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The noise in physical qubits is fundamentally asymmetric: in most devices, phase errors are much more
probable than bit flips. We propose a quantum error-correcting code that takes advantage of this asymmetry and
shows good performance at a relatively small cost in redundancy, requiring less than a doubling of the number
of physical qubits for error correction. This code is particularly adapted for building an efficient quantum
memory.
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I. INTRODUCTION

The quest for a quantum computer has stimulated a lot of
interesting developments in recent years. However, despite
remarkable progress, none of the physical devices realized so
far allows the building of even a very small computer. One
crucial aspect is noise control. Quantum computing faces
two antagonistic constraints: one should be able to manipu-
late and address the results of a computation, and at the same
time one must keep the noise level low. While some hard-
ware architecture may help to achieve this compromise, it is
clear now that there will never exist a quantum computer
without efficient quantum error correction �QEC�.

The basic principles of QEC have been written down in
�1–4�, and a number of QEC codes have been developed
since then �5,6�. However, most of them require in practice a
high level of redundancy �in coding language, a low rate�:
the number of physical qubits needed to effectively protect
one logical qubit is large. In this paper we introduce a family
of QEC codes that reach good performance with much less
redundancy �typically �2–3 physical qubits for one logical
qubit�. This is achieved by using information blocks of large
size, and by exploiting the fundamental asymmetry of the
noise in physical devices.

Classical coding theory shows that performance is im-
proved by using large information blocks: in this limit, the
uncorrected errors correspond to a correlated flip of a large
number of physical bits, the probability of which gets expo-
nentially small. Ideal classical codes �which get close to the
Shannon limit� are found in the limit of infinite block length.
Using large blocks in QEC is difficult because of the possible
appearance of computation errors in the decoding. To avoid
them, an efficient error-correction scheme should involve a
relatively small �o�N�� readout operations on each bit. Our
code achieves this by using the so-called low-density parity
check �LDPC� classical codes. These codes, based on old
ideas of Gallager �7�, have been shown recently to be very
efficient in terms of performance, and they can be decoded
with a small number of operations �8–10�.

The generalization of these classical schemes for quantum
error correction is made very difficult by the requirement that
a quantum scheme should correct two types of errors: bit
flips as well as phase errors. So far, the main attempt at

finding such codes is the work �11�. It uses so-called self-
dual codes which are tailored to deal with a noise that is
symmetric in all channels. We argue that, in the physical
devices conceived so far, the noise is typically asymmetric �a
phase error is much more probable than a bit flip�, and one
can exploit this asymmetry to develop more efficient QEC
codes. The construction that we propose here makes use of
two standard classical codes which are among the most effi-
cient ones: it handles the relatively rare bit errors through a
Bose Ray-Chaudhuri Hocquenghem �BCH� code �12� and
the more frequent phase errors through a LDPC code.

II. PHYSICAL NOISE

The level of the noise in a single physical bit is conve-
niently characterized by the relaxation time T1 and dephasing
time T2, the two parameters that enter Bloch equation for a
single-bit �spin� dynamics. Because relaxation always im-
plies dephasing, the dephasing rate 1 /T2 has a contribution
from the relaxation processes and a pure dephasing: 1 /T2
=1/ �2T1�+��. Generally, there are many ways to control the
relaxation rate. First, the relaxation between two states with
energy difference �E requires a transfer of energy to the
environment, the amplitude of which becomes smaller as
�E→0. Furthermore, in many physical implementations
these two states are separated by a large barrier that makes
transitions between them rare. The situation is completely
different with the dephasing rate �� which is physically due
to the fluctuations of �E with time. All low-frequency pro-
cesses contributing to the �E�t� dependence result in a de-
crease of the �exp�−i��E�t�dt�� correlator, i.e., they lead to
the dephasing. In this respect, a particularly damaging effect
comes from omnipresent 1 / f noise. Thus, it is not surprising
that, in almost all devices studied so far, the relaxation rate
can be made much slower than the dephasing: in a typical
NMR device T1�10–100 s while T2�1 s �16�, in super-
conducting phase qubits T1�10 �s while T2�100 ns �17�,
in superconducting charge qubits T1�100 ns while T2
�1 ns �18�, and finally for spin dots T1�1 �s while T2
�10 ns �19,20�. In atomic and ionic systems the main source
of errors is due to dephasing, as well. For instance, in ions
confined to microtraps it originates from the motion of the
charges trapped in the insulator �21�, similarly to the mecha-
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nism responsible for the charge noise in larger superconduct-
ing qubits.

In the following we shall therefore assume that in physi-
cal qubits the noise is strongly asymmetric. Specifically, we
study a noise channel defined as follows. Noise acts indepen-
dently on each bit. It induces a bit flip with probability px,
and independently it induces a phase flip with probability pz.
The original state of the system, 	�0�, is thus changed
to 	��=
i���z

i�mi��x
i �ni�	�0� with probability pz

�ini�1
− pz�N−�inipx

�imi�1− px�N−�imi, where mi ,ni� �0,1
. The
channel acts on bit i by applying an operator Ui
� �I ,�x

i ,�z
i ,�x

i �z
i
.

III. CONSTRUCTION OF THE CODE

A. Calderbank-Shor-Steane codes

Our family of codes is of the Calderbank-Shor-Steane
�CSS� type �3,4�. It consists of two independent encoding
and decoding devices dealing separately with bit and phase
flips, for a string of N physical qubits. It uses Mz z checks
and Mx x checks. The ath z check is defined by a set V�a�
� �1, . . . ,N
 and by the operator Ca

z =
i�V�a��i
z. Similarly, the

ath x check is defined by a set W�a�� �1, . . . ,N
 and by the
operator Ca

x =
i�W�a��i
x.

By construction, the z and x checks all commute with
each other, and the original state 	�0� is an eigenstate of all
the operators Ca

z ,Ca�
x with eigenvalue 1. As Ui either com-

mutes or anticommutes with these check operators, the
noise-perturbed state 	�� is an eigenstate of the operators
Ca

z ,Ca�
x . The decoding operation consists of three steps: �i�

measure the eigenvalues of the check operators, �ii� infer
from these eigenvalues what was the corrupting operator, and
�iii� apply the correction operator.

Step (i). The ath z syndrome is defined as the number
ua� �0,1
 such that Ca

z 	��= �1−2ua�	��. Similarly, the ath x
syndrome is defined as the number va� �0,1
 such that
Ca

x	��= �1−2va�	��.
Step (ii). From the z syndromes �ua
, a� �1, . . . ,Mz
, we

compute N numbers �m1� , . . . ,mN� 
 such that, for each a
� �1, . . . ,Mz
, �i�V�a�mi�=ua�mod2�, with the smallest pos-
sible number of m�’s equal to 1. From the x syndromes �va
,
a� �1, . . . ,Mx
, we compute N numbers �n1� , . . . ,nN� 
 such
that, for each a� �1, . . . ,Mx
, �i�W�a�ni�=va�mod2�, with the
smallest possible number of n�’s equal to 1.

Step (iii). Generate 	���=
i=1
N ���x

i �ni���z
i�mi��	��. If the er-

ror correction is successful, one should find 	���= 	�0�.
A CSS code is thus characterized by the sets V�a� and

W�a� defining the checks. In building such a code, one must
ensure that all check operators commute. This imposes that,
∀ a� �1, . . . ,Mz
, ∀ a�� �1, . . . ,Mx
, 	V�a��W�a��	 be
even. It is useful to define the parity check matrices of the
two codes. The matrix Hz is an Mz�N matrix with entries in
�0,1
, defined by Hai

z =1 if and only if i�V�a�. Similarly, Hx

is the Mx�N matrix defined by Hai
x =1 if and only if i

�W�a�. The commutativity condition is satisfied when
Hz�Hx�T=0 �using Boolean algebra, i.e., mod�2� additions�.

The z codewords are strings of N bits xi� �0,1
 such that,
∀ a, �iHai

z xi=0�mod2�. Any x check a defines a z codeword
through xi=1 if i�W�a�, and xi=0 otherwise. Similarly, z
checks define x codewords. Most of the research on QEC so
far has focused on the design of relatively small codes with
good distance properties. If, for instance, all pairs of x code-
words are at a Hamming distance 	2d+1, the code will
correct any set of �d flip errors. While this suggests building
codes that maximize the smallest distance between code-
words, this strategy is not necessarily optimal when dealing
with large block length �N
1�. Instead, what is practically
required is that the probability of an error is small and it
turns out that the best classical codes often have �rare� pairs
of codewords that are close to each other �10�. We shall use
this approach to construct our x checks.

