [16].

The degree of polarization of a variable i is conveniently measured by the entropy of
the marginal, Si = −∑x Pi(x) logPi(x). Similarly, we define the relative pair entropy as
Sij = −∑y Pij(y) logPij(y). The basic step of the algorithm is thus finding a strongly

polarized (low entropy) variable or pair, as in [16]. On top of this primary goal, one
can also decide to favor the decimation steps which lead to a larger fraction of linear
constraints. In the most general case within our setting, one just decides what operation
to do (variable or pair fixing) by looking for variables (resp. pairs) with small Si (resp.
Sij) such that the corresponding fixing induces some linear constraints. Many kinds of
penalty functions can be used, putting more or less weight on the variables, the pairs,
or the induction of linear constraints. In the next section we shall show that the result

doi:10.1088/1742-5468/2009/12/P12009 8

http://dx.doi.org/10.1088/1742-5468/2009/12/P12009

J.S
tat.M

ech.
(2009)

P
12009

Decimation flows in constraint satisfaction problems

obtained with some of the simplest schemes is already much better than those from all
existing methods for some classes of hard LOPs.

5. Numerical experiments

5.1. The algorithm

In our experiments we have used a very simple version of the general class of algorithms
defined above. In this version, when we generate a new constraint, we check whether it
is a variable-polarizing constraint, and if this is the case we implement the corresponding
variable decimation step. If the constraint has degree 2, we also check whether it is a
pair-polarizing constraint, and if this is the case we implement the corresponding pair
decimation step. Then we check for the linear constraints and run Gaussian elimination
on them. (Notice that these steps can also be seen as a simple ‘on-line’ exploitation of
the linear structure of the problem.) In all other situations we run belief propagation,
estimate the corresponding single-variable entropies Si, and fix the variable i with the
smallest entropy. When all the constraints are linear, we stop the decimation process and
apply a Gaussian elimination procedure to the corresponding linear problem. When the
decimation leads to a problem with a small enough number of variables, we perform an
exhaustive search. The structure of the program is thus the following:

Input: factor graph with N nodes, constraint vector A, convergence criterion ε,
initial messages.

Output: a satisfying assignment (or FAIL-NOT-FOUND).

• Repeat until the instance either has less than D variables, or is equivalent to a linear
system:

* Initialize the messages.
* Iterate the BP update equations until all messages have converged within

precision ε.
* Using the BP messages: for all the variables i of the instance, compute the local

marginal Pi(xi) and the entropy estimate Si

* Find the variable i with the smallest entropy Si, fix it to the value xi which is
the most probable according to Pi(x). Fix the number of changes, nc, at nc = 1.

* While nc > 0:
+ Initialize nc = 0.
+ For all the constraints a in the instance:

• For all the variables i involved in the constraint a, check whether i is
irrelevant, using the criterion (10). If i is irrelevant, eliminate it from the
constraint a.

• If the constraint a contains only irrelevant variables: if it is automatically
satisfied, eliminate this constraint; if it is never satisfied: return FAIL-
NOT-FOUND.

• For all the variables i involved in the constraint a, check whether a is
polarizing for i, using the criterion (11). If this is the case, fix the variable
i to the value forced by a, update the constraint vector using (6), and
increase nc by 1.

doi:10.1088/1742-5468/2009/12/P12009 9

http://dx.doi.org/10.1088/1742-5468/2009/12/P12009

J.S
tat.M

ech.
(2009)

P
12009

Decimation flows in constraint satisfaction problems

+ For all the constraints a in the instance with degree |∂a| = 2: check whether
a is a pair-polarizing constraint, using the criterion (12). If this is the case,
perform the corresponding pair decimation steps (7)–(9), and increase nc by
1.

+ For all the constraints a in the instance: if a is a linear constraint described
by an alternating vector A = (010101 . . .) or A = (101010 . . .), include it in
the set S.

+ If S is non-empty, run Gaussian elimination on the subproblem involving all
the constraints in S, and all the variables i connected to these constraints:
• If the linear problem has no solution return FAIL-NOT-FOUND
• Else, if the linear space of solutions has dimension d, find a set of d linearly

independent variables and express all the other variables in terms of the
variables in this set. Increase nc by the number of variables fixed in this
Gaussian elimination.

