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We introduce a model of thermalized conformations in space of RNA—or single stranded DNA—
molecules, which includes the possibility of hairpin formation. This model contains the usual secondary
structure information, but extends it to the study of one element of the ternary structure, namely the
end-to-end distance. The computed force-elongation characteristics are in good agreement with some
recent measurements on single stranded DNA molecules.
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Recent progress in the manipulation of single biomole-
cules is making gradually accessible a wealth of interesting
physical information. One of the basic investigations con-
cerns the force-elongation characteristics: its measurement
in double stranded DNA (dsDNA) molecules has provided
very interesting results in the last few years, going from
a detailed characterization of the elastic properties of the
molecules to the existence of new phases of dsDNA in
various regimes of tension and overcoiling [1–11].

While the force-elongation characteristics of dsDNA is
rather well understood, the corresponding knowledge on
single stranded DNA (ssDNA) is poorer: although in some
ionic conditions it may be characterized by a simple freely
jointed chain (FJC) with elastic bonds [6], this description
is not valid when one changes the ionic concentrations
[12]. This discrepancy is probably due to the formation of
secondary structures in the ssDNA molecule [12], which
can bend back onto itself and form local helices where
complementary bases A-T and G-C are paired, gaining an
energy of several kT per pair.

The formation of secondary structures is a crucial step in
the folding of single stranded nucleic acid polymers. Its
importance stems from the rather large values of the bind-
ing energy involved in this formation, compared to the
much smaller energy scale of the interaction between sec-
ondary structures which govern the final three-dimensional
shape of the molecules (the ternary structure). As dis-
cussed recently [13–15], the formation of secondary struc-
tures in RNA (which is very similar to the one in ssDNA)
provides a wonderful laboratory for detailed studies of
some of the basic mechanisms at work in heteropolymer
folding.

In this paper we modify and extend the previous stud-
ies on RNA or ssDNA secondary structures in order to
include one simple aspect of the ternary structure, namely
the thermal fluctuations of the end-to-end distance, and its
dependence on the pulling force. Our model can be solved
exactly using generating function techniques. It involves
three parameters: the persistence length of the molecule,
the elastic constant characteristic of bond stretching, and
the pair binding energy. It predicts the existence of two
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phases. At low force the polymer is folded and its elon-
gation per bond vanishes. At some critical force there
is a second order phase transition: when the force is in-
creased the polymer elongates, the fraction of paired bases
decreases, and the behavior eventually approaches the one
found in absence of pairing.

In the simplest approximation, the backbone of the poly-
mer is described by a FJC with N elastic bonds. At ther-
mal equilibrium, the probability distribution of a bond to
be equal to the vector �r is given by

m��r� � C exp

µ
2

�j�rj 2 b�2

2�2

∂
, (1)

where b is the persistence length, � is a length which char-
acterizes the elasticity of the bond, and m��r� is assumed
to be normalized to 1. For RNA or ssDNA, one expects
b to be of the order of a few times the distance between
successive bases, and ��b to be much smaller than one.
The spatial conformation is thus described by the posi-
tions �ri (i [ �1, . . . , N 1 1�) of the N 1 1 nodes which
are the articulation points of the chain. The attraction be-
tween complementary bases creates an effective potential
eij��ri 2 �rj� between nodes i and j (arbitrarily far away
from each other along the backbone) which involves a short
ranged attraction and a core repulsion. We perform a stan-
dard virial expansion of the partition function in terms of
the quantities fij��r� � exp�2eij��r��kT � 2 1 which van-
ish for j�rj . a, where a is the range of the interaction.
The secondary structure is characterized by the set of node
pairs i, j such that fij fi 0.

Our main approximation for describing the secondary
structure is the standard one in which one keeps only the
nested diagrams [13–19], which are defined as follows:
(i) Each node can be paired to at most one other node.
(ii) Two node pairs i , j and k , l (with, say, i , k)
can coexist only if they are either independent (i , j ,

k , l) or nested (i , k , l , j). This condition ne-
glects the formation of pseudoknots. This is thus the sim-
plest approximation, one in which one adds to the basic
elastic model (here, for instance, the FJC) the possibility
© 2001 The American Physical Society
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of formation of hairpins, consisting of helices, and helices
within helices organized in a hierarchical way.

The hierarchical structure of the retained diagrams
makes it possible to write a recursion relation for the
partition function Zj,i��r� which describes the set of
nodes k [ �i, i 1 1, . . . , j�, with an end-to-end distance
�rj 2 �ri � �r . The recursion is explained in Fig. 1 which
shows that, when j 2 i $ 2 (the last sum drops out when
j 2 i � 2),
Zj,i��r� �
Z

d �u m� �u�Zj21,i��r 2 �u� 1 fji��r�
Z

d �u1 m� �u1� d �u2 m� �u2�Zj21,i11��r 2 �u1 2 �u2�

1

j22X
k�i11

Z 3Y
m�1

d �um m� �um� d �y fjk� �y�Zj21,k11� �y 2 �u2 2 �u3�Zk21,i��r 2 �u1 2 �y� . (2)
This recursion relation provides the definition of our
model for RNA or ssDNA folding. It modifies the recur-
sions which have been written previously in the studies of
RNA secondary structures [14] in two aspects. On the one
hand, it includes the spatial structure, i.e., the positions of
the nodes. Second, it uses the virial expansion in which the
interaction term between i and j is given by fij��r�. This
is needed in order to get back the usual FJC in the limit
where the interaction potential e vanishes.