B. z checks: BCH code

Our z code is an efficient classical construction, a binary
primitive BCH code �see Ref. �13� for an extended presen-
tation�. The code depends on two parameter m , t. The first
one determines the Galois field GF�2m� that is used, and the
number t is equal to the number of errors �bit flips� that the
code can correct. The number of variables �and therefore the
number of qubits� is given by N=2m−1. If � is a primitive
element of the field GF�2m�, the powers �r ,r� �1, . . . ,N
,
are N distinct elements of the field, building a cyclic group
under multiplication. At the same time, GF�2m� is a vector
space of dimension m over GF�2�: every element �r can be
decomposed as �r=�p=0

m−1�rp�p, where the coefficients � are
in �0,1
. The check matrix H of the code is defined as

H = �
1 � �2 . . . �N−1

1 ��3� ��3�2 . . . ��3�N−1

1 ��5� ��5�2 . . . ��5�N−1

] ] ] ] ]

1 ��2t−1� ��2t−1�2 . . . ��2t−1�N−1
� . �1�

This matrix can be seen as a t�N matrix with elements in
GF�2m�, but another interpretation is also useful. If we write
each element �r of H as the m-component vector

� �r0

�
�r�m−1�

� ,

we obtain the tm�N parity check matrix Hz with entries in
GF�2�= �0,1
. Therefore Mz= tm. BCH decoding relies on
algebraic properties which are most easily written in terms of
polynomials. Here we shall just present the basic result in the
case t=2. If two of the N bits are flipped by noise, and these
indices correspond to the elements of GF�2m� called 
1 ,
2,
the check matrix H, applied to the error vector, gives two
syndromes �1=
1+
2 and �3=
1

3+
2
3. Decoding consists in

finding 
1 ,
2 given �1 ,�2. It is easily seen that this system
has a unique solution in GF�2m� �up to the permutation of 
1

and 
2�: the code with t=2 corrects exactly any set of �2
errors. The same construction works for arbitrary t, and good
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decoding algorithms exist: the code corrects any set of �t
errors. In practice we have used the Berlekamp algorithm
�13�, adapting some software available from �15�.

C. Generation of the x checks: LDPC code

Some BCH codes are self-dual; in such a case one gets a
quantum code using Hx=Hz �14�. But in order to get a much
better performance �for large N� on the x channel, we prefer
to use a code as close as possible to the random LDPC codes.
The commutation of the x and z checks is obtained by the
following procedure. Given a BCH code with parameters
m , t, we can generate an x check a with any degree n	2t
+1 using a variant of its standard decoding algorithm. The
first n− t elements of W�a� are chosen as a random subset of
�1, . . . ,N
 with distinct elements, taken uniformly among all
such subsets. Let us call 
1 , . . . ,
n−t the corresponding ele-
ments of FG�2m�. We look for the remaining t elements
which are solutions of the decoding equations

�
r=1

t

�
n−t+r�2s−1 = − �
r=1

n−t

�
r�2s−1 ∀ s � �1, . . . ,t
 .

Because all t! permutations of the solution elements
�
d−t+1 , . . . ,
d
 lead to the same t elements on the right-hand
side, one expects that the solution exists with probability
1 / t!, which was confirmed numerically. Provided that it ex-
ists, the elements 
d−t+1 , . . . ,
d can be found using any stan-
dard BCH decoding algorithm, like Berlekamp one. The in-
dices corresponding to the elements 
1 , . . . ,
n−t , . . . ,
n form
the subset W�a� defining the ath x check. As 
1 , . . . ,
n is a
codeword of the BCH code, the commutativity condition is
satisfied.

Clearly, the indices in V�a� do not form a random subset
of size n. However, if the map used in generating

n−t+1 , . . . ,
n from 
1 , . . . ,
n−t is chaotic enough �we shall
refer to this hypothesis as the “chaos hypothesis” in the fol-
lowing�, one can hope to generate a set of x checks with
performances close to the ones of classical random LDPC
codes. This is what we have found numerically. In practice,
for a given value of t, we generate with this procedure a large
enough pool of S
1 possible z checks, all having degree
n=2t+1. From this pool, we select a number Mz of checks in
such a way that the degrees of the variables in the corre-
sponding factor graph have a narrow distribution. This is
done by the following inductive procedure. Suppose we have
already selected r�Mz checks. For this system of checks, we
compute the degree of each variable. We then look at the S
−r remaining checks in the pool, and compute for each of
them its “quality,” defined as the number of minimal degree
variables that would be affected by addition of this check.
We then add one �randomly chosen� check of the highest
quality and repeat the procedure.

The practical decoding of our LDPC code uses the stan-
dard belief propagation �BP� algorithm �8,9�, a message-
passing algorithm which is equivalent to an iterative solution
of the Bethe equations.

IV. PERFORMANCE

An important parameter of the code is its degree of redun-
dancy. We have checked that the various checks are generi-
cally linearly independent, so the z rate �x rate� is obtained as
Rz=1−Mz /N �Rx=1−Mx /N� and the quantum rate of the
code is R=1− �Mx+Mz� /N.

The error-correction ability depends on the channel. In the
z channel �bit-flip errors�, by construction, the BCH code is
able to decode up to t errors. Therefore the probability of
error in decoding this channel is

Perr
z = �

j=t+1

N �N

j
�pz

j�1 − pz�N−j , �2�

which is well approximated, for the small values of pz that
interest us here, by 1−e−Npz� j=0

t �Npz� j / j!.
Let us now turn to the x channel. The performance of BP

decoding for random LDPC codes can be studied analyti-
cally in the limit of large block length �10�. Within the chaos
hypothesis, one could thus derive the threshold for zero error
decoding in the large-N limit. However, in practice we are
interested in not-too-large values of N. We have thus tested
numerically the BP decoding of our x code.

The simulation is run as follows. We fix an “acceptable”
value of the block error Pblock for decoding N bits, both in the
x and in the z channel, in practice Pblock=10−4. For given
values of N �or m� and t, Eq. �2� gives the noise level pz that
can be corrected in the z channel, and the channel asymmetry
gives the ratio pz / px. We then test various x codes, varying
Mx until the block error in the x channel is less than Pblock.
Results are summarized in Table I, which studies asymme-
tries pz / px=0.01,0.1. Notice that we consider as successful
only the cases in which ∀i ni�=ni and mi�=mi. Therefore we
compute an upper bound to the real error �because one might
have 	���= 	�� even when this condition is not realized�.

We see that large enough codes provide a good perfor-
mance. For instance, an m=12, t=6 code with N=4095 qu-
bits is able to correct a noise level of pz=2.5�10−4 in the z
channel and px=2.5�10−2 in the x channel with block error

TABLE I. Performance of various codes: The block error has
been fixed to Pblock=10−4; pz and px give the corresponding noise
thresholds in the two channels.

N m t pz Mz Rz px Mx Rx R

1023 10 2 8.40�10−5 20 0.980 8.4�10−3 563 0.45 0.43

1023 10 3 2.26�10−4 30 0.971 2.26�10−2 460 0.55 0.52

1023 10 4 4.34�10−4 40 0.961 4.34�10−2 530 0.48 0.44

1023 10 3 2.26�10−4 30 0.971 2.26�10−3 460 0.55 0.52

1023 10 4 4.34�10−4 40 0.961 4.34�10−3 344 0.66 0.62

1023 10 5 6.98�10−4 50 0.951 6.98�10−3 271 0.73 0.69

1023 10 6 1.01�10−3 60 0.941 1.01�10−2 285 0.72 0.66

4095 12 3 5.66�10−5 36 0.991 5.66�10−3 1577 0.61 0.61

4095 12 4 1.08�10−4 48 0.988 1.08�10−2 1378 0.66 0.65

4095 12 5 1.74�10−4 60 0.985 1.74�10−2 1189 0.71 0.69

4095 12 6 2.52�10−4 72 0.982 2.52�10−2 1191 0.71 0.69
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probability smaller than 10−4. Notice that for these values of
pz , px, the probability of a block error without any error cor-
rection �i.e., the probability of at least one error somewhere
in the block� would be 1− �1− pz,x�N, giving 0.63 for the z
channel and 1 for the x channel. The computation of syn-
dromes requires a number of quantum operations �applica-
tion of �x

i or �z
i� per logical qubit stored equal to Nop= ��m

+2�t+1� /R, while the correction of error takes �px+ pz� /R
operations per stored qubit. Figure 1 gives the block error in
the x channel, Perr

x , versus the phase error probability px, for
one given code.

V. CONCLUSIONS

We have provided an explicit construction of quantum
codes with rates R�0.5 that are able to correct a few errors
in one channel �bit flips� and have close to optimal perfor-
mance in another �phase errors�, together with efficient de-
coding procedures. One important aspect of these codes is
the fact that the number of quantum operations to be done to
decode one given bit is much smaller than N. In the z chan-
nel this is due to the fact that we use a small value of t; in the
x channel it is due to the intrinsic low density of the code.
Due to this key feature, the large block length of our codes
does not become a serious problem in the presence of some
errors during the decoding procedure. These codes might
thus be quite useful for the realistic physical implementation
of a quantum memory. The next step is to apply similar ideas
in fault-tolerant quantum computations, which have been us-
ing only very short block lengths so far �22�. Because the
suggested code belongs to the CSS family this must be in
principle possible; the challenge is to come up with an effi-
cient procedure that does not propagate errors from the x to
the z-channel.
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FIG. 1. Block error in the x-channel, Perr
x , versus the phase error

probability px, for the code with m=12, t=4, Mx=1378�+�. The line
is a guide to the eye. Also shown is the same curve for a random
LDPC code ���. The inset gives the same data in a log-log plot.
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