Eur. Phys. J. B 57, 175-180 (2007)
DOI: 10.1140/epjb/e2007-00130-7

THE EUROPEAN
PHYSICAL JOURNAL B

Risk minimization through portfolio replication

S. Cilibertit>2: and M. Mézard!

! CNRS, Univ. Paris Sud, UMR 8626, LPTMS, Orsay Cedex, 91405, France
2 Science & Finance, Capital Fund Management, 6 boulevard Haussmann, 75009, Paris, France

Received 31 August 2006 / Received in final form 28 December 2006
Published online 16 May 2007 — (© EDP Sciences, Societa Italiana di Fisica, Springer-Verlag 2007

Abstract. We use a replica approach to deal with portfolio optimization problems. A given risk measure
is minimized using empirical estimates of asset values correlations. We study the phase transition which
happens when the time series is too short with respect to the size of the portfolio. We also study the noise
sensitivity of portfolio allocation when this transition is approached. We consider explicitely the cases
where the absolute deviation and the conditional value-at-risk are chosen as a risk measure. We show how
the replica method can study a wide range of risk measures, and deal with various types of time series
correlations, including realistic ones with volatility clustering.

PACS. 89.65.Gh Economics; econophysics, financial markets, business and management

1 Introduction

The portfolio optimization problem dates back to the pio-
neering work of Markowitz [1] and is one of the main issues
of risk management. Given that the input data of any risk
measure ultimately come from empirical observations of
the market, the problem is directly related to the presence
of noise in financial time series. In a more abstract (model-
based) approach, one uses Monte Carlo simulations to get
“in-sample” evaluations of the objective risk function. In
both cases the issue is how to take advantage of the time
series of the returns on the assets in order to properly
estimate the risk associated with our portfolio. This even-
tually results in the choice of the risk measure, and a long
debate in the recent years has drawn the attention on two
important and distinct clues: the mathematical property
of coherence [2], and the noise sensitivity of the optimal
portfolio. The rational behind the first of these issues lies
in the need of a formal (axiomatic) translation of the basic
common principles of risk management, like the fact that
portfolio diversification should always lead to risk reduc-
tion. Moreover, requiring a risk measure to be coherent
implies the existence of a unique optimal portfolio and a
well-defined variational principle, of obvious relevance in
practical cases. The second issue is also a very delicate one.
In a realistic experimental set-up, the number N of assets
included in a portfolio can be of order 10? to 103, while
the length of a trustable time series hardly goes beyond a
few years, i.e. T ~ 103. A good estimate of any extensive
observable would require the condition N/T < 1 to hold,
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but this is rarely the case. Instead, the ratio of assets to
data points, N/T, will be considered as a finite number.

Assuming a multinormal distribution of returns, nu-
merical studies have shown the existence of a phase tran-
sition in the large N limit, at fixed N/T [4]. The ratio N/T
plays the role of a control parameter. When it increases,
there exists a sharply defined threshold value where the
estimation error of the optimal portfolio diverges. In refer-
ence [5] we provided an analytic study of this phase tran-
sition, under the expected shortfall risk measure, based on
the replica method [3] of statistical physics. In this note
we use the same method but we extend it in two respects:
we show how to extend it to other risk measures, and we
study more realistic distributions of returns in which there
is volatility clustering.

The paper is organized as follows. In Section 2 we in-
troduce the notations we will use throughout the paper
and we formulate the problem in its general mathemat-
ical form. In Section 3 we consider the case of the ab-
solute deviation (AD) [6]. The phase transition induced
from the noise estimation of the risk measure was stud-
ied in this case in [7] for the first time. We present the
replica calculation of the optimal portfolio and compute
explicitely a noise sensitivity measure introduced in refer-
ence [11]. In Section 4 we deal with portfolio optimization
under Expected Shortfall [2,8], which was shown to have
a non-trivial phase diagram [4] and then studied analyt-
ically [5]. The striking point is that, for some values of
the external parameters of the problem, the minimization
problem is not well defined and thus cannot admit a fi-
nite solution. We investigate here the same feature while
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considering realistic distribution of returns, so as to take
into account volatility clustering. The replica approach
then turns into a semi-analytic and extremely versatile
technique. We discuss this point and then summarize our
results in Section 5.

2 The general setting

We denote our portfolio by W = {wy,...wy}, where w; is
the position on asset 7. We do not impose any restriction
to short selling: w; is a real number. The global constraint
induced by the total budget reads ), w; = W. It is conve-
nient to work in units of the available budget per asset, by
using the variables w; = w; N/W. The budget constraint is
then )", w; = N. We denote by z; the return of the asset
1 and assume the existence of a well-defined probability
density function (pdf) p(x1,...xy). In practice, the mean
return of the assets is much smaller than the volatility; for
simplicity we just neglect the return here (but our method
could be extended to impose some constraints on the ex-
pected return). The loss associated with a given portfolio
is £ = (W/N, where ¢ = — Zivzl w;z;. One is thus inter-
ested in computing some properties of the pdf py(¢) of
the rescaled loss /.

In practice, one chooses a risk measure Fy(¢) (which
may depend on some auxiliary parameter \), and the risk
is defined as the expectation value [ dlpw(¢)Fx(¢). The
actual p(z1,...2n) is not known, and the expectation
value must be estimated by time series coming from mar-
ket observations or synthetically produced by numerical
simulations. Let us assume that we know the time series of
the return on a time interval T {z!' ,xf), . .xz(-T)}. The
risk associated with a given portfolio w1, ... wy, with risk
measure Fy, is:

T N
1
risk(w; N, T, \) = T Z]—} l— Zwixz(f)l ) (1)
r=1 i=1

The best known example of risk measure is of course the
variance, as first suggested by Markowitz. In this case the
risk function is obtained by taking Fy(z) = 2% in (1). The
evaluation of the variance implies an empirical evaluation
of the covariance matrix o;; of the underlying stochastic
process, and the extremely noisy character of any estima-
tion of o;; has been underlined a few years ago [9,10].
However, recent studies [11,12] have shown that the effect
of the noise on the actual portfolio risk is not as dramatic
as one might have expected. More in detail, a direct mea-
sure of this effect was introduced and explicitely computed
in the simplest case of o;; = J;;. In the next section, we
compute the same quantity as far as the absolute devia-
tion of the loss is concerned.

In the statistical physics approach, one studies the
limit N, T — oo, while N/T = 1/t is finite. One intro-
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duces the partition function at inverse temperature ~y:
200t (a7 =

N N
/Hdwz e~ YNt risk[w;N,Nt,\] 5 <Z w; — N), (2)

=1 =1

from which any observable will be computed. For instance,
the optimal cost (i.e. the minimum of the risk function in
(1)) is computed from

e(t,\) = lim minrisk[w; N, Nt, \]
N—oco wW
— lim = lim —log ZME A {2DY. (3)
N oo t oo v v )\ i .

It turns out that this expression depends on the actual

sample (the time series {:cET)}) used to estimate the risk
measure. When the time series is generated from a prob-
ability measure p(z1,...xy), it is reasonable to assume
that their exists a large deviation principle, so that the
distribution of e(t, \) (with respect to the various time
series instances) is narrowly distributed around its mean
when N — oo. Therefore we need to compute this mean,
which requires to average the logarithm of the partition
function according to the pdf p({:cgﬂ}). The so-called
replica method allows to simplifiy this task as follows. We
compute E[Z"] for integer n and assume we can ana-
lytically continue this result to real n: then E [log Z] =
lim,,_o(E[Z"] — 1)/n. This is the strategy that we are
going to use in the next sections and that will allow to
compute the optimal portfolio.

3 Replica analysis: absolute deviation

The absolute deviation measure AD [W; N, T} is obtained
by choosing Fy(z) = |z| in (1). No other external param-
eters A are present here. We assume a factorized distribu-

tion
. N(af™)?
pln”}] ~ [[ew (‘W |

where the volatilities {0} are distributed according to a
pdf which we do not specify for the moment. The form in
(4) is not too unrealistic (though fat tails are definitely
neglected) in that it corresponds to a multinormal distri-
bution seen in the bases of the eigenstates. Following the
replica method, we introduce n identical replicas of our
portfolio and compute the average of Z™:

(4)

E [Z2(t)] ~ / [T dede®
a,b=1
xeN Lo Q™ —DQ™'—F Trlog Q-5 Trlog Q43 , log A, ({Q""}ior)
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where we have introduced the overlap matrix

A,({Q" Y 00) z/ﬁdugexp{ _

1
ab:ﬁzwgwi?’ a;b:]-v"'nﬂ (6)

as well as its conjugate Q“b, the Lagrange multipliers in-
troduced to enforce (6). In the limit N,T — oo, N/T =
1/t finite, the integral in (5) can be solved by a sad-
dle point method. Due to the symmetry of the integrand
by permutation of replica indices, there exists a replica-
symmetric saddle point [3]: Q% = ¢, Q* = qo for a # b,
and the same for Q“b. We expect the saddle point to be
correct in view of the fact that the problem is linear. Under
this hypothesis, which will be only justified a posteriori by
a direct comparison to numerical data, the replicated par-
tition function in (5) gets simplified into

E[Z2(t) / dqo / dAgexp [Nn S, (qo, Aq) (1
+0(n))], (7)
S+ (g0, Agq) = a 7;210 -1 + ! ;t log Aq

+t —Z log A, (qo, Ag; 0-),

ds
V2mqo
w? s u
+n/du AN TE Y

Ay (g0, Ag; 0r) = ="/ 1

where Aq = ¢1 — qo and n is the number of replicas (which
will eventually go to zero). We now assume that in the low
temperature limit the overlap fluctuations are of order 1/
and introduce A = yAgq. One can show that if A stays
finite at low temperatures

lim lim —logA (o, A/v;0.) =

n—0 y—oo N
2.3 > 202 A% )2 2
A O‘T/ ds e~ 20 (1 — 5)2. (8)
1

For the sake of simplicity, we focus on the simple case
or = 1 V7. In the v — oo limit, the saddle point equations

for (7) are .
== erf (1//245). (9)

(]

-1/t a5
qo + o

) e (vem))])

e 1/240

(10)
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where ¢o = ¢jA%. The minimum cost function, i.e. the
average of equation (3), is found to be e(t) = 1/A. Notice
that (3) only admits a solution for ¢ > 1. There is no
solution to the minimization problem if the ratio of assets
to data points, N/T, is smaller than 1. On the other hand,
once this condition is fulfilled, the equation (10) gives a
finite A at any ¢ > 1. The asymptotic behaviour of e(t)
can be worked out analytically: we introduce 6 =1 — 1/t
and consider the limit § < 1. This leads to

N B} log (*i log 5)
e(t) = \/ —2logd (1 B 4logé ) (11)

The full solution and a comparison with numerics are
shown in Figure 1 (left). Numerical simulations take ad-
vantage of the linear programming reformulation of the
problem (see [4] for instance). We extract a given instance
of the minimization problem, i.e. a given realization of the

time series {xET)}, according to (4). We then look for the
optimal portfolio {w}} by evaluating the objective func-
tion on the vertices of the simplex obtained by the inter-
section of the linear constraints [13]. We finally average
our results (e.g. the variance of the optimal portfolio, or
the minimum risk) over O(10?) realizations of the disor-
der.

We now address the issue of noise sensitivity, for which
a measure was introduced in [11]. The idea is the follow-
ing: assume one knows the true pdf of the loss pw (¢) (in a
model based approach). Then one can compute the opti-
mal portfolio w(®) by minimizing the absolute deviation of
£. This gives a benchmark to study the performance of the
portfolio w* obtained by minimizing the risk (1) based on
an empirical time series of returns. In order to compare
their performance, one introduces the ratio qx defined as

AD[W*;N,T]

2 _

(12)

This is the quantity which we have computed by the
replica approach. In our calculation we have assumed a
factorized Gaussian distribution of returns (extensions to
more realistic cases will be presented in the next sec-
tion) and it is straightforward to prove that in this case

K = \/ZlNl(w )2. This corresponds in our language

to /o = \/ahA, which diverges like (1 — 1/t)7/2 as
1/t — 1. Corrections to this leading behavior (which is
instead the full shape of ¢ in the variance minimization
problem) are needed in order to reproduce the data (right
panel of Fig. 1). The comparison with the Markowitz op-
timal portfolio (variance minimization) indicates that the
AD measure is actually less stable to perturbations: a ge-
ometric interpretation of this result can be found in ref-
erence [4]. Beside this fact, the interesting result is then
the existence of a well defined threshold value ¢ = 1 at
which the estimation error becomes infinite. This is due
to the divergence of the variance of the optimal portfolio
in the regime ¢t < 1, where any minimization attempt is
thus totally meaningless.
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Fig. 1. Left: the analytic solution e(t) is compared with the results of numerical simulations, where the constrained optimization

is computed directly via linear programming methods [13]. Right: numerical results for

SN (w?)? compared to the analytic

behaviour 4/¢{A. The curve denoted by gx (var) represents the behaviour of ¢k in the variance minimization problem.

4 Expected shortfall
4.1 The minimization problem

For a fixed value of 8 < 1 (8 = 0.9 in the interesting
cases) the empirical estimation of the expected-shortfall
risk measure is obtained by the minimization of a properly
chosen objective function [14]:

ES[W;N,T,ﬁ} =

where [a]t = (a+|a])/2, and v is nothing but an auxiliary
real variable (the value v* that minimizes (13) could be
interpreted as an approximation of the VaR: see [14] for
more details). Optimizing the ES risk measure over all
the possible portfolios satisfying the budget constraint is
equivalent to the following linear programming problem:

e cost function: £ = (1 — 3)Tv + ZZZI Ur;
e variables: Y = {w1,...wn,u1,...ur,v};
e constraints: u; > 0, w; + v + Ziv=1 Tiw; >
N
07 Zi:l w; = N.

The intermediate step to understand the way this prob-
lem has been recast consists in replacing the [-]T function
by a variable u which can in principle be larger (this is
guaranteed by the two inequalities in the constraints) but
over which one has to minimize.

In a previous work [5] we solved the problem in the
case where the historical series of returns is drawn from
the oversimplified probability distribution (4), with o, =
1 V7. Here we do a first step towards dealing with more
realistic data and assume that the series of returns can
be obtained by a sequence of normal distributions whose
variances depend on time:

pl{oi}] ~ Hexp <70707/GT_},) [Tater). (14)

for some long range correlator G, which takes into ac-
count volatility correlations, and ¢(o,) equal e.g. to a log-
normal distribution.

4.2 The replica solution

A straightforward generalization of the replica calcula-
tion presented in reference [5] (and sketched in the pre-
vious section for a similar problem) allows to compute
the average optimal cost for a given volatility sequence
{o1,...0r}, in the limit when N, T — oo and N/T =1/t
stays finite. This is given by

e(t.0) = min, |55 + A 2t gl )] (15)
E(t, B v ao{or }) = t(1 = B0 —
bl [T .
er?;/_m ds ™" g(v/or + sv/2q0;0-),
(16)

where A = lim,_, yAq and the function g(z; o) is equal
tox? if —o <z <0, to —200 —0%is ¢ < —o, and 0
otherwise. The minimization over v, gy implies that

0 /0v = 9¢/0qp = 0. (17)
As discussed in [5], the problem admits a finite solution if
(16) is minimized by a finite value of A. The feasible re-
gion is then defined by the condition &(¢, 5;v, q|{o+}) > 0,
where v and ¢o satisfy (17). This theoretical setup sug-
gests the following semi-analytic protocol for determining
the phase diagram of realistic portfolio optimization prob-
lems.

1. Fix a value of 8 € [0,1], and take N equal to the
portfolio size you are interested in.
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Fig. 2. The first three panels show 3 realizations of volatility sequences of length 7' = 1024 according to the model (18).
Different panels correspond to different values of A\?. The last panel is a logarithmic representation of the A\? = 0.40 data.

2. For T = Tpin t0 Tiax, such that N/T € [0.1,0.9], do
the following:
(a) generate a sequence {o1,09,...07} according to
(14) and compute the € function in (16);
(b) minimize £ with respect to v and ¢p according to
(17);
(c) repeat steps (a) and (b) for n samples, and compute
the mean value (£).
3. Plot (¢) vs. N/T and find the value (N/T')* where this
function changes its sign.

By repeating this procedure for several values of 5 we get
the phase separation line (N/T)* vs. 3.

4.3 Results

A simple way of generating realistic volatility series con-
sists in looking at the return time series as a cascade pro-
cess [15]. In a multifractal model recently introduced [16]
the volatility covariance decreases logarithmically: this is
achieved by letting o, = exp&,, where &, are Gaussian
variables and

TCU.
(&) = =NlogTews ,  (&:&) —(€2) = N log Tit

0.6 T T T T
no fluct.
05 F 2 =00l
A =003
04+ A =010
S o3t
02
feasible region
0.1 * 1
0 1 1 1 1
0 0.2 0.4 0.6 0.8 1

B

Fig. 3. The phase diagram corresponding to different values
of the parameter A%. The full line corresponds to the absence
of fluctuations in the volatility distributions (i.e. o7 =1 V7).

A quantifying volatility fluctuations (the so-called ‘vol of
the vol’), and T¢.,¢ being a large cutoff. A few samples gen-
erated according to this procedure are shown in Figure 2.

The phase diagram obtained for different values of A\? is
shown in Figure 3. A comparison with the phase diagram
computed in absence of volatility fluctuations shows that,
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while the precise shape of the separating curve depend on
the fine details of the volatility pdf, the main message has
not changed: there exists a regime, N/T > (N/T)*, where
the small number of data with respect to the portfolio size
makes the optimization problem ill-defined. In the “max-
loss” limit # — 1, where the single worst loss contributes
to the risk measure, the threshold value (N/T)* = 0.5 does
not seem to depend on the volatility fluctuations. As 3 gets
smaller than 1, though, the presence of these fluctuations
is such that the feasible region becomes smaller than the
ideal multinormal case.

5 Conclusions

In this paper we have discussed the replica approach to
portfolio optimization. The rather general formulation of
the problem allows to deal with several risk measures. We
have shown here the examples of absolute deviation, ex-
pected shortfall and max-loss (which is simply taken as
the limit case of ES). In all cases we find that the opti-
mization problem, when the risk measure is estimated by
using time series, does not admit a feasible solution if the
ratio of assets to data points is larger than a threshold
value. As discussed in reference [4], this is a common fea-
ture of various risk measures: the estimation error on the
optimal portfolio, originating from in-sample evaluations,
diverges as a critical value is approached. In the expected
shortfall case, we have also discussed a semi-analytic ap-
proach which is suitable for describing realistic time series.
Our results suggest that, as far as volatility clustering is
taken into account, the phase transition is still there, the
only effect being the reduction of the feasible region. As
a general remark, we have shown that the replica method
may prove extremely useful in dealing with optimization
problems in risk management.

We thank I. Kondor and J.-P. Bouchaud for interesting dis-
cussions. S.C. is supported by EC through the network MTR
2002-00319, STIPCO.
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