+ If the linear problem admits a solution, return a satisfying assignment.
+ Else return FAIL-NOT-FOUND.

* When the number of variables is equal to or smaller than D: perform an
exhaustive search for satisfying assignments. If found:
+ Then return the satisfying assignment.
+ Else return FAIL-NOT-FOUND.

It is not possible to state strictly the complexity of the algorithm, as it involves some
steps, like the BP iteration, which do not always converge. So the main results on running
time will be obtained from numerical experiments. However one can make a few general
comments on the scaling with size of the number of operations. The number of variables
is strictly decreasing at each iteration of the main loop. Therefore the main loop will
be performed at most N times. It contains three basic ingredients: the first one is the
iteration of BP. In the cases which we have considered one finds a fixed point of BP (with
accuracy ε) in a number of operations which is either constant or grows logarithmically
with the size of the system. The second one involves the search for various polarizing
constraints; it implies a number of operations which grows like the number of constraints
multiplied by their degree, i.e. it scales linearly with the size of the system. The last
ingredient is the Gaussian elimination for the constraints in S; this involves at most
O(N3) operations. Altogether, one can thus expect that the algorithm will run in a time
that is ≤O(N3).

5.2. Class of problems

We have studied various LOPs defined from random factor graphs, uniformly chosen
among the graphs with the following degrees. All function nodes have degree k and the
variables have random degrees chosen from the truncated Poisson degree distribution

q(�) =

⎧⎨
⎩

0 (� = 0, 1)

e−cc�

�!(1 − (1 + c)e−c)
(� ≥ 2),

(13)

doi:10.1088/1742-5468/2009/12/P12009 10

http://dx.doi.org/10.1088/1742-5468/2009/12/P12009

J.S
tat.M

ech.
(2009)

P
12009

Decimation flows in constraint satisfaction problems

for which the average degree is

�̄ =

∞∑
�=0

�q(�) =
c(1 − e−c)

(1 − (1 + c)e−c)
. (14)

The number of function nodes M and the number of variables N are related by Mk = N�̄.
We are interested in the thermodynamic limit where N and M go to infinity at fixed k, �̄.

The phase diagram of these problems has been studied in [22, 23]. Like most
random constraint satisfaction problems, they exhibit two main phase transitions when
the average degree �̄ increases (this increases the density of constraints). For �̄ < �d
the problem is typically easy; for �d < �̄ < �s there exists with probability 1 (in the
large N limit) a solution, but the space of solutions is made up of isolated configurations
which are very far away from each other. For �̄ > �s the problem has no solution with
probability 1. In problems like 1-or-3-in-5 SAT (described by the vector A = 010100)
or 1-or-4-in-5 SAT (described by the vector A = 010010), the usual BP + decimation
or BP + reinforcement algorithms are unable to find solutions when they are applied
to instances in the intermediate phase �d < �̄ < �s. We have thus focused on this
region.

5.3. Results

The LOP 1-or-3-in-5 satisfiability is a candidate of choice for exploiting the idea of flow
towards a linear system, because if a variable connected to a given factor is fixed to 0,
the corresponding factor is transformed into a 1-or-3-in-4 constraint, which is a linear
node. Figure 1 shows the result of experiments for this problem, with the algorithm of
section 5.1 used with D = 16.

It can be observed that the algorithm works well in the lower half �̄ � 4.0 of
the clustered phase. By inspecting the decimation process in this lower half closely,
we find that all the instances flow to a linear problem, consisting only of 1-or-3-in-4
constraints, in approximately M steps. This means that, in the early stage, a variable in
the neighborhood of each constraint is fixed to 0. Then the Gaussian elimination finds
some solutions. (Notice that at this stage the problem is linear and all the one-variable
marginals are unpolarized [6]; therefore, if instead of using Gaussian elimination one were
to keep on with BP, the next decimation steps would be taken totally at random.) On the
other hand, on the upper half �̄ � 4.0, the algorithm also flows to a linear problem but
it turns out that this problem has no solution. When �̄ < �s, we know a priori that the
instances all have satisfiable solutions with probability 1. This means that the algorithm
has made a fatal error in guessing in the early stage.