As a first step in the study of this model, we investi-
gate in the following the case where the interaction energy
eij��r� is independent of the pair i, j. This amounts to using
an effective interaction, averaged over the several bases in-
cluded within the persistence length b, in which the only
effect of the sequence which is kept is the global concen-
tration in the various base pairs. The effect of sequence
heterogeneities, which is crucial for dynamical properties,
is left for future studies.

In the homogeneous case the partition function Zj,i��r�
depends only on n � j 2 i, and is denoted by Zn��r�. We
introduce the Fourier transform of the generating function
of the Z0

ns,

J�z , �p� �
Z

d �r

√X̀
n�0

Zn��r�z n

!
ei �p?�r , (3)

which is expressed in terms of the Fourier transforms:

s� �p� �
Z

d �r m��r�ei �p?�r

f� �p� �
Z

d �r�exp ��� 2 be��r���� 2 1�ei �p?�r . (4)
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FIG. 1. Recursion relation for the partition function. A thin
line denotes one bond, which in the elastic FJC is a vector
chosen with probability (1). A dashed line between i and j
corresponds to an interaction term exp�2eij��r��kT� 2 1. The
full line is the partition function which adds up the effect of all
nested or independent interaction lines.
Using Z0� �p� � 1 and Z1� �p� � s� �p� one derives from the
recursion relation (2) the functional equation

J�z , �p� �
1
z

v�z , �p�
1 2 s� �p�v�z , �p�

, (5)

where the kernel v satisfies the integral equation

v�z , �p� � z 1 z 3
Z d3q

�2p�3 f� �p 2 �q�s� �q�2J�z , �q� .

(6)

The force-elongation characteristics for a chain with N
bonds can be deduced from the partition function in the
presence of a force:

Z
�F
N �

Z
d �r ZN ��r�eb �F?�r . (7)

Its generating function is nothing but J�z , �pF�, where �pF

is an imaginary momentum given by �pF � �0, 0, 2ibF�
for a force F pulling in the third direction. For a long
chain, N ¿ 1, one expects a partition function behaving as
Z �F

N 	 A exp�2bNf�F���Na . The free energy per bond
f�F� determines the radius of convergence of the series
defining the generating function J�z , �pF�. It is thus equal
to f�F� � �1�b� ln�z ��, where z � is the singularity of
J�z � which is the nearest to the origin. From the free
energy per bond one deduces the elongation L along the
axis of the force, L � 2N≠f�≠F, as well as the average
fraction of pairings np (defined as the number of pairings
divided by N), np � ≠ ln�z ���≠ ln�g�.

The integral equation (5) is easily solved in the case
where the range of the interaction potential is small com-
pared to b (this approximation is again valid when b is
much larger than the interbase distance). One can then ne-
glect the momentum dependence of f and substitute f� �p�
by the constant gb3, where g is a dimensionless number
characteristic of the strength of the pairing and defined by
g � f��0��b3 �

R
d �r�b3�exp ��� 2 be��r���� 2 1�. The ker-

nel v is then momentum independent. The relation (6)
between z and v can be written as v � z 1 z 2A�v�,
where the function A�v� is monotonously increasing and
such that A0�v � 1� � `. One can then show that v�z �
has a second order branching point at zbp and is analytic
for jz j , zbp, where zbp is the maximum of the function
�21 1

p
1 1 4vA�v� ��2A�v�.
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The singularities of J which control the large n be-
havior of Zn are the branching point of v�z � at zbp and
the pole at zp� �p� determined by the vanishing of the de-
nominator of Eq. (5), when the momentum is equal to �pF :
v�zp�s� �pF� � 1. For purely elastic bonds with � ø b,
one finds s� �p� 
 �sin�pb��pb� exp�2p2�2�2�, and the
pole is located at

v�zp� �
bFb

sinh�bFb�
e2b2F2�2�2. (8)

Each of the two singularities is associated with one
phase of the model. As far as we neglect the momentum
dependence of v (i.e., for small interaction radius), the
position of the branching point does not depend upon the
force. Therefore it corresponds to a folded phase (which
we call “hairpinned phase”). The free energy per bond is
given by f�F� � �1�b� logzbp. The length of the poly-
mer is of order N0 in the long chain (N ! `) limit. A
fraction np of nodes is paired with np independent on the
applied force. The chain is bent in a few, i.e., O�N0�, hair-
pins, each one involving O�N� bonds. The “elongated”
phase corresponds to the pole singularity. The free en-
ergy f�F� � �1�b� logzp� �pF� is force dependent and the
elongation is extensive (proportional to N). This can be
written as L�F� � nfree�F�LFJC�F� where LFJC�F� is the
elongation without interaction (i.e., in the case g � 0) and
nfree�F� the fraction of nodes which do not belong to any
hairpin. The fraction of pairings rapidly decreases with the
applied force. The number of hairpins is O�N�.

