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Abstract. – We study numerically the local low-energy excitations in the 3d Edwards-
Anderson model for spin glasses. Given the ground state, we determine the lowest-lying con-
nected cluster of flipped spins with a fixed volume containing one given spin. These excitations
are not compact, having a fractal dimension close to two, suggesting an analogy with lattice
animals. Also, their energy does not grow with their size; the associated exponent is slightly
negative whereas the one for compact clusters is positive. These findings call for a modification
of the basic hypotheses underlying the droplet model.

Introduction. – In spite of over twenty years of attention, the nature of the spin glass
phase is still an open question [1]. If one is guided by the mean field theory of the infinite range
spin glass model [2], one is lead to a picture where three dimensional (3d) spin glasses have
many unrelated valleys whose free-energies differ by O(1). Extending this to zero temperature,
one should be able to find large excitations above the ground state which cost only O(1) in
energy, regardless of their volume. An important problem is to characterize these excitations
geometrically. In the droplet picture [3], the lowest-lying excitations are postulated to be
compact, i.e., their volume grows as the cube of their characteristic linear size ℓ. In this
picture, a spin glass is like a disguised ferromagnet with just two (spin reversed) pure states.
Furthermore, the lowest-lying excitations have typical energies that grow as a power of their
size ℓ, i.e., as Υℓθ with a positive exponent θ. Only in rare cases (the probability of which
decreases as ℓ−θ) will a droplet energy be O(1), whereas the mean field picture suggests that
this probability remains of order one even for large ℓ. The exponent θ has been estimated
numerically to be about 0.2 in 3d by measuring the energy difference between ground states
when applying periodic and antiperiodic boundary conditions [4, 5]. With this procedure,
a “domain wall” of linear size L is forced through the sample and cuts it into two compact
pieces. Such an approach implicitly assumes that a domain wall and the surface of a droplet are
topologically similar, in which case one may hope to identify the above exponent θ describing
local (i.e., ℓ ≪ L) excitations with an a priori different exponent θdw describing domain wall
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excitations (whose characteristic size is that of the whole system). Both in two [6, 7] and in
three [8–11] dimensions, there are now indications that this assumption is incorrect.

This work considers the local excitations of the 3d Edwards-Anderson model [12]. Our goal
is to test the key ingredients of the droplet model: droplets are compact and their energies
grow with their characteristic size. For our numerical investigation, we construct the connected
clusters of spins of lowest energy that contain a specified number of spins and a given site,
hereafter called “minimum energy clusters” (mec). We focus on the statistical properties
of the energy and geometry of a mec as a function of its volume. In the (limited) range
of volumes studied, we find that these lowest-lying excitations are actually fractal objects
with a dimension df close to that of lattice animals (df = 2); this excitation branch is thus
topologically unrelated to that associated with domain walls. Furthermore, the exponent
θf describing the typical energy of these fractal mec is measured to be small and negative,
θf ≃ −0.13. In contrast, excitations constrained to be compact have typical energies growing
with their size as expected. Within a näıve argument, θf ≤ 0 seems incompatible with a
spin-glass ordering at positive temperature. But such an argument assumes that excitations
of different sizes are statistically independent, and we find that this assumption does not hold.

Model and Methods. – We study the 3d Edwards-Anderson (EA) model with periodic
boundary conditions. The Hamiltonian is defined on a cubic lattice of N = L3 spins,

H = −
∑

<ij>

JijSiSj . (1)

The spins are Ising, i.e., Si = ±1, and the nearest-neighbor interactions {Jij} are quenched
random variables distributed according to a Gaussian law with zero mean and unit variance.

Our measurements are performed on lattices with N = 63 and N = 103 sites; in both
cases, we generated 1000 disorder samples. For each disorder sample, we first compute the
ground state of the system using a genetic renormalisation algorithm [13]. After, we choose an
arbitrary “reference” spin and flip it along with a cluster containing v−1 other spins connected
to it. We then minimize the energy of this cluster by exchange Monte Carlo [14], but with the
constraint that the reference spin is held flipped and the cluster is always connected and of
size v. Our mec thus differ from the droplets of Fisher and Huse [3]. Indeed, the volume of a
mec is constrained to a fixed value whereas Fisher and Huse consider the minimum amongst
all clusters fitting inside a box of width 2ℓ but not of width ℓ. Because of this, the scaling of
energy as a function of characteristic size can very well be different for these two definitions.
However, since all of their droplets are also mec, droplets so defined actually have energies
below those of our clusters as long as one doesn’t force the droplets to be compact.