While the new algorithm is still not able to reach the satisfiability threshold, it widely
increases the set of instances for which one can find a solution, with respect to existing
algorithms. The amount of improvement can be seen from figure 2, which shows the size
dependence of the typical time needed to solve an instance of a 1-or-3-in-5 problem, with
average degree �̄ = 3.6, with various algorithms. In order to compare to some standard
approaches, we have converted each instance into an instance of satisfiability, as in [23].
The satisfiability formula obtained can be studied with two main strategies. The first
one consists in incomplete local search algorithms, which have been shown to be rather
powerful for random satisfiability formulae [29]–[31]. In this category we have used the

doi:10.1088/1742-5468/2009/12/P12009 11

http://dx.doi.org/10.1088/1742-5468/2009/12/P12009

J.S
tat.M

ech.
(2009)

P
12009

Decimation flows in constraint satisfaction problems

Figure 1. Probability of finding a solution for 1-or-3-in-5 satisfiability, plotted
versus the average degree �̄. The clustering threshold �d and the satisfiability
threshold �s are shown by vertical lines. The results from our new algorithm are
the two curves on the right, obtained with M = 500 (400 samples), and 2000
(200 samples). The data show a threshold behavior around �̄ = 4: the transition
becomes sharper when M increases. The three curves on the left, displaying a
smoother crossover around �̄ = 3, are obtained with the single-variable decimation
procedure, without Gaussian elimination, for M = 500, 200 and 100 (from left
to right), both averaged over 400 samples. With this standard BP decimation it
is very hard to find a solution for instances in the clustered region �̄ > �d = 3.07.
In both algorithms we use three restarts.

standard Walksat procedure [29]. The second strategy is that of complete solvers using
the DPLL approach [32, 33], for which we have written a simple code. The performances
of walksat, of DPLL, and of our decimation + Gaussian elimination procedures shown in
figure 2 clearly show that this problem is hard for standard approaches, but our following
algorithm can handle much larger instances. Notice that we have not tried to fully optimize
any of the three codes, as we are mainly interested in the qualitative improvement that
can be obtained by Gaussian elimination. We have observed that this improvement also
occurs in the LOPs 1-or-3-in-6 and 2-or-4-in-6.

On the other hand, the improvement is much less impressive for the following
problems: 1-in-3, 1-in-4, 1-in-5, 1-in-6, 2-in-4, 2-in-5, 2-in-6, 3-in-6,1-or-4-in-5, 1-or-5-
in-6. For instance, figure 3 shows the performance for 2-in-5. The reason for this
relatively poor performance is that these problems typically do not flow to XORSAT.
In this case the pair decimation algorithm that we have studied in [16] has a probability
of success similar to that of the new algorithm using Gaussian elimination. The present
situation concerning the locked occupation problems is rather paradoxical. Nearly all of
these problems are NP-hard, with the noticeable exception of the systems which can be
written as linear systems, for which Gaussian elimination provides a polynomial algorithm.
Message passing decimation, when it works, is very fast as it typically requires a time of

doi:10.1088/1742-5468/2009/12/P12009 12

http://dx.doi.org/10.1088/1742-5468/2009/12/P12009

J.S
tat.M

ech.
(2009)

P
12009

Decimation flows in constraint satisfaction problems

Figure 2. Average of the log of the computer time (in seconds) used to solve an
instance of the 1-or-3-in-5 problem, with average degree �̄ = 3.6, versus size of
the instance. The full curve is for the decimation flow with Gaussian elimination.
The two dashed curves are for the Walksat algorithm run for the corresponding
satisfiability formula (left) and the DPL-type algorithm (right); they display a
clear exponential behavior of the typical time versus size. The averages are
computed with 100 instances.