In our model there exists a second order phase transition
between the hairpinned phase at low force and the elon-
gated phase at high force. This phase transition is a robust
feature of the model which does not depend on the details
of the interaction potential and of the bond stretching po-
tential: the branched point singularity, associated with the
hairpinned phase, is present as soon as s� �p� 	 1 2 k �p2

for small j �pj, which is the generic situation. The pole
singularity, associated with the elongated phase, is always
present. The boundary between the two phases occurs at
a critical force Fc�g� which increases monotonically with
g. Slightly above the threshold the elongation grows line-
arly with the force L�F� ~ F 2 Fc�g�. The asymptotic
behaviors of the dimensionless critical force are

bbFc�g� 	
1
4

log�g� for 1 ø g ø eb2��2

,

bbFc�g� 	
g

8pk2 for g ø 1 . (9)

Notice that the linear dependence of Fc at small g is a
prediction which is independent of the detailed form of
the bond probability distribution (1).

Equations (6) and (8) can be easily solved numerically.
We compared our theoretical predictions with the experi-
mental data presented in Ref. [12] on the ln force versus
2180
elongation characteristic for a charomid-ssDNA at room
temperature under different salinity conditions. Using the
elastic model for bond stretching (1), our three fitting pa-
rameters are the persistence length b, the elasticity �, and
the interaction parameter g.

As shown in Fig. 2, we obtain a good agreement with
the experimental curve at the highest salt concentration
(10 mM PB, 5 mM Mg). The small elongation region
(L�L0 , 0.1) of the experiment was not considered since
the interactions of the molecule with the glass plate cannot
be ignored (this forbids a study of the critical force region
with the present data). The number of bonds was fixed
as in [12] such that Nb � 1.6875L0, where L0 is the
crystallographic length of the double stranded DNA. A
least squares fit yields the following results: b � 19.2 Å,
g � 1.89, and � � 1.01 Å. The orders of magnitudes of
the various parameters are correct. The persistence length
is of the order of 3 times the interbase distance b0 (our
approximation of a large value of b . b0 is marginally
self-consistent and should be improved upon in the future).
The value of �, when expressed in terms of the enthalpic
elasticity S as in [12], corresponds to S � b��b�2� 

1000pN , typical of the values measured at higher forces
[6,10,11]; the approximation � ø b is valid. The value of
g is characteristic of the strength of the interaction. For
a potential well of width a and depth e0, one has g 	
�a�b�3 exp�be0�, which is compatible with some typical
values such as a 	 4 Å, e0 	 2.9kT .

From our computation one can deduce the pairing frac-
tion np in the conditions of the experiment. This is plotted
in Fig. 3. It is clear that in the region of forces above 10pN
there is no pairing. This is consistent with the measure-
ments of Ref. [12] which showed that the characteristics

0.0 0.5 1.0 1.5 2.0
L/L0

0.1pN

1.0pN

10.0pN

100.0pN

F

FIG. 2. Fit of the force-elongation characteristics of charomid
ssDNA. The circles are the experimental data of Ref. [12].
The continuous line is the best fitting curve obtained with our
model. The dashed curve is the FJC characteristics obtained by
switching off the interaction. The difference between the two is
due to the formation of hairpins.
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FIG. 3. The fraction of paired nodes in the secondary structure
as a function of the external pulling force. The three curves refer
to three different values of the interaction parameter g. From
top to bottom g � 3.9, 1.9, and 1.0. The other parameters of the
model correspond to the experimental situation: they are fixed
as in the fit of Fig. 2.

of two different ssDNA’s with different G-C concentration
merge in that region. One should keep in mind that the
two fitting parameters b and � are basically fixed by this
high force region where there is no pairing. The low force
part is the one which fixes the binding parameter g.

When the salinity is lowered, some new physical effects
become relevant. The electrostatic interactions between
the bases are less effectively screened, and probably the
FJC is not a good model. One possibility to test it is
to use, instead of the elastic FJC, the experimental force-
elongation characteristics measured on a molecule exposed
first to a chemical treatment (for instance, glyoxal) which
decreases the ability of the bases to pair. Our model should
then allow us to deduce from two experimental curves (one
with glyoxal, the other without) the effect of the secondary
structures [20].

In this paper we have introduced a solvable model of the
structure of ssDNA or RNA molecules which includes, to-
gether with the secondary structure, one important element
of its ternary structure. The model gives a general frame-
work for including the effect of hairpin formation in the
elongation properties of the molecules. When used with a
simple FJC model for the polymer without hairpins, it is in
good agreement with the experimental data at high ionic
concentration. Several extensions of this study are natural.
The description of data obtained at smaller ionic concen-
tration requires one to go beyond the FJC approximation.
Another natural extension of our study, also possible within
this model, is to study the effects of the disorder in the se-
quence of bases.
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