To find our mec, we use non-local Kawasaki dynamics as follows. First one randomly
removes a node of the cluster and then places it back elsewhere; if the cluster is no longer
connected, undo the change and try again until the modified cluster is connected; finally, apply
the Metropolis condition for accepting or rejecting the change. In our exchange Monte Carlo
run, we used a total of 35 temperatures uniformly spaced between T = 0.07 and T = 2.45.
For each choice of v (v0 = 108, vn =

⌈

v0 ×
(

3
4

)n⌉
), we performed runs using different numbers

of Monte Carlo “sweeps” where each sweep consists of v accept-reject tests. This allowed us
to determine how many sweeps were necessary to find mec reliably: for the final runs, we
used 105 Monte Carlo sweeps, and then the data at v ≤ 33 is very reliable. Unfortunately, at
larger values of v, the data for 104 and 105 sometimes disagree so we are not so confident we
have found the optimum there. Because of this, our analyses are restricted to v ≤ 33, but for
completeness we shall show all of our data.
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Main Results. – Our most striking result is that the average energy Ē(v) of mec does
not increase with their size v but actually decreases as shown in Fig. 1.To illustrate the effects
of potential systematic errors, we also show the energy data from the runs using 104 sweeps
only. For the largest v, it is difficult to find the optimum (1), and furthermore the condition
that L be much larger than the cluster’s “extension” (mean end-to-end distance) is no longer
fulfilled; we thus expect finite size effects to be significant for v > 33, and this is corroborated
by the measurements of the cluster’s extension and gyration radius. Because of these two
systematic effects, all of our fits have been performed using the v ≤ 33 data.

From these mean energies, we extract an estimate of θf . Anticipating that mec have a
fractal dimension df , we write Ē(v) ∝ vθf /df ∝ ℓθf , where ℓ is the linear dimension of the
cluster. A fit of the L = 10 data (with v ≤ 33) to the form Ē(v) = A + B/vλ does not work
well and leads to negative values for A. On the contrary, the fit to the form Ē(v) = Avθf /df

as shown by a dashed line is very good (χ2 ≈ 0.7) and leads to θf/df = −0.060± 0.006.
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Fig. 1 – Log-log plot of energy, radius of gyration and extension versus v. Left panel: N = 103 spins;
right panel: N = 63 spins. Also shown is the energy when using 104 rather than 105 Monte Carlo
sweeps. The error bars are smaller than the symbols.

Next, consider the distribution of excitation energies (see Fig. 2). Surprisingly, the distribu-
tion hardly varies at all with v. Another feature is the suppression at energies close to zero (2),
in contrast to what is expected from the droplet model (if we parametrize these curves by
generalized Gamma functions, fits lead to an exponent close to 2, i.e., P (E) ≃ E2 exp(−βE2)).

Before seeing whether these excitations are compact or not, let us now constrain them to
be so as in the droplet model. We do this by forcing the cluster to stay within the cubic box
of size

⌈

γv1/3
⌉

with γ = 2, centered around the reference spin. Then we find that the energies
of these compact clusters do grow significantly with their volume, in fact as Ē(v) ∝ v0.19.
However the value of this exponent is only indicative because: (a) the size of the cube takes
integer values and therefore leads to a clear staircase effect; (b) for the relatively small sizes
we considered, the value of the exponent depends on the precise value of γ used. Note that the
exponent 0.19 is larger than the expected value θ/d = 0.07 (with θ = 0.2 and d = 3) from the
droplet model. This disagreement may be due to the fact that we work with fixed volumes;

(1) Note nevertheless that our average mec energy for v = 108 is smaller than for v = 3.
(2) The hole for small E is observed for all cluster sizes including the small ones where we are confident that

we find the optimum cluster.
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Fig. 2 – Histogram of the excitation energies for the v = 9, 18, 33, 108 optimal clusters. For v = 108,
it is interesting to note that the shape of the distribution hardly changes.