order N2, which can even be decreased to O(N/logN) by simultaneously fixing groups
of variables at each decimation step. However, it typically fails on the subspace of linear
systems. The reason is that the messages, when they are not constraining a variable,
are typically unbiased: they give no clue as to what variable to fix, and to which value.
A trace of this difficulty remains in the problems which are ‘close’ to linear systems.
This is the case for instance for 1-or-3-in-5 satisfiability. This is not a linear problem,
but 1-or-3-in-4 is linear. It has been found in previous studies that 1-or-3-in-5 is very
hard for message passing [16, 23], again because the messages lead to marginals which
have too small biases to be really useful (taking into account that marginals based on
message passing are inherently imperfect). It is also very hard for all other methods. The
present approach aims at exploiting the nearness of such a problem to a linear system by
using a RG decimation flow until it hits the manifold of linear problems. For 1-or-3-in-5
and for 2-or-4-in-6 this is by far the best method known so far. The other problems
for which our strategy is less useful are those which are in some sense too far from the
subspace of linear systems: we do not succeed in hitting this manifold with the decimation
flow. In these cases the improvement with respect to standard decimation is thus only
due to the ‘on-line’ use of linear constraints when one identifies pair-polarizing or linear
constraints and performs the subsequent decimation. The corresponding performances
are already much better than the standard single-variable decimation one, but do not
quite reach the performance of the more general pair decimation process that we used
in [16].

doi:10.1088/1742-5468/2009/12/P12009 13

http://dx.doi.org/10.1088/1742-5468/2009/12/P12009

J.S
tat.M

ech.
(2009)

P
12009

Decimation flows in constraint satisfaction problems

Figure 3. Probability of finding a solution for 2-in-5 satisfiability, plotted versus
the average degree �̄. From top to bottom at � = 2.8 the results from our
new algorithm with M = 2000 (50 samples), 1000 (100 samples) and 500 (200
samples), and those of standard BP decimation with M = 1000, 500 and 200
(400 samples) are shown. For this problem the improvement obtained with the
new algorithm is still present, but less impressive than in the case of 1-or-3-in-5
satisfiability, because the algorithm very rarely uses Gaussian elimination.

6. Conclusions

The random LOPs are typically hard to solve in their clustered phase. An exception is
given by linear problems, where all the constraints can be written as linear equations over
GF(2), which can be solved in polynomial time by Gaussian elimination. In this paper
we have shown how one can exploit this peculiarity within the decimation approach.
The idea is that, instead of trying to follow the decimation flow all the way until all
variables are fixed, one stops the flow whenever it hits the subspace of linear problems,
and then uses Gaussian elimination. This idea is also complemented by the use of Gaussian
elimination ‘on-line’ through the detection of polarizing constraints and linear constraints.
This strategy has been found to greatly improve the range of problems that can be solved
efficiently in the case of 1-or-3-in-5, 1-or-3-in-6 and 2-or-4-in-6 LOPs. In other problems
the improvement is mainly due to the on-line elimination and is less impressive, but still
present.

The present approach was the simplest implementation of this idea, and one could
think of several directions in which to develop it. We have done a few experiments in which
we tried to accelerate the flow towards the subspace of linear problems by favoring the
decimation steps which lead to more linear constraints. We have seen that this approach
typically improves the efficiency, but it is not evident that it improves the threshold in
the N → +∞ limit. More work along this direction needs to be done in order to find
the optimal protocol and its threshold. Another important long-term project would be

doi:10.1088/1742-5468/2009/12/P12009 14

http://dx.doi.org/10.1088/1742-5468/2009/12/P12009

J.S
tat.M

ech.
(2009)

P
12009

Decimation flows in constraint satisfaction problems

to develop analytic studies of decimation, starting from the studies of ideal decimation
in [12, 13].

Acknowledgment

SH was supported by a Ryukoku University Research Fellowship (2008).

