PRL 95, 038701 (2005)

PHYSICAL REVIEW LETTERS

week ending
15 JULY 2005

Lossy Data Compression with Random Gates

Stefano Ciliberti,! Marc Mézard,' and Riccardo Zecchina®

"Laboratoire de Physique Théorique et Modéles Statistiques, Université de Paris-Sud, Batiment 100, 91405, Orsay Cedex, France
2ICTP, Strada Costiera 11, 1-34100 Trieste, Italy
(Received 20 April 2005; published 14 July 2005)

We introduce a new protocol for a lossy data compression algorithm which is based on constraint
satisfaction gates. We show that the theoretical capacity of algorithms built from standard parity-check
gates converges exponentially fast to the Shannon’s bound when the number of variables seen by each gate
increases. We then generalize this approach by introducing random gates. They have theoretical
performances nearly as good as parity checks, but they offer the great advantage that the encoding can
be done in linear time using the survey inspired decimation algorithm, a powerful algorithm for constraint

satisfaction problems derived from statistical physics.
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Introduction.—Constraint satisfaction problems (CSPs)
are at the heart of an emerging field of research which is of
interest to statistical physics, combinatorial optimization,
statistical inference, and information theory [1]. Broadly
speaking, these are problems involving a large number of
variables, taking values in a finite set (hereafter we shall
keep to binary variables). Each constraint involves K vari-
ables, and imposes a probability law on the 2K possible
assignments of the variables in this subset. Hard constraints
just forbid some of the configurations. The spin glass
problem [2], the satisfiability problem which lies at the
heart of the theory of computational complexity in com-
puter science [3], or the parity-check problems used in
error correcting codes [4] all belong to this category.

A lot of progress has been made in recent years in the
study of random constraint satisfaction problems where
each constraint involves randomly chosen (with uniform
distribution) variables [5]. This is the natural setting for
spin glasses; it offers the possibility to study issues in
typical case complexity in satisfiability, and it provides
some of the most efficient codes for error correction. In
several cases, it has been found that when the density of
constraints increases the system enters first a “clustered”
phase before it reaches the threshold of unsatisfiability
where it cannot meet all the constraints. Above this thresh-
old the configurations which violate the smaller number of
constraints are also clustered. Clustering means that the
configurations which satisfy all the constraints are grouped
into many disconnected clusters which are distant from
each other. Statistical physics methods originating from
spin glass theory, like the replica and cavity methods, turn
out to be very efficient to study these phenomena [6,7], and
some of the results have been confirmed rigorously re-
cently [8—11]. They have also led to a powerful algorithm
(survey propagation) which is able to solve very large
problems in the clustered region [7].

We show how one can take advantage of these clustered
phases to address a classic problem in coding theory, lossy
data compression. While a large amount of work has been
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done in this field [12], a number of challenging problems
are open, among them the realization of a practical com-
pression protocol for correlated sources or the exponential
increasing time in the encoding-decoding step of typical
algorithms. As for lossy compression schemes, it is worth-
while to mention, in particular, the good performance of
algorithms based on the codes [13] developed in the con-
text of channel coding. Here we propose an alternative
strategy, and as a starting point we focus on the case of
uncorrelated sources.

The problem of lossy data compression can be summa-
rized as follows. We have a source alphabet A, a source
distribution p(x,), and a distortion measure d(-, -) which
takes values in [0, 1]. We start from an original message
which is a sequence {x,} of M values independently drawn
from the source distribution. The purpose of data compres-
sion is to map this message to a string of N bits, with N <
M, in such a way that they can be, for example, easily
transmitted or stored. Then, one wants to decode this
N-bits string in order to reconstruct a sequence as close
as possible to the original message. We call the decoded
message {x}} and we want to minimize the expected value
of the distortion D = EZM  d(x,, x};)/M. How small a
distortion one can achieve depends on the rate R = N/M
at which the original message has been compressed.

The rate-distortion theorem proved by Shannon [14]
provides a bound for the minimum rate at which a com-
pression is possible once we fix the average distortion we
tolerate. The analytic expression of this rate-distortion
function R(D) is not known explicitly in the most general
case of correlated (memory) sources, and it is most often
obtained by means of some numerical algorithm (see, e.g.,
[15]). On the other hand, for an uncorrelated unbiased
binary source (i.e., with p(x,=0)=1—-px,=1) =
1/2), the rate-distortion function in the large N limit has
the simple expression

R(D) = 1 + Dlog,D + (1 — D)log,(1 — D). (1)

As a first requirement, a good lossy data compression
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algorithm must be able to approach this theoretical limit.
One should mention that in the lossless case, that is, the
D — 0 limit, practical algorithms that asymptotically satu-
rate the Shannon’s bound were discovered a long time ago
[16]. The lossy case turns out to be more difficult from the
algorithmic point of view. Recently, a perceptron with a
nonlinear transfer function has been proposed [17] as a
lossy compressor and it has been analytically shown to
achieve theoretically optimal performance, but its practical
use is strongly reduced by the fact that there is no known
polynomial algorithm in this case, and the typical string
lengths that can be compressed in reasonable time are thus
rather short.

The general idea.— We are interested here in developing
an approach to the problem which is based on CSPs, as
suggested in [18]. Our CSP uses M constraints between N
Boolean variables taking values in {0, 1}. Each constraint,
say a, is actually a gate controlled by the value x, of the ath
bit of the original message (see Fig. 1). The gate a is
connected to K, randomly chosen variables. The 2%« pos-
sible configurations of these variables are partitioned into
two equal size subsets, S, and U,. When the control bit is
x, = 0, the configurations in S, satisfy the constraint; the
configurations in U, do not. When the control bitis x, = 1,
the configurations in U, satisfy the constraint; the configu-
rations in S, do not. A simple example is provided by
parity checks. S, consists of the configurations with an
even number of 0’s. The gate then performs a linear
operation: it checks whether the sum of all variables and
b, is equal to 0 modulo 2. In this case the CSP is nothing
but the well-known XORSAT problem in computer science
[19]; it can also been seen as a spin glass problem with
three-spin interactions.

In our procedure, the initial word of M bits is used to
build a CSP with M constraints for N(<M) variables
{y1,...yn}. We then look for a configuration of variables
y* that minimizes the number of violated constraints, that
is, the ground state configuration. This is the encoded
(compressed) word. Of course, this step is nontrivial since
one must be able to handle a CSP which is in its “unsat”
phase. We note that the rate R of the process is simply
related to the density of constraints @« = M/N by R =

x = {T Tp T3 T4 T5 Te T7 T }
y={y v» »B u Y}
FIG. 1. A Tanner graph is a convenient representation for a

CSP. We emphasize in this cartoon the topological support of our
protocol.

1/a. Once we have a ground state configuration, the
decoding is easy: for each constraint a, one considers the
configuration of the subset of K, variables appearing in a.
If it lies in S, the reconstructed bit is x, = 0, otherwise it
is x, = 1. The number of bits of the original message
which are wrongly reconstructed is nothing but the number
of constraints violated in a ground state configuration.

We shall measure the distortion as D=3 |x, —x}|/
M. We define the total “energy” of a configuration y of the
CSP as E(y) = 3™ ¢, where &,(y) = 0 if the constraint
a is satisfied by the global configuration y, and ¢,(y) = 1
otherwise. The distortion is then related to the ground state
energy E, of the CSP through

D = E/M. ()

We are interested in the thermodynamic limit N, M — oo at
fixed density of constraints a. Shannon’s theorem provides
a lower bound Eg,(a) to the ground state energy, and a
good compression algorithm should be based on a CSP
with a very low ground state energy, as near as possible to
Shannon’s value.

The coder based on parity-check gates (XORSAT-CSP) is
a good candidate. A general strategy for computing the
ground state energy of this problem has been developed in
[8]. When all checks involve K variables and K becomes
large, a computation based on this strategy [20] shows that
Ey(a) — Eg,(a) decreases exponentially with K. So the
theoretical capacity of these gates rapidly approach
Shannon’s limit when K increases. Unfortunately there is
no known algorithm which matches this theoretical ca-
pacity. This is in contrast to the use of low density
parity-check codes for channel coding, where message
passing techniques are known to perform quite well.
However, we shall see below that message passing does
perform well on some other classes of gates.

Message passing.— Useful techniques for solving ran-
dom CSPs are based on local iterative updates of some
“messages” sent along the graph. For example, applying
the “min-sum” algorithm [21] to CSPs, one obtains the
warning propagation algorithm: each constraint a sends a
warning message u,_,; to one neighbor variable i according
to the values of the other variables attached to it: This
message can be 0—meaning that the variable is free to
assume any value [22]—or 1—meaning that, in order to
satisfy that constraint, the variable should assume a certain
value. This algorithm is very powerful and efficient in
many CSPs where the underlying factor graph is locally
treelike, when the density of constraints is small enough.
However it is limited in two aspects: (1) it stops to con-
verge when the density of constraint is such that the system
is in a clustered phase, and, in particular, in the unsat
regime which is of interest for our compression scheme.
(2) It does not work for parity checks because of the basic
symmetry of these gates.