such a constraint leads to cluster energies that may grow faster than those of droplets.
Finally, we turn to the geometrical characterization of mec. Qualitatively, these lowest-

energy excitations (in the absence of any compactness constraint) are quite stringy (see Fig. 3).
To quantify this, we have computed the average radius of gyration, Rg, as a function of v. We
find that Rg ∝ v1/df with df = 2.10± 0.05 (see Fig. 1). This then leads to θf = −0.13± 0.02.
The same study for our compact clusters leads to df = 2.7± 0.1, instead of 3, but here again
the effects (a) and (b) discussed above lead to important corrections.
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Fig. 3 – A v = 108 minimal excitation in a N = 103 system with periodic boundary conditions.
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By comparing constrained and unconstrained clusters, we see that compact excitations
are not the ones of lowest energy. Actually, a simple entropic argument suggests that mec

may be lattice animals (for which df = 2): the number of such animals grows exponentially
with their volume, whereas the number of compact clusters only grows as the exponential of
their surface. Then the non-compact clusters may perhaps reach lower energy values simply
because of this greater entropy. To deepen this suggestion, recall that lattice animals can
collapse and become compact when penalized by a surface energy term [15]. We have added
such a penalty term to our clusters, allowing us to indeed monitor the transition of our mec

from fractal to compact. This and our measurement of df suggest that our mec are in the
lattice animal phase. Further indications come from geometric quantities such as the surface
to volume ratio or the mass distribution within one cluster, found to be very similar in both
cases (mec and lattice animals). For example, the ratio 〈r4

i 〉/〈r
2
i 〉

2, where ri is the distance of
site i to the center of mass of the cluster saturates at a common value around 1.25 at large v.

Our results contradict the main assumptions of the droplet theory: we find non-compact
excitations, decreasing instead of increasing energies with size, and a hole at zero energy in
the probability distribution of energies. Such properties are compatible with the mean field
picture, though at this point there have been no studies of local excitations in mean field
models with finite connectivity. But one can assert that within such models, all excitations
are non-compact in the sense of having their surface growing as their volume, and it is plausible
that the low-lying excitations will be the analogs of lattice animals. Note that such a picture
also seems to arise in the limit of both very strong disorder and high dimensions [16]. Finally,
these local excitations may develop smoothly into system-size excitations for which mean field
predicts θ = 0. If this occurs in three dimensions when the extension of our mec approaches
L, then they may turn into the sponge-like system-size excitations found by Krzakala and
Martin [8] for which θ is also negative or zero. It would be interesting to develop a new
phenomenology based on fractal droplet excitations and to study its compatibility with the
mean field picture.

Stability of the Spin Glass Phase. – Very low energy excitations of arbitrarily large size
may jeopardize the stability of the spin glass phase. In fact, Fisher and Huse [3] claim that
the stability of the spin-glass phase requires θ > 0. Their argument assumes that the mec are
compact; when we impose that constraint, our data are indeed compatible with θ > 0, but
otherwise we find θf ≤ 0. Let us first re-examine their argument in the context of the droplet
model (and thus keeping the hypothesis of compact droplets).

They assume that the temperature is very low and that the boundary conditions force the
spins at infinity to take the same values as in the ground state. For a given site i, consider the
order parameter mi ≡ 〈Si〉. Its value is mi = σi = ±1 in the ground state but its magnitude
is reduced at T > 0 by the thermally activated droplets that flip Si with some probability.
Following Fisher and Huse [3], let us neglect the interactions between the droplets; when the
temperature is low, the gas of droplets is expected to be very dilute so the hypothesis of a
non-interacting gas is appropriate. In this framework, the magnetization at site i depends
only on the droplets containing that site and is given by [3]: mi(T ) = σi

∏

n tanh(En/2kT )
where En > 0 is the excitation energy of droplet n containing i. Taking n → ∞, mi remains
non-zero only if low-energy droplets are sufficiently rare. Mathematically, this reduces to the
convergence at large L of the following integral:

mi(T ) ∝ exp

(

−

∫ L

1

dΩℓ
kT

Υℓθ

)

, (2)

where the measure dΩℓ = dℓ/ℓ expresses the fact that the size of droplets must roughly
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double before the energies become independent (3). Now, as long as θ > 0, the integral over ℓ
converges, and mi 6= 0 in the thermodynamic limit [3]. Conversely, when θ ≤ 0, the probability
to excite a droplet becomes independent of its size ℓ for large ℓ. One then finds from Eq.(2)
that mi(T ) ∝ L−α(T ), with a positive exponent α that vanishes for T → 0. Therefore, for any
T > 0, mi(T ) tends to zero for large system sizes. Our numerical findings suggest that θf ≤ 0
for mec; a näıve extension of the above argument to mec would then suggest that there is no
spin-glass phase, at variance with widely accepted evidence.