References

[1] Cook S, 1971 Proc. 3rd Annual ACM Symp. on Theory of Computing (New York: ACM) pp 151–8
[2] Cook S and Mitchell D, 1997 Satisfiability Problem: Theory and Applications: DIMACS Workshop (March,

1996) American Mathematical Society p 1
[3] Mézard M, Parisi G and Zecchina R, 2002 Science 297 812
[4] Mézard M and Zecchina R, 2002 Phys. Rev. E 66 56126
[5] Braunstein A, Mézard M and Zecchina R, 2005 Random Struct. Algorithms 27 201
[6] Mézard M and Montanari A, 2009 Information, Physics and Computation (Oxford: Oxford University

Press)
[7] Hartmann A K and Rieger H (ed), 2004 New Optimization Algorithms in Physics (Berlin: Wiley–VCH)
[8] Percus A, Istrate G and Moore C (ed), 2006 Computational Complexity and Statistical Physics (Oxford:

Oxford University Press)
[9] Braunstein A, Mulet R, Pagnani A, Weigt M and Zecchina R, 2003 Phys. Rev. E 68 036702

[10] Krzakala F, Montanari A, Ricci-Tersenghi F, Semerjian G and Zdeborová L, 2007 Proc. Nat. Acad. Sci.
104 10318

[11] Chavas J, Furtlehner C, Mézard M and Zecchina R, 2005 J. Stat. Mech. P11016
[12] Montanari A, Ricci-Tersenghi F and Semerjian G, 2007 arXiv:0709.1667
[13] Ricci-Tersenghi F and Semerjian G, 2009 J. Stat. Mech. P09001
[14] Houdayer J and Martin O C, 1999 Phys. Rev. Lett. 83 1030
[15] Coppersmith S, 2007 Europhys. Lett. 77 30006
[16] Higuchi S and Mézard M, 2009 arXiv:0903.1621
[17] Montanari A and Rizzo T, 2005 J. Stat. Mech. P10011
[18] Rizzo T, Wemmenhove B and Kappen H, 2007 Phys. Rev. E 76 011102
[19] Mézard M and Mora T, 2009 J. Physiol. Paris 103 107–13
[20] Tanaka K, 2003 IEICE Trans. Inform. Syst. E86-D 1228
[21] Welling M and Teh Y W, 2004 Neural Comput. 16 197
[22] Zdeborová L and Mézard M, 2008 Phys. Rev. Lett. 101 078702
[23] Zdeborová L and Mézard M, 2008 J. Stat. Mech. P12004
[24] Schaefer T, 1978 Proc. 10th STOC (New York: ACM) pp 216–26
[25] Kschischang F, Frey B and Loeliger H, 2001 IEEE Trans. Inform. Theory 47 498
[26] Zdeborová L, 2008 PhD Thesis Université Paris-Sud arXiv:0806.4112
[27] Raymond J, Sportiello A and Zdeborová L, 2007 Phys. Rev. E 76 11101
[28] Yedidia J, Freeman W and Weiss Y, 2003 Understanding Belief Propagation and its Generalizations

(Amsterdam: Elsevier Science & Technology Books) pp 239–6
[29] Selman B, Kautz H A and Cohen B, 1996 Proc. 2nd DIMACS Challenge on Cliques, Coloring, and

Satisfiability (Providence RI) ed M Trick and D S Johnson citeseer.ist.psu.edu/article/selman96local.html
[30] Seitz S, Alava M and Orponen P, 2005 J. Stat. Mech. P06006
[31] Alava M, Ardelius J, Aurell E, Kaski P, Krishnamurthy S, Orponen P and Seitz S, 2008 Proc. Nat. Acad.

Sci. 105 15253
[32] Davis M and Putnam H, 1960 J. Assoc. Comput. Mach. 7 201
[33] Davis M, Logemann G and Loveland D, 1962 Commun. ACM 5 394

doi:10.1088/1742-5468/2009/12/P12009 15

http://dx.doi.org/10.1126/science.1073287
http://dx.doi.org/10.1103/PhysRevE.66.056126
http://dx.doi.org/10.1002/rsa.20057
http://dx.doi.org/10.1103/PhysRevE.68.036702
http://dx.doi.org/10.1073/pnas.0703685104
http://dx.doi.org/10.1088/1742-5468/2005/11/P11016
http://arxiv.org/abs/0709.1667
http://dx.doi.org/10.1088/1742-5468/2009/09/P09001
http://dx.doi.org/10.1103/PhysRevLett.83.1030
http://dx.doi.org/10.1209/0295-5075/77/30006
http://arxiv.org/abs/0903.1621
http://dx.doi.org/10.1088/1742-5468/2005/10/P10011
http://dx.doi.org/10.1103/PhysRevE.76.011102
http://dx.doi.org/10.1016/j.jphysparis.2009.05.013
http://dx.doi.org/10.1162/08997660460734056
http://dx.doi.org/10.1103/PhysRevLett.101.078702
http://dx.doi.org/10.1088/1742-5468/2008/12/P12004
http://dx.doi.org/10.1109/18.910572
http://arxiv.org/abs/0806.4112
http://dx.doi.org/10.1103/PhysRevE.76.011101
http://citeseer.ist.psu.edu/article/selman96local.html
http://citeseer.ist.psu.edu/article/selman96local.html
http://citeseer.ist.psu.edu/article/selman96local.html
http://citeseer.ist.psu.edu/article/selman96local.html
http://citeseer.ist.psu.edu/article/selman96local.html
http://citeseer.ist.psu.edu/article/selman96local.html
http://citeseer.ist.psu.edu/article/selman96local.html
http://citeseer.ist.psu.edu/article/selman96local.html
http://citeseer.ist.psu.edu/article/selman96local.html
http://citeseer.ist.psu.edu/article/selman96local.html
http://citeseer.ist.psu.edu/article/selman96local.html
http://citeseer.ist.psu.edu/article/selman96local.html
http://citeseer.ist.psu.edu/article/selman96local.html
http://citeseer.ist.psu.edu/article/selman96local.html
http://citeseer.ist.psu.edu/article/selman96local.html
http://citeseer.ist.psu.edu/article/selman96local.html
http://citeseer.ist.psu.edu/article/selman96local.html
http://citeseer.ist.psu.edu/article/selman96local.html
http://citeseer.ist.psu.edu/article/selman96local.html
http://citeseer.ist.psu.edu/article/selman96local.html
http://citeseer.ist.psu.edu/article/selman96local.html
http://citeseer.ist.psu.edu/article/selman96local.html
http://citeseer.ist.psu.edu/article/selman96local.html
http://citeseer.ist.psu.edu/article/selman96local.html
http://citeseer.ist.psu.edu/article/selman96local.html
http://citeseer.ist.psu.edu/article/selman96local.html
http://citeseer.ist.psu.edu/article/selman96local.html
http://citeseer.ist.psu.edu/article/selman96local.html
http://citeseer.ist.psu.edu/article/selman96local.html
http://citeseer.ist.psu.edu/article/selman96local.html
http://citeseer.ist.psu.edu/article/selman96local.html
http://citeseer.ist.psu.edu/article/selman96local.html
http://citeseer.ist.psu.edu/article/selman96local.html
http://citeseer.ist.psu.edu/article/selman96local.html
http://citeseer.ist.psu.edu/article/selman96local.html
http://citeseer.ist.psu.edu/article/selman96local.html
http://citeseer.ist.psu.edu/article/selman96local.html
http://citeseer.ist.psu.edu/article/selman96local.html
http://citeseer.ist.psu.edu/article/selman96local.html
http://citeseer.ist.psu.edu/article/selman96local.html
http://citeseer.ist.psu.edu/article/selman96local.html
http://citeseer.ist.psu.edu/article/selman96local.html
http://citeseer.ist.psu.edu/article/selman96local.html
http://citeseer.ist.psu.edu/article/selman96local.html
http://citeseer.ist.psu.edu/article/selman96local.html
http://citeseer.ist.psu.edu/article/selman96local.html
http://citeseer.ist.psu.edu/article/selman96local.html
http://dx.doi.org/10.1088/1742-5468/2005/06/P06006
http://dx.doi.org/10.1073/pnas.0712263105
http://dx.doi.org/10.1145/368273.368557
http://dx.doi.org/10.1088/1742-5468/2009/12/P12009

	1. Introduction
	2. Locked occupation problems
	3. Decimation flow
	3.1. Weighted occupation problems
	3.2. Flow equations
	3.3. Special constraints

	4. How to find polarized variables and correlated pairs
	5. Numerical experiments
	5.1. The algorithm
	5.2. Class of problems
	5.3. Results

	6. Conclusions
	Acknowledgment
	References