The first limitation can be handled by going to a more
sophisticated message passing algorithm, survey propaga-
tion (SP). The SP algorithm is the direct implementation of
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inspired decimation [7] is to take advantage of this infor-
mation to fix the most biased variable in the system. Once
this is done, one has a simplified CSP with N — 1 variables
and we can thus repeat this step until one is left with an
under-constrained problem solvable by some standard
local algorithm. This algorithm has been shown to be
very useful in CSP problems like the coloring or the K-
SAT, where one is able to find efficiently a SAT assignment
in the difficult region. It can also be used for problems with
higher constraint density in order to find configurations of
low energy (small number of violated constraints) [23],
which makes it a very useful tool for compression.

Nonlinear nodes.—While it performs well on many
CSPs, the SP algorithm is useless for the “parity source
coder.” The problem here comes from the fact that the
distribution of the total bias is always symmetric, so that
the messages obtained after convergence give no hint of
how to decimate the problem. In order to solve this prob-
lem, we propose a compression scheme based on some
other gates, different from parity checks. These turn out to
have a theoretical capacity close to the parity checks, and a
generalized version of the SP algorithm [20] leads to a
convergent decimation scheme which is an efficient coding
algorithm. Among the several types of constraints we have
examined, the “random” nodes have been found to be the
more efficient. They are defined as follows: The subset S,
is a randomly chosen subset of size 257!, While parity
checks just implement linear constraints on Z,, these ran-
dom nodes are nonlinear functions of their inputs. However
from the point of view of the cavity method (used to
compute their theoretical performance) and of the SP
message passing procedure (used as encoding algorithm),
they can be handled by relatively straightforward general-
izations of the methods used for parity checks [20]. In this
note we summarize the results.

We build up a list of r random checks, and each con-
straint a picks up one check randomly in this list [24]. This
allows memorization of the truth table of all nodes and thus
speeds up the algorithms. All the results quoted below are
for » = 30. The theoretical capacity of this system, which
is proportional to the ground state energy according to (2),
is illustrated in Fig. 2. As we clearly see, the ground state
quickly approaches the Shannon’s bound of Eq. (1) as K
increases. Thus, this particular CSP is very promising from
the point of view of lossy data compression. In Fig. 3 we

o= 1/R

FIG. 2. The ground state energy of the CSP based on nonlinear
nodes versus the constraint density «. Shannon’s bound is also
plotted for comparison.

show the phase diagram for K = 6. The static energy is the
ground state energy per variable also plotted in Fig. 2; from
the algorithmic point of view, this is the performance of the
best possible algorithm which minimizes the number of
violated constraints. The dynamical energy marks the ap-
pearance of a regime where solutions group in many differ-
ent well separated clusters (that is, in order to go from one
cluster to another one we should flip an extensive number
of variables); any local algorithm, as, for example, warning
propagation, will be trapped at this dynamical threshold.
The dynamical energy computed here in the 1RSB ap-
proximation is believed to be an upper bound to the exact
one. Finally, the stability curve [9] indicates the range of
validity of the 1RSB formalism used to determine this
phase diagram (in particular, the ground state energy which
we compute should be the exact one for & < o rgp)-

So the theoretical properties of the random-node CSP
are quite similar to the parity-check CSP (the XORSAT
problem discussed in [8]). The good point with respect to
the parity-check CSP is that in this case the survey inspired
decimation algorithm does converge in the unsat phase in a

003 T T T T T T
static
dynamic -
0.2 stability
>
o
g
0
a
[9)
0.1
0

FIG. 3. The phase diagram of a system with 30 different
random nodes with K = 6. The values for the thresholds are:
ag = 0803, ag = 0.935 and QRSB = 1.727.
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FIG. 4. The performance of the algorithm is plotted versus the
rate R = 1/a of the compression (here K =6, N = 1000),
together with the theoretical capacity and Shannon’s bound.

time which scales as 2K N logN, and gives very low energy
states, i.e., nearly optimal global configurations. In Fig. 4
we show the performance of the compressor based on
random gates, for K = 6. The distortion achieved in prac-
tice by the algorithm with N = 1000 is close to the theo-
retical capacity, which brings it a few percent above
Shannon’s bound. As shown in Fig. 2, we expect the
performance to improve with increasing K (at the price
of an increase in computer time).

Conclusions.—We have shown, by using techniques
borrowed from the statistical physics of disordered sys-
tems, how one can use CSPs as a tool for compressing data.
In particular, the algorithmic performance of the random
gates—CSPs based on nonlinear nodes—is found to be
nearly optimal, since the Shannon bound is reached at large
K. The generalization of the present approach to compres-
sion of data from a larger alphabet (beyond binary input)
looks like an interesting perspective.
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