However, as we now discuss, two of the assumptions needed to obtain (2) are likely not to
apply to mec. First, can mec on different scales be treated as independent? One can measure

the correlation between mec of sizes v and v′ ≥ v by computing the overlap qs(v, v′) ≡ #(S∩S
′)

#S
,

where S is the set of surface links for the excitation of volume v, and similarly for v′ > v. By
definition, one has qs(v, v) = 1. If all the surface links of the smaller excitation belonged to
the surface of the larger one, then one would also have qs(v, v′) = 1. Our results are plotted in
Fig. 4 as a function of v/v′ for different sizes of the largest excitation, v′. We find that qs(v, v′)
is nearly independent of v for a given v′ and quite large (on the order of one half) for the sizes
investigated. Furthermore, the value of this “plateau” only very slowly decreases with v′, as
a small negative power or as 1/ log v′. This means that the mec are extremely correlated: an
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Fig. 4 – Semi-log plot of the normalized intersection qs(v, v′) between surfaces of optimal clusters
in the N = 103 system. We show qs as a function of v/v′ for different largest cluster sizes v′. The
“plateau” value is seen to decrease slowly with v′, as a small negative power-law or as 1/ log v′.

excitation of size v serves as a good “backbone” to construct larger excitations. On the other
hand, if one had two uncorrelated fractals, one should observe qs(v, v′) ∝ (v′)1−d/df ∝ v′−1/2,
i.e., a much faster decay than the one seen in Fig. 4. These strong correlations show that our
non-compact mec are not at all independent: the number of effectively independent clusters
is therefore much reduced. It is not clear at this stage how the phase space volume dΩℓ has
to be changed to account for these correlations, and whether or not the resulting integral
appearing in (2) would be convergent. The slow 1/ log v′ decay of the correlation function

(3) The formula also assumes that the probability distribution of E/Υℓθ has a non-zero value at zero argument;
the reasoning can be generalized if this density vanishes, leading to a different dependence on temperature of
mi, but the vanishing or not of mi in the thermodynamic limit is unaffected.
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qs(v, v′) suggests that dΩℓ becomes dℓ/(ℓ log ℓ), so that the integral appearing in (2) still
diverges, but only as log(log L), leading to mi(T ) ∝ (log L)−α(T ) with α vanishing for T → 0.
In this case, mi(T ) would therefore be zero for any T > 0, but the system size dependence
would be so weak for small temperatures that it would be impossible to disprove this scenario
numerically.

The second hypothesis underlying (2) is that the mec are dilute enough for the interaction
between two excitations centered around different sites can be neglected. If the integral in
(2) diverges for large ℓ, then it is no longer self-consistent to neglect the interaction between
the mec. These interactions could then provide a temperature-dependent cut-off scale when
θ ≤ 0 which would make mi(T ) non-zero for T > 0. This, and the strong correlation between
mec of different sizes, might therefore be enough to reconcile our findings with the numerical
evidence [17] of a T > 0 spin glass phase for the 3d EA model.

Conclusion. – In this paper, we have obtained numerical results on the local low-lying
excitations of the 3d Edwards-Anderson model. We constructed the optimal connected clusters
of flipped spins of a given size, and studied their energetic and geometrical properties. We find
that these minimum energy clusters (mec) have a fractal dimension close to two, suggesting
an analogy with lattice animals. The energy of these clusters does not grow with their size
(the corresponding energy exponent is found to be slightly negative). This is in contrast with
mec constrained to be compact, for which the energy is indeed found to grow with their size.
We therefore speculate that there exists a new “fractal” excitation branch, that should be
included in an extended droplet theory. To get some further insights into this theory, we are
now studying these excitations in the presence of a magnetic field and in four dimensions.
Clearly, the static and dynamical consequences of these objects will have to be worked out